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Abstract. In this paper we study the problem of scheduling a collec-
tion of workflows, identical or not, on a SOA (Service Oriented Architec-
ture) grid . A workflow (job) is represented by a directed acyclic graph
(DAG) with typed tasks. All of the grid hosts are able to process a set
of typed tasks with unrelated processing costs and are able to transmit
files through communication links for which the communication times
are not negligible. The goal of our study is to minimize the maximum
completion time (makespan) of the workflows. To solve this problem we
propose a genetic approach. The contributions of this paper are both
the design of a Genetic Algorithm taking the communication costs into
account and its performance analysis.

1 Introduction

Nowadays, to go further in their research, scientists often need to connect several
applications together. Therefore, since few years, workflow systems have been
designed to provide tools that support these multi-application simulations. In
e-Science [16] many fields as medical image processing, geosciences or astronomy
use workflow applications. A workflow is defined as a set of applications that are
connected to each other by precedence constraints. An input data set enters the
workflow, it is processed by an application which computes an output data set
that is, in turn, sent to the next application of the workflow structure. Generally
a workflow has the structure of a DAG (Direct Acyclic Graph): a graph whose
nodes are tasks and whose edges are precedence constraints.

When the size of the data entering the workflow increases the processing
time may become very long and it becomes necessary to use larger computing
resources as grids. Because of their heterogeneity these platforms are however
difficult to efficiently use for non computer scientists mainly due to the complex-
ity of scheduling the tasks on the hosts. Several research projects have already
tackled this problem. The Pegasus framework [8] proposes a convenient way
for scientists to compute their workflows onto heterogeneous platforms without
learning distributed programming concepts. Other tools, like DIET [2] or NINF-
G [15], provide a SOA-Grid (Service Oriented Architecture) that facilitates user
accesses to remotely accessible computing applications and make the execution
of workflows on a heterogeneous platform easier.

When the number of workflows to be executed in parallel is large, we must
efficiently map them onto the heterogeneous resources. Minimizing the execu-
tion time (makespan) of a workflow or a set of workflows onto a heterogeneous
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platform is however an optimization problem that is known to be NP-Hard [13].
As a consequence, the problem considered here is also NP-Hard and we can just
rely on heuristics to find a solution as good as possible. Classical scheduling al-
gorithms often rely on list-based scheduling algorithms. They use heuristics such
as Heterogeneous Earliest Finish Time (HEFT) [17] or Critical Path [11]. In a
homogeneous context, [12] gives a survey on the DAG scheduling topic and the
study presented in [9] evaluates eleven heuristics, such as Min-min, Max-min or
Sufferage. Makespan oriented strategies to schedule workflows onto the grid are
presented in [14], with the description of real life medical applications. In [18],
the problem of scheduling a set of different DAGs is studied. These approaches
compute an off-line schedule considering the whole set of tasks. But, when the
number of tasks scales up, the computation time becomes too long because of the
complexity of the algorithm. Genetic Algorithms (GA) are known to give good
results in several optimization domains and algorithms that schedules tasks are
for instance presented in [10] and [5]. They are designed for scheduling tasks of
one workflow onto a heterogeneous platform but without taking communication
costs into account. Other studies tackle workflow scheduling onto heterogeneous
platforms but with other objective functions than the makespan. The Steady-
State technique presented in [1] provides an optimal algorithm to schedule a set
of identical workflows also for the throughput objective function.

In this study, the general problem we deal with is to schedule a set of workflows
(jobs) onto a SOA-grid. Each task of a workflow has a type that corresponds
to a service type in the SOA-Grid. We consider the two following cases: (1) the
general case where the structure of each workflow differs from one another; (2)
the particular case when the structure of the workflow is the same for all jobs.
In this paper we focus on researches that we carried out on the design of a
Genetic Algorithm and we assess its performance to schedule a set of workflows.
The contributions of this paper are both the design of a Genetic Algorithm
taking the communication costs into account and the performance analysis. In
the general case (1) we compare the performance obtained by a GA approach to
the performance obtained by a list-based scheduling algorithm. In the particular
case (2) of the scheduling of a collection of identical workflows which structure is
limited to intrees, we compare our results to a lower bound and we show that our
Genetic Algorithm approach allows us to get a schedule with good performance.

The paper is organized as follows. In Section 2 we detail the framework which
defines both the grid and the workflow models. We present in Section 3 a Genetic
Algorithm that takes communication costs into account to deal with our problem.
Section 5 introduces the simulation setup, the results of the simulations and their
analysis for workflows of different shape. Section 6 presents the simulations for
workflows with identical structure. Finally, we conclude in Section 7.

2 Framework

In this section we formally define the context of our study.

