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Abstract. Agent-based simulation models are an increasingly popular tool for
research and management in many, different and diverse fields. In executing such
simulations the “speed” is one of the most general and important issues. The tradi-
tional answer to this issue is to invest resources in deploying a dedicated installa-
tion of dedicated computers. In this paper we present a framework that is a parallel
version of the MASON, a library for writing and running Agent-based simulations.
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1 Introduction

The traditional answer to the need for HPC is to invest resources in deploying a ded-
icated installation of dedicated computers. Such solution can provide the computing
power surge needed for highly specialized customers. Nonetheless a large amount of
computing power is available, unused, in common installations like educational labora-
tories, accountant department, library PCs.

In this paper we present the architecture and report the performances of D-MASON,
a parallel version of the MASON [9] library for writing and running simulations of
Agent-based simulation models (ABMs). D-MASON is designed to harness the amount
of unused computing power available in the scenarios above described. The intent of
D-MASON is to provide an effective and efficient way of parallelizing MASON pro-
grams: effective because with D-MASON you can do more than what you can do with
MASON; efficient because in order to obtain this additional computing power the de-
veloper has to do some incremental modifications to the MASON applications he has
already written without re-designing them.

As in Condor [17] the purpose of D-MASON is to “harness wasted CPU power from
otherwise idle desktop workstations” and to let the developer to look at such PCs as a
platform composed by heterogeneous machines and the subdivision of the work among
these machines takes into account such heterogeneity.

ABMs are an increasingly popular tool for research and management in many, dif-
ferent and diverse fields such as biology, ecology, economics, political science, soci-
ology, etc.. The computer science community has responded to the need for tools and
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platforms that can help the development and testing of new models in each specific field
by providing tools, libraries and frameworks that speed up and make easier the task of
(massive) simulations.

Agent-based simulation toolkits are described in [10]. An interesting comparison is
presented in [2]. Another interesting tool is Repast [13] with some studies on distribut-
ing the workload in [4]. It must be said that, in literature, MASON is recognized as one
of the most useful and interesting simulation toolkits.

1.1 A Distributed Framework for Simulations

Among the motivations to our focus on distributing the simulation on a cluster of (ho-
mogeneous) machines, we can underline how the need for efficiency among the Agent-
Based modeling tools is well recognized in literature: many reviews of state-of-the-art
frameworks [2,12,15] place “speed” upfront as one of the most general and important
issues. While a consistent work has been done to allow the distribution of agents on
several computing nodes (see for recent examples [11,14]), our approach here is to in-
troduce the distribution at the framework level in order to let the user to transparently
harness the additional computing power.

This approach allows to hide to the user the most of the details of the implementa-
tion and in this way D-MASON requires just a moderate number of modifications into
the source code achieving a good backward-compatibility with pre-existing MASON

applications.
Because of the very experimental nature of complex social simulations there is al-

ways the need for a viable and reliable infrastructure for running (and keeping the
records of) several experiments together the entire test settings. The resources needed
to run and store results of such amount of experimental runs can be cheaply ensured
only by a cluster, since the nature of interactive experiments, led by the social scientists
with their multidisciplinary team, requires interaction with the computing infrastruc-
ture, which is often extremely expensive and technically demanding to get from super-
computing centers (that may, in principle, provide massive homogeneous environment).

In this scenario, our goal is to offer to such scientists a setting where a traditional
MASON program can be run on one desktop, first, but can immediately harness the
power of other desktops in the same laboratory by using D-MASON, thereby providing
scaling up the size they can handle or significantly reduce the time needed for each
iteration. The scientist, then, is able to run extensive tests by enrolling the different
machines available, maybe, during off-peak hour.

Of course, it means that the resulting distributed system, collecting hardware from
research labs, administration offices, etc. is highly heterogeneous in nature and, then,
the challenge is how to use efficiently all the hardware without an impact on the “le-
gitimate” user (i.e., the owner of the desktop) both on performances and on installa-
tion/customization of the machine. On the other hand, we would like that the program
in MASON should not be very different than the corresponding program in D-MASON

so that the scientist can easily modify it to run over an increasing number of hosts.

