
An Extension of XcalableMP PGAS Lanaguage

for Multi-node GPU Clusters

Jinpil Lee1, Minh Tuan Tran1, Tetsuya Odajima1,
Taisuke Boku1,2, and Mitsuhisa Sato1,2

1 Graduate School of Systems and Information Engineering, University of Tsukuba
2 Center for Computational Sciences, University of Tsukuba

Abstract. A GPU is a promising device for further increasing comput-
ing performance in high performance computing field. Currently, many
programming langauges are proposed for the GPU offloaded from the
host, as well as CUDA. However, parallel programming with a multi-
node GPU cluster, where each node has one or more GPUs, is a hard
work. Users have to describe multi-level parallelism, both between nodes
and within the GPU using MPI and a GPGPU language like CUDA. In
this paper, we will propose a parallel programming language targeting
multi-node GPU clusters. We extend XcalableMP, a parallel PGAS (Par-
titioned Global Address Space) programming language for PC clusters,
to provide a productive parallel programming model for multi-node GPU
clusters. Our performance evaluation with the N-body problem demon-
strated that not only does our model achieve scalable performance, but
it also increases productivity since it only requires small modifications
to the serial code.

1 Introduction

GPGPU is becoming a popular research topic in High Performance Computing
area. GPU vendors provide programming models for GPU computing. For ex-
ample, NVIDIA provides CUDA, an extension of C, C++ and Fortran, which
provides GPU data and threads management functions. Because CUDA only
provides a primitive interface to control the GPU, GPU parallelization is often
hard and time-consuming work.When using GPU clusters, the problem is getting
worse because the user also needs to consider data distribution and inter-node
communication using MPI, which also provides very primitive user APIs.

In this paper, we are proposing a parallel programming language called
XcalableMP-ACC (XMP-ACC in short, ACC stands for ACCelerator).
Following are the features of XMP-ACC.

– XMP-ACC is a GPGPU extension of XcalableMP[1] (XMP in short), a
directive-based parallel programming language for PC clusters. It extends
C language with new directives for GPU computing.

– XMP-ACC is targetting multi-node GPU clusters, where each node has one
or more GPUs. So it can be used not only for not only a single GPU but
also multiple GPU environment such as GPU clusters.

M. Alexander et al. (Eds.): Euro-Par 2011 Workshops, Part I, LNCS 7155, pp. 429–439, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

430 J. Lee et al.

int array[YMAX][XMAX];

#pragma xmp nodes p(4)
#pragma xmp template
#pragma xmp distribute t(BLOCK) onto p
#pragma xmp align array[i][*] with t(i)

main() {
int i,j,res = 0;

#pragma xmp loop on t(i)
for(i = 0; i < YMAX; i++) {

for(j = 0; j < XMAX; j++) {
array[i][j] = func(i,j);
res += array[i][j];

}
}

#pragma xmp reduction (+:res)
}

int array[YMAX][XMAX];

#pragma xmp nodes p(4)
#pragma xmp template
#pragma xmp distribute t(
#pragma xmp align array[i][*] with t(i)

main() {
int i,j,res = 0;

#pragma xmp loop on t(i)
for(i = 0; i < YMAX; i++) {

for(j = 0; j < XMAX; j++) {
array[i][j] = func(i,j);
res += array[i][j];

}
}

#pragma xmp reduction (+:res)
}

t(0:YMAX-1)

#pragma xmp nodes p(4)
#pragma xmp template

template t

#pragma xmp distribute t(BLOCK) onto p

#pragma xmp align array[i][*] with t(i)

#pragma xmp loop on t(i)
for(i = 0; i < YMAX; i++) { ... }

node 1 node 2 node 3 node 4

node 1 node 2 node 3 node 4

array

node 1 node 2 node 3 node 4

template t

node 1 node 2 node 3 node 4

node 1 node 2 node 3 node 4

array node 1 node 2 node 3 node 4

node 1 node 2 node 3 node 4

array

node 1 node 2 node 3 node 4node 1 node 2 node 3 node 4

t(0:YMAX-1)

Fig. 1. Data Parallelization in Global View Model

– XMP-ACC provides directives to describe typical processes for GPU com-
puting like data allocation and loop parallelization on GPUs. XMP-ACC’s
directive-based programming model requires few modifications from a serial
code. Users can exploit GPU performance with high productivity.