Applicative Framework. Our problem that is to schedule a collection
B = {J j , 1 ≤ j ≤ N} of N workflows. Each workflow J j is represented by
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a DAG J j = (T j ,Dj) where T j = {T j
1 , . . . , T

j
nj
} is the set of its tasks and

Dj represents the precedence constraints between the tasks. These precedence
constraints are files: F j

k,i is the file sent between T j
k and T j

i when (T j
k , T

j
i ) ∈ Dj .

Let T = ∪N
j=1T j = {T j

ij
, 1 ≤ ij ≤ nj and 1 ≤ j ≤ N} be the set of tasks to

schedule. We define t(i, j) as the type of task T j
i .

Target Platform. The target platform PF is a heterogeneous platform of n
machines modeled by an undirected graph PF = (P ,L) where the vertices in
P = {p1, . . . , pn} represent the machines and where the edges of L are the
communication links between machines.

Let τ be the set of all task types available onto the platform. Each machine
pi is able to perform a subset of τ . If the type t ∈ τ is available on the machine
pi, w(t, pi) is the time to perform a task of type t on pi. Moreover, each link
(pi, pj) has a bandwidth bw(pi, pj) which is the number of data per time unit
that can be transferred through that link. We define a(i, j) such that pa(i,j) is

the machine on which T j
i is assigned.

Communication Model. In our study the processors are interconnected by
communication links in a point-to-point fashion to model a computation grid.
In the literature [1,3], several communication models exist such as the one-port
model or the multi-port model. We choose to use the one-port model because
of its ease of modeling and of implementation while still being realistic. In this
model only one data can be transmitted at the same time over a communication
link and a node can do at most one reception and one transmission at the same
time. We define R(pk, pi) = {(pj , pj′) ∈ L} as a route from pk to pi.

3 GA with Communication Costs

For the execution we use the same genome representation as in [5,10], i.e., a chro-
mosome is a two-dimension table with one row per node where the tasks assigned
to the node are recorded. Some improvements to take SOA-Grids and collections
into account, presented in [7], are added. As these GA coding does not however
take communication costs into account, we study their integration in this section.

Communication Integration. The main issue we faced is the step of the
genetic algorithm where we should integrate the communications.

The first solution we have studied is to add communications in chromosomes,
as for executions. We thus introduce the notion of “communication task” to rep-
resent file exchanges in the task graph and we map them onto communication
links. The chromosome thus becomes a two-dimension table with one row per
node and one row per communication link. Tasks are recorded in the node’s rows
and communication are recorded in the link’s rows. This leads however to issues
regarding both the crossover and the mutation genetic procedures. As the choice
of a communication link depends on the source and sink nodes not every link can
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be used for a given communication. So these procedures generate inconsistent
communication routes and so numerous non feasible schedules that waste a lot
of computation time.

A more convenient way to introduce communications is in the fitness evalua-
tion step of the genetic algorithm. Indeed the allocations of the communication
tasks depend on the allocations of the computation tasks since the possible routes
between two nodes are limited. Choosing a good mapping for the computation
tasks intuitively involves finding a valid allocation for the communication tasks.
So we use the chromosomes only to map the computation tasks onto the nodes,
and in a second step to look for a valid route to send the data according to
this mapping. The fitness of each individual is then evaluated by algorithm 1.
For each task of the chromosome it computes its start time depending on the
processor avalaibility (lines 5-7) and when the used processor will become iddle
(lines 8-9). The algorithm then remove the task for the set of remaining tasks
(line 10). At the end it returns the fitness of the chromosome.

Algorithm 1. Computing the fitness of a chromosome

Input : PF : the platform and B: collection of workflows
Output: f(ch): the fitness of the task with chromosome ch
Data: TToSched: the set of remaining tasks to schedule, C(T j

i ): the completion
time of T j

i , σ(T
j
i ): the start time of T j

i on pa(i,j), δ(pu): the next time pu
is idle, pa(i,j) the machine on which T j

i is assigned, w(t, pi): the time to

perform a task of type t on pi, CT (F j
k,i): the communication time to

send F j
k,i along route R(pa(k,j), pa(i,j))

1 TToSched ← T
2 while TToSched �= ∅ do
3 choose a free task T j

i ∈ TToSched (Earliest Finish Time heuristic)

Tpred ← {T j
k |(T

j
k , T

j
i ) ∈ Dj}

4 σ(T j
i )← 0

5 foreach task T j
k ∈ Tpred do

6 σ(T j
i )← max(σ(T j

i ), C(T j
k ) + CT (F j

k,i))

7 σ(T j
i )← max(δ(pa(i,j)), σ(T

j
i ))

8 C(T j
i )← σ(T j

i ) + w(t(i, j), pa(i,j))

9 δ(pa(i,j))← C(T j
i )

10 TToSched ← TToSched \ {T j
i }

11 return f(ch) = 1/Cmax = 1/max
T

j
i
∈T (C(T k

i ))

4 Simulation Setup

To assess the performance of the scheduling algorithm we need to implement it
on a heterogeneous platform. The context is indeed too complex to be studied
with a formal approach and, to get realistic results, the platforms used must
integrate the network contention. On the other hand, the implementation on a
computation grid can however not give reproducible results as the experimental
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conditions, as the network load, may change. So, we use a grid simulator to eval-
uate the performance of the Genetic Algorithm. The simulator is implemented
using SimGrid and its MSG API [4].