– Data distribution and inter-node communication for multi-node GPU envi-
ronment is taken on by XMP directives in XMP-ACC. Users can do hybrid
parallel programming on multi-node GPU clusters with little effort using
XMP and XMP-ACC directives.

In section 2, we will give a brief overview of XcalableMP. In section 3, we will
introduce new directives to describe GPGPU within the XcalableMP framework.
Section 4 will show our implementation of the XMP-ACC compiler, and section
5 will shows the performance achieved by the compiler. We will show related
work in section 6 and then, conclude the paper in section 7.

2 Overview of XcalableMP

Like OpenMP[2], XMP supports typical parallelization methods based on the
data/task parallel paradigm under the global view model, and enables par-
allelizing the original sequential code with minimal modification using simple
description. In this section, we will give a brief overview of XMP directives.

2.1 Execution Model

Like MPI, The basic execution model of XMP is the SPMD (Single Program
Multiple Data) model. An XMP process begins its execution with a single thread

An Extension of XcalableMP PGAS Lanaguage 431

#pragma xmp shadow array[1:1] (declare shadow)
#pragma xmp reflect array (sync shadow elements)

node 1

node 2

node 3

node 4

array

shadow reflect

Fig. 2. Shadow Reflection

on each node, which is equivalent to a single-threaded MPI process. Because of
its explicit parallelism design, memory access is always local, which means the
compiler does not insert any automatic communications. To access the correct
data during parallel execution, users should synchronize the local buffer using
inter-node communication, which can be described by XMP directives.

2.2 XcalableMP Directives

The global view programming model provides a simple way to describe a parallel
program starting from the sequential version: the user parallelizes it by adding
directives incrementally. Because these directives can be treated as comments by
sequential compilers of the base languages (C and Fortran), an XMP program
derived from a sequential program can preserve the integrity of the original
program when it is run sequentially.

Figure 1 shows a global view style code segment in XMP. The global view
model shares major concepts with High Performance Fortran[3]. The program-
mer describes the data distribution of data shared among nodes by data dis-
tribution directives. The node directive declares a node set executing a XMP
program, so the sample code would be executed on 4 nodes.

Data Distribution Using Templates. A template, a dummy array indicat-
ing data index space, is declared (via the template directive) and distributed
onto nodes (via the distribute directive). In the sample code, a 1-dimensional
template, t, is block distributed onto 4 nodes. Array distribution is declared by
aligning the array to a template using the align directive. In the sample code,
array array[i] is aligned to template t(i), that is, array[i] will be allocated on
the owner node of t(i).

Work-Sharing. The loop directive splits up loop iterations among the execut-
ing nodes. The data accessed in a loop statement should be allocated in local
memory, because communication is explicit in XMP, that is, work-sharing and
data distribution should be done in the same way. A template can be used in
the loop directive to specify the data allocation. In the sample code, template t
is used for parallelizing the loop statement. Consequently, the local part of the
distributed array would be processed on each node.

432 J. Lee et al.

#pragma xmp align [i] with t(i) :: a, b
#pragma xmp shadow a[*]
int a[N], b[N];
void main(void) { . . .

int i, x = 0;
#pragma xmp loop on t(i)

for (i = 0; i < N; i++)
a[i] = i;

#pragma xmp reflect a
#pragma xmp acc replicate (a, b)
{

#pragma xmp acc replicate_sync in (a)
#pragma xmp loop on t(i) acc

for (i = 0; i < N; i++) {
b[i] = x;
for (int j = 0; j < N; j++) {

b[i] += a[j];
}

}
#pragma xmp acc replicate_sync out (b)
} // #pragma xmp acc replicate
} // main()

Fig. 3. Sample Code of XcalableMP-ACC (sample.c)

Directives for Inter-node Communication. The XMP specification guar-
antees that communication takes place only when communication is explic-
itly specified. In the global view model, communication directives are used to
synchronize and keep the data consistent among the executing nodes.

When an array is distributed, referencing the neighbor elements of the local
block is a very typical access pattern that results in inter-node communication.
To access the neighbor elements, we need to extend the local block because all
memory access is local in XMP. We call the extended area a shadow of the array.
Fig. 2 shows the shadow area of the array array. The shadow directive states
that the size(the number of elements) of the shadow area on the array is 1 at both
the lower and upper sides. A shadow is just a local memory buffer. To get the
correct value of the neighbor elements, the data must be synchronized among
the executing nodes. The reflect directive invokes inter-node communication,
copying the original data to the shadow area. XMP also provides communica-
tion directives for barrier, reduction and broadcast communication which are
commonly used functions in MPI.

3 Language Extension for Multi-node GPU

As shown in the previous section, users can easily write parallel programs using
XMP directives. Our goal is to provide a productive and efficient parallel pro-
gramming model for multi-node GPU clusters. In this section, we will introduce
new directives to describe GPGPU within the XcalableMP framework. These di-
rectives are used to describe typical processes for GPU computing such as data
allocation, data movement between the host memory and the GPU memory and
loop parallelization on GPUs. Since XMP directives take on inter-node commu-
nication, XMP-ACC can be used not only for a single GPU but also multi-node
GPU clusters.

Figure 3 shows some XMP-ACC sample code that calculates the sum of some
of an array elements are on GPU. Lines including the keyword acc are the
new directives/clauses added in XMP-ACC. In XMP-ACC, all actions involving
GPUs occur only when the acc directives/clauses are used. Typical GPGPU ac-
tions including allocation/free data on GPU, data transfer between the host and

An Extension of XcalableMP PGAS Lanaguage 433

array a, b

a

DEVICE

a
b

b HOST (node 1)sync out

sync in

array a, b

a

DEVICE

a
b

b HOST (node 2)

sync out sync in

a

DEVICE

a
b

bHOST (node 3) sync out

sync in

a

a
b

bsync out

DEVICE

HOST (node 4)

sync in

Fig. 4. Memory Image of Data in XcalableMP-ACC

the device and loop work sharing on GPU can be described using the acc direc-
tives/clauses. Note that there are no directives for inter-node communications
(e.g. broadcast, reduction and shadow synchronization) for GPU. In XMP-ACC,
the data should be copied to the host memory, then the data should be moved
between the hosts using XMP directives (e.g. bcast, reduction and reflect),
and then copied from the host to the device.

We assume that each XMP process uses only one GPU, which keeps the
language model simple. If there are two or more GPUs in one node, users should
assign an XMP process to each GPU (like flat MPI).

3.1 Data Declaration

GPUs have thier own seperate memory, and data should be allocated on the
device before being processed. The acc replicate directive declares variables
to be allocated on the GPU. The following is the syntax of the acc replicate
directive.

#pragma xmp acc replicate (list)
compound-statement

When a variable is declared as acc replicate, a copy of the allocated local
memory area is also allocated on each node’s GPU. Fig. 4 shows the memory
image of the arrays a and b declared in Fig. 3 (using 4 nodes). Array b is
distributed among the nodes, so the distributed part of the array will be allocated
on the GPU. And array a has shadow elements (in this case, full shadow is
declared for array a) on both the host and the GPU.

The scope of the acc replicate variables is limited to the compound state-
ment following the acc replicate directive. The replications will be allocated
on the GPU when entering the compound statement and freed at the end of
the statement. This helps users to use GPU memory more efficiently. It is also
possible to describe the acc replicate directive in the global scope (like the
align directive in Fig.3). Then the replications will be allocated on the GPU
when the program starts and freed at the end of the program.

434 J. Lee et al.

3.2 Data Transfer

Users can describe the data transfer between the host and the GPU using the acc
replicate sync directive. The following is the syntax of the acc replicate sync
directive and acc clause.