All simulations have been made using batch sizes from 1 to 10 000. The plat-
forms and the applications are randomly generated with a uniform distribution.
Platforms have between 4 and 10 nodes and are strongly connected. Applica-
tions have between 4 and 12 tasks. For the case presented in Section 5, where
workflows are different from each other, 200 platforms and 10 000 DAGs are ran-
domly generated. For each couple (platform, batch size) different applications
are randomly chosen among the 10 000 ones. So we generate 1 900 simulations
of platform/application scenarios. In the case where workflows are identical, we
use 10 platforms and 10 applications, so 100 scenarios for each batch size.

We define the “communication to computation ratio” (CCR) of a simulation
as the average computation time divided by the average communication time.
To assess the impact of the communications on the algorithm performance, we
run simulations with different CCR, from 1 000 (i.e., communication time is
predominant) to 1/1 000 (i.e., communication time is negligible). The speed of
the nodes are unrelated. We also assess the impact of the platform heterogeneity
on the performance: execution and communication times fluctuate respectively
in a range from 1 to 10 and from 1 to 4.

For the GA, the population is set to 200 individuals and a generation is set
to 100 iterations.

5 Results with General DAGs

As the execution time of a collection of workflows cannot be computed in poly-
nomial time, we must compare the performance of the GA to another algorithm:
we use a standard list-based scheduling algorithm. The results presented in this
section concern fully heterogeneous platforms and CCR ≈ 1.

Impact of the Communication Model. Choosing the network links for each
communication is complex. Always using the shortest (or the fastest) path may
lead to a high contention so that we need to take the network load into account.
We assess here four communication policies:

– “GA-no-comm”: the route between two nodes is statically and arbitrary
chosen and the communication costs are not used to compute the fitness.

– “GA static-route”: the same as the previous policy but the communication
costs are used in the fitness computation.

– “GA 1-route-Bellman-Ford”: the static route for each couple of computation
nodes is the fastest one by using the Bellman-Ford algorithm.

– “GA 3-routes-Bellman-Ford”: for each couple of computation nodes, during
the evaluation fitness step, the 3 best routes are tested.

Figures 1a and 1b show the efficiencies of the GA with different communication
integrations. The notion of relative measure to optimal (RMO) is introduced in
Section 6, however, we just need to know that the higher the curve, the more
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Fig. 1. Communication integrations with a RMO above 0.9 and 0.8

efficient is the algorithm. Comparing these policies to a list-based scheduling
(LIST) allows us to remark on one hand that this is mandatory to take commu-
nication into account to increase the performance but on the other hand that the
use of dynamic information in GA 3-routes-Bellman-Ford does not significantly
improve the performance. We nevertheless use this implementation, as we get
the best results for the performance analysis in the following.
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Fig. 2. Improvement for different DAGs
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Fig. 3. Improvement for identical DAGs

Figure 2 shows the improvement of the makespan for a set of different work-
flows on a heterogeneous platform. Each curve shows the percentage of GA
experiences whose makespan is improved respectively by more than 0%, 10%,
20% and 30% when compared to the list-based scheduling algorithm (LIST).
We notice that more than 80% of the GA experiments have a makespan im-
proved by more than 10%. The 0%-curve shows that GA never slows down the
performance.

Figure 3 shows the improvement of the makespan for a set of identical work-
flows. We can notice that GA gives less important improvements relative to LIST
in this case. For each 0, 10, 20 and 30%-curve, GA improvements decrease by
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about 10% compared to experiments obtained when scheduling different work-
flows. We can also note that 10% to 20% of the GA schedules are less efficient
than the LIST schedules in this case. GA improvements remain however high.

In general, more than 70% of the GA experiments give a makespan with an
improvement greater than 10% for almost any size of sets of workflows. The
diversity of the workflows promotes the GA algorithm: as GA tries randomly a
lot of combinations, it can benefit from different workflows while LIST which is
directed by greedy choices, cannot.

6 Results for a Set of Identical Intrees

Comparing two algorithms gives relative information but no absolute informa-
tion on the quality of the algorithm. For the particular case of batches of intrees
it is possible to compute an optimal throughput by using a Steady-State algo-
rithm [1]. In this section we assess how far the GA is from the optimal and we
compare it to the list scheduling and to a practical makespan oriented implemen-
tation of the Steady-State algorithm [6]. The latter reaches the optimal solution
for an infinite number of jobs, as its objective function is the throughput, but
limits this study to the particular case of intree-shaped workflows.