#pragma xmp acc replicate sync clause
clause ::= in (list) | out (list)

The acc replicate sync directive allows two clauses, in and out, which
indicate the direction of the data transfer. When a process encounters a acc
replicate sync directive with the in clause, it copies the data from the host
to the device. And with the out clause, it copies the data from the device to
host. Currently, there is no way to indicate the range to be copied, so all of the
variable’s data is moved between the host and the device. Fig. 4 shows data
transfer for arrays a and b. All the elements of the array a including the shadow
elements are copied to the device.

3.3 Work Sharing

If every iteration in a loop statement can be processed independently, the loop
statement can be parallelized not only among the nodes but also with GPUs.
Therefore, the loop directive can be exetended to use GPUs. We introduced the
acc clause for the loop directive. The following is the syntax of the acc clause
for the loop directive.

#pragma xmp loop [(list)] on on-ref [reduction (op:list)] acc {clause}
loop-statement

clause ::= private (list) | firstprivate (list) | shared (list) |
num threads (x [, y [, z]])

Variables listed in the private, firstprivate and the shared clause are de-
clared as private variables on each thread. And the data of firstprivate variables
is copied from the host to the device before the loop statement. The private
and the firstprivate clause only allow scalar variables. Array variables should
be replicated on the device using the acc replicate directive. The shared clause
lists the variables allocated on the GPU. The data will be allocated and syn-
chronized before loop execution. acc replicate variables are declared as shared
variables by default. The num threads clause is used to determine the thread
block size. The default value is (16×16) when the clause is omitted.

4 Implementation of XcalableMP-ACC

Compiler Implementation. Our XMP-ACC compiler is based on the Omni
XcalableMP Compiler[4]. Fig. 5 shows the compilation process. sample.c is writ-
ten in the C language and XMP/XMP-ACC directives. The compiler creates two

An Extension of XcalableMP PGAS Lanaguage 435

files from the source code. sample.i is a intermediate file including the host code
(executed by the CPU). sample.cu includes the device code which is executed
by the GPU. We are using CUDA as the GPGPU backend compiler for XMP-
ACC. sample.cu is compiled by the CUDA compiler. Finally those object files
are linked with the runtime library and produce a parallel program. When mul-
tiple XMP-ACC processes are assigned to a physical node, the runtime library
will assign each XMP process to a GPU in a circular order.

Code Translation. When sample.c in Fig. 3 is compiled, it will produce the
parallel codes, sample.i and sample.cu as shown in Fig. 5. sample.i shows the
host code of the parallel program. XMP gpu init/finalize data ALIGNED() ini-
tializes/finalizes the data region and the descriptor on the device. XMP gpu sy
nc() transfers the data between the device and the host.

The loop statement parallelized by the acc clause is translated into a GPU
kernel function in CUDA and added to sample.cu. The compiler replaces the loop
statement with a GPU function call. The compiler analyzes the loop statement
to create the function arguments. If a acc replicate array variable appears
in the loop statement, the array address on the device will be added to the
argument list. And the descriptor address also will be added for calculating
parallel parameters. The scalar variables are added to the argument list unless
they are described explicitly as thread-private or shared variables.

sample.cu includes the GPU kernel function and its wrapper function which
is invoked by the host code. The wrapper function is called from sample.i. The
thread block size is calculated before invoking the GPU kernel function. The
number of threads the compiler creates is equal to the number of iterations
allocated to the node. XMP GPU M BARRIER KERNEL() waits for the GPU
execution to end. Each GPU thread executes the kernel function, and calculates
local array indices from its thread ID and the allocated iteration number.

5 Performance Evaluation

We evaluated our compiler using a benchmark that solves the n-body problem,
which is often used for evaluating GPGPU performance. Fig. 6 shows our im-
plementation of the XMP-ACC version of the n-body problem. p x, p y and p z
contain the x, y, z locations of the particles. The array has shadow elements
because every element is needed to calculate the force on a particle. In each
time step, the array data is updated. So the shadow elements should be also
exchanged each time step. Because those arrays are stored in GPU memory, the
data should be exchanged via host memory. The acc replicate sync out direc-
tive is used to copy data from the device to the host. Then the reflect directive
exchanges shadow elements in the host memory. Finally, the acc replicate sync
in directive copies the array data from the host to the device.

The force calculation is parallelized on the GPU. The acc clause directs the
compiler to produce GPU code for the target loop statements. Note that we split
the one loop into two seperate loops. This is because the update of p x, p y and

436 J. Lee et al.

_XMP_gpu_init_data_ALIGNED(&(_XMP_GPU_HOST_DESC_a), ...);
_XMP_gpu_init_data_ALIGNED(&(_XMP_GPU_HOST_DESC_b), ...);
_XMP_gpu_sync(_XMP_GPU_HOST_DESC_a, 600);
int _XMP_loop_init_i, _XMP_loop_cond_i, _XMP_loop_step_i;
_XMP_sched_loop_template_BLOCK_INT(&_XMP_loop_init_i, ...);
_XMP_GPU_FUNC_0(_XMP_GPU_DEVICE_ADDR_b, ...);
_XMP_gpu_sync(_XMP_GPU_HOST_DESC_b, 601);
_XMP_gpu_finalize_data(_XMP_GPU_HOST_DESC_a);
_XMP_gpu_finalize_data(_XMP_GPU_HOST_DESC_b);

sample.c (ser + direc�ve)

sample.cusample.i (par)
mpicc nvcc

sample.o sample.xmpgpu.o

sample

xmpcc

gcc
XMP run�me

__global__ sta�c
void _XMP_GPU_FUNC_0_DEVICE(int*b, void *_XMP_GPU_DEVICE_DESC_b, int x,

int *a, void *_XMP_GPU_DEVICE_DESC_a, . . .) {
int i; unsigned long long _XMP_GPU_THREAD_ID; unsigned long long _XMP_gpu_idx_0;
_XMP_gpu_calc_thread_id(&_XMP_GPU_THREAD_ID);
_XMP_gpu_calc_iter(_XMP_GPU_THREAD_ID,_XMP_loop_init_i,_XMP_loop_cond_i,_XMP_loop_step_i,&i);
_XMP_gpu_calc_index(&_XMP_gpu_idx_0,i,_XMP_GPU_DEVICE_DESC_b);
if((_XMP_GPU_THREAD_ID)<(_XMP_GPU_TOTAL_ITER)) {

(*((b)+(_XMP_gpu_idx_0)))=(x);
for(int j=0;(j)<(1024);(j)++)
(*((b)+(_XMP_gpu_idx_0)))+=(*((a)+(j))); }

} // _XMP_GPU_FUNC_0_DEVICE()

extern "C"
void _XMP_GPU_FUNC_0(int*b, void *_XMP_GPU_DEVICE_DESC_b, int x,

int *a, void *_XMP_GPU_DEVICE_DESC_a, . . .) {
// calc _XMP_GPU_DIM3_block, _XMP_GPU_DIM3_thread
_XMP_GPU_FUNC_0_DEVICE<<<_XMP_GPU_DIM3_block, _XMP_GPU_DIM3_thread>>>(. . .);
_XMP_GPU_M_BARRIER_KERNEL();

}

sample.i

sample.cu

Fig. 5. Compilation Process and Translated Codes

p z should be done after all threads finish calculating the force on its allocated
particle. Because each loop is translated into a GPU function, it is guaranteed
that barrier synchronization takes place among all threads. In the future version,
we need to implement inter-block barrier synchronization so we only have to use
one loop.

Table 1 shows the node configuration of the GPU cluster. We evaluated the
performance of 1,2 and 4 XMP processes using 4 physical nodes. Fig. 7 shows the
performance of n-body. We compared the performance with the serial version of
n-body (1 node, 1 thread, using CPU only). Since most of the execution time
is spent on the force calculation which is embarrassingly parallel, XMP-ACC
shows scalable performance up to 4 XMP processes. This is especially true as
the data size increases since GPU calculation time dwarfs the data transfer and
shadow reflection time, which leads to better performance when using GPUs.
We added only 10 lines to write the XMP version of n-body (the serial version
has 105 lines). Furthermore 4 directives and 2 acc clauses were added to write
the XMP-ACC version. This shows that XMP-ACC provides a scalable and
productive programming model for multi-node GPU clusters.