Relative Measure to Optimal. The optimal throughput ρ can be computed
thanks to the Steady-State algorithm using linear programming. This optimal
throughput is used to compute a lower bound L0 for the optimal makespan as the
number of jobs to be processed over the throughput (L0 = N

ρ ). Let makespano

be the optimal makespan, then makespano ≥ L0. To evaluate the algorithm
performance, we introduce the notion of Relative Measure to Optimal (RMO)
as the ratio between this lower bound Lo over the makespan makespanr of the

schedule given by the algorithm (RMO = Lo

makespan
r

). So, the nearer RMO is

from 1.0, the more efficient is the scheduling algorithm.
Since we run 100 simulations, for each of the 19 sizes of job sets, we cannot

get a simple scalar RMO value for the overall experiments. A mean value would
indeed be not meaningful as the longer simulations will weight more than the
sorter ones with this metric. So we compute the percentage of experiments that
gives a RMO greater than t for each size of batches. In the following we present
the distribution of the results depending on this percentage on the 3D curves.
Two lines are thickened on the surfaces to highlight the RMO curves for threshold
values 0.8 and 0.9. They represent the quality of the schedule.

Fully Homogeneous Platforms. Figures 4a, 4b and 4c give the results for
homogeneous platforms (homogeneous nodes and homogeneous communication
links) and computation intensive applications (CCR ≈ 0.01). In that case the
GA algorithm give almost optimal results for 85% of the experiments. Figures 5a,
5b and 5c show the results for homogeneous platforms and communication in-
tensive applications (CCR ≈ 1). In that case the GA algorithm gives the best
results for batches with less than 2 500 jobs and is overtaken by the Steady-State
algorithm for jobs with more that 10 000 jobs. It also reaches the optimality for
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Fig. 4. Simulation with fully homogeneous platforms, CCR ≈ 0.01
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Fig. 5. Simulation with fully homogeneous platforms, CCR ≈ 1

almost 70% of the experiments. From these experiments we can conclude that
the GA algorithm performs globally well, much better than the simple LIST
algorithm. The results are however lowered when we introduce communications
because it makes the problem more complex.

Fully Heterogeneous Platforms. Figures 6a, 6b and 6c show the results ob-
tained for a heterogeneous platform with CCR ≈ 0.01 and Figures 7a and 7c
show the results with CCR ≈ 1. In this communication intensive case, no al-
gorithm gives good results due to the complexity of the problem. The Steady-
State tends slowly toward optimality. The GA nevertheless gives the best results
for batches with less than 2 000 jobs. In the computation intensive case (i.e.,
CCR ≈ 0.01), the GA performs the best compared to the other algorithms and
its performance is not far from the homogeneous case.

On the whole set of curves, we can note that the GA globally gives good sched-
ules and it out performs the other algorithms for the studied context. It usually
reaches its best performance from a few tens of jobs and stays stable for more jobs.
So, in all of the studied cases, GA is a good choice for batches from one to a few
thousand jobs. This latter limit depends on the properties of the platform.

Computation Times. The simulations have been run on a 2.8 GHz Intel Xeon
bi-processor. The time needed to compute a schedule using the GA varies linearly
according to the batch size: about 1 second per DAG. The CPU time needed
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Fig. 6. CCR ≈ 0.01, fully heterogeneous platforms
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Fig. 7. Simulation with fully heterogeneous platforms, CCR ≈ 1

by LIST varies linearly as well. It is about 5 times faster than GA. Finally, for
Steady-State, the CPU time is very low for any batch size : about 75 seconds for
scheduling 1 000 DAGs. So the GA and LIST are very time consuming while the
computation time spent by the Steady-State algorithm is very low. Nevertheless,
for large sizes of batches, the GA computation takes usually less than 20 minutes.

7 Conclusion and Future Work

In this paper, we propose a genetic algorithm that solves the problem of schedul-
ing a collection of workflows on a set of heterogeneous nodes interconnected by
heterogeneous communication links. This GA takes the communication costs into
account. We show that for a collection of different workflows, GA obtains better
execution performance than a classical LIST algorithm. For the case where the
DAGs are identical intrees we are able to compare the GA results to an optimal
lower bound and to show that its results tend towards the optimality for more
than 1 000 jobs. The obtained results are moreover comparable to a practical
implementation of the Steady-State algorithm. The main idea that we keep in
mind is that scheduling with GA by taking communications into account is dif-
ficult, as for implementing the practical Steady-State solution. For future work,
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other communication models should be implemented in the simulator, like the
multi-port models, and other genetic representations could be explored.

The huge amount of simulations have been run on the cluster of theMésocentre
de Calcul de Franche-Comté in Besançon, France.
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