An Extension of XcalableMP PGAS Lanaguage 437

#pragma xmp align [i] with t(i) :: p_x, p_y, p_z, m, v_x, v_y, v_z
#pragma xmp shadow [*] :: p_x, p_y, p_z, m
#pragma xmp acc replicate (p_x, p_y, p_z, m, v_x, v_y, v_z)
{
#pragma xmp acc replicate_sync in (m, v_x, v_y, v_z)

for (t = 0; t < TIME_STEP; t++) {
#pragma xmp reflect p_x, p_y, p_z
#pragma xmp acc replicate_sync in (p_x, p_y, p_z)
#pragma xmp loop on t(i) acc

for (i = 0; i < N; i++) {
double x_i, y_i, z_i, x_j, y_j, z_j, dx, dy, dz, r2, r, a;
double acc_x = 0, acc_y = 0, acc_z = 0;
x_i = p_x[i]; y_i = p_y[i]; z_i = p_z[i];
for (int j = 0; j < N; j++)

if (i != j) {
x_j = p_x[j]; y_j = p_y[j]; z_j = p_z[j];
dx = x_j - x_i; dy = y_j - y_i; dz = z_j - z_i;
r2 = (dx * dx) + (dy * dy) + (dz * dz) + EPSILON;
r = sqrt(r2); a = G * m[j] / r2;
acc_x += a*(x_j-x_i)/r; acc_y += a*(y_j-y_i)/r; acc_z += a*(z_j-z_i)/r; }

v_x[i] += acc_x * DT; v_y[i] += acc_y * DT; v_z[i] += acc_z * DT; }
#pragma xmp loop on t(i) acc

for (i = 0; i < N; i++) {
p_x[i] += v_x[i] * DT; p_y[i] += v_y[i] * DT; p_z[i] += v_z[i] * DT; }

#pragma xmp acc replicate_sync out (p_x, p_y, p_z)
} // for (t = 0; t < TIME_STEP; t++)

} // #pragma xmp acc replicate

Fig. 6. n-body Code

6 Related Work

OpenMPC[5] and OMPCUDA[6] are the GPGPU extensions for OpenMP. They
produce CUDA code from OpenMP directives with few or no modifications. The
OpenMP Architecture Review Board[2] itself is also considering a extension of
OpenMP targetting many-core processors including GPUs and Digital Signal
Processors. PGI Accelerator Compilers[7] provide original directives for GPU
computing. Data allocation and loop parallelization can be described more ex-
plicitly than in OpenMPC and OMPCUDA which are based on the OpenMP
specification. Those models make it easy to program with GPUs in a single node,
but they do not work for GPU clusters or even for multiple GPUs in a single
node. HMPP Workbench[8] provides directives to describe data transfer between
the GPU and the CPU, launching GPU kernel functions (even asynchronously),
etc. Because HMPP uses CUDA and OpenCL as a backend compiler, it works on
multi-core CPUs and multiple GPUs in a single node. But HMPP is not consid-
ersing GPU clusters now. Yili Zheng et al. are working on a GPGPU extension
of Unified Parallel C[9] targeting both single and multiple GPU environments.

438 J. Lee et al.

Table 1. Node Configuration

CPU AMD Opteron Processor 6134 × 2 (8 cores × 2 sockets)

Memory DDR3-1333 2GB × 2 (4GB)

GPU NVIDIA Tesla C2050 (GDDR5 3GB)

Network InfiniBand (4X QDR)

OS Linux kernel 2.6.18 x86 64

MPI OpenMPI 1.4.2

GPU Backend NVIDIA CUDA Toolkit v3.2

0 20 40 60 80 100 120 140 160 180 200 220 240

16k

32k

64k

128k

256k

Performance (Speed-ups)

Da
ta

 S
iz

e
(N

um
be

r o
f P

ar
�c

le
s)

4 nodes

2 nodes

1 node

Fig. 7. Performance of n-body

They extended the communication library GASNET to handle one-sided com-
munications for GPUs. It supports unified one-sided communication APIs for
GPUs and CPUs. But significant modifications are needed to the serial code in
order to parallelize the code.

7 Conclusion

In this paper, we have proposed XcalableMP-ACC, a language extension of
XcalableMP for GPU computing. XMP-ACC targets multi-node GPU clusters
which has one or more GPUs in each node and provides OpenMP-like directives
which allows incremental parallelization from the serial code. XMP-ACC’s new
directives describe explicit data transfer and loop parallelization for GPU com-
puting, and works naturally with the XMP model used for inter-node communi-
cation. Our performance evaluation with n-body problem shows that XMP-ACC
achieved scalable performance with few modifications from the serial code.

We are currently improving both the language model and the implementation.
We assumed that there is only one GPU per XMP-ACC process to keep the
language model simple. However recent platforms feature many more CPU cores
than GPUs and thus a variety of execution models exist according to the target
applications (e.g. single process using multiple GPUs). So we need to extend
the language specification to match various needs. When there are surplus CPU
cores, CPU-GPU cooperative computing may be an attractive way to boost the

An Extension of XcalableMP PGAS Lanaguage 439

performance. Efficient memory use is one of keys to achieving better performance
in GPGPU. Our current implementation only uses the GPU’s global memory,
so we need to optimize the memory use, for example, using shared memory and
coalesced memory access.

Acknowledgment. The specification of XcalableMP is being designed by the
XcalableMP Specification Working Group which consists of members from
academia, research labs and industries. This research is supported by “Seamless
and Highly-productive Parallel Programming Environment for High-performance
computing” project funded by Ministry of Education, Culture, Sports, Science
and Technology, Japan.

References

1. XcalableMP Official Website, http://www.xcalablemp.org
2. OpenMP.org, http://openmp.org/wp
3. Rice University. High Performance Fortran Forum, http://hpff.rice.edu
4. Lee, J., Sato, M.: Implementation and Performance Evaluation of XcalableMP: A

Parallel Programming Language for Distributed Memory Systems. In: 39th Inter-
national Conference on Parallel Processing Workshops, pp. 413–420 (2010)

5. Lee, S., Eigenmann, R.: OpenMPC: Extended OpenMP Programming and Tun-
ing for GPUs. In: Proceedings of the 2010 ACM/IEEE International Conference
for High Performance Computing, Networking, Storage and Analysis, SC 2010,
pp. 1–11 (2010)

6. Ohshima, S., Hirasawa, S., Honda, H.: OMPCUDA: OpenMP Execution Framework
for CUDA Based on Omni OpenMP Compiler. In: Sato, M., Hanawa, T., Müller,
M.S., Chapman, B.M., de Supinski, B.R. (eds.) IWOMP 2010. LNCS, vol. 6132,
pp. 161–173. Springer, Heidelberg (2010)

7. PGI Accelerator Compilers, http://www.pgroup.com/resources/accel.htm
8. HMPP Workbench, http://www.caps-entreprise.com/hmpp.html
9. Hargrove, P.H., Min, S.-J., Zheng, Y., Iancu, C., Yelick, K.: Extending Unified

Parallel C for GPU Computing, http://upc.lbl.gov/publications/UPC with GPU-

SIAMPP10-Zheng.pdf

http://www.xcalablemp.org
http://openmp.org/wp
http://hpff.rice.edu
http://www.pgroup.com/resources/accel.htm
http://www.caps-entreprise.com/hmpp.html
http://upc.lbl.gov/publications/UPC_with_GPU-SIAMPP10-Zheng.pdf
http://upc.lbl.gov/publications/UPC_with_GPU-SIAMPP10-Zheng.pdf

	An Extension of XcalableMP PGAS Lanaguage
for Multi-node GPU Clusters
	Introduction
	Overview of XcalableMP
	Execution Model
	XcalableMP Directives

	Language Extension for Multi-node GPU
	Data Declaration
	Data Transfer
	Work Sharing

	Implementation of XcalableMP-ACC
	Performance Evaluation
	Related Work
	Conclusion
	References