The rationale: The design of D-MASON is inspired by the need for efficiency, in a set-
ting where computing resources are scarce, heterogeneous, not centrally managed and
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that are used for other purposes during other periods of the workday. The compromises
between efficiency and impact are reached with good results about performances, as
witnessed by the tests we report, as well as the impact on the program in D-MASON is
minimal, as described later in the paper.

2 MASON

MASON toolkit is a discrete-event simulation core and visualization library written in
Java, designed to be used for a wide range of ABMs. The toolkit is written, using the
standard Model-View-Controller (MVC) paradigm, in three layers: the simulation layer,
the visualization layer and the utility layer. The simulation layer is the core of MASON

and is mainly represented by an event scheduler and a variety of fields which hold agents
into a given simulation space. MASON is mainly based on step-able agent: a computa-
tional entity which may be scheduled to perform some action (step), and which can
interact (communicate) with other agents. The visualization layer permits both visual-
ization and manipulation of the model. The simulation layer is independent from the
visualization layer, which allows us to treat the model as a self-contained entity.

MASON was written with the aim of creating a flexible and efficient ABM which
assures the complete reproducibility of results across heterogeneous hardware. This
reproducibility feature is considered as a priority for long simulations (it allows to stop
a simulation and move it among computers).

We decided to work on a distributed version of MASON for several reasons: MASON

is one of the most expressive and efficient (as reported by many reviews [2,12,15]);
MASON structure clearly separates visualization by simulation, making it particularly
well suited to the re-engineering into a distributed “shape” of the framework. An-
other reason is the significant amount of research and simulations already present in
the framework, which makes it particularly cost effective for the social scientist. The
programmer is asked to use the new distributed version of some classes to transpar-
ently transform its already written simulation to a distributed simulation (e.g. extend
DistributedState instead of SimState).

3 D-MASON: Distributed MASON

In the following we view ABMs as step-wise computations; i.e., agents behavior is
computed in successive steps named simulation step. D-MASON is based on a mas-
ter/workers paradigm (see Fig. 1): the master assigns a portion of the whole computa-
tion (i.e., a set of agents) to each worker. Then for each simulation step, each worker
simulates the agents assigned and sends back the result of its computation to each in-
terested worker.

Before presenting the architecture of D-MASON, in the next subsection will present
the problems we faced in developing our distributed architecture.

3.1 Issues in D-MASON

Field partitioning. The problem of decomposing a program to a set of heterogeneous
processors (workers) has been extensively studied (see [8] for a comprehensive presen-
tation). In the case of ABMs a simple way to partition the whole work into different
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tasks is to assign a fixed number of agents (proportional to the power of the worker)
to each available worker. This approach named agents partitioning allows a balanced
workload but introduce a significant communication overhead (since, at each step, agents
can interact-with/manipulate other agents, an all–to–all communication is required). By
noticing that most ABMs are inspired by natural models, where agents limited visibility
allow to bound the range of interaction to a fixed range named agent’s Area of Interest
(AOI), several space partitioning approaches have been proposed [5,18,19] in order to re-
duce the communication overhead. In D-MASON, the space to be simulated (D-MASON

field) is partitioned into regions. Each region, together with the agents contained are as-
signed to a worker. Since the AOI radius of an agent is small compared with the size of
a region, the communication is limited to local messages (messages between workers,
managing neighboring spaces, etc.).

Fig. 1. D-MASON functional blocks

Synchronization. In order to guarantee the consistency of parallel implementation with
respect to the sequential one, each worker needs to collect information about the neigh-
boring regions. Each simulation step is formed by two phases: communication/
synchronization and simulation. First of all the worker sends to its neighbors (i.e., the
workers responsible for its neighbor regions) the information about the agents that: are
migrating to them; or may fall into the AOI of their agents. This information exchange
is locally synchronized in order to let the simulation run consistently. We use a standard
approach to achieve a consistent local synchronization of the distributed simulations.
Each step is associated with a fixed state of the simulation. Regions are simulated step
by step. Since the step i of region r is computed by using the states i−1 of r’s neighbor-
hood, the step i of a region cannot be executed until the states i−1 of its neighborhood
have been computed and delivered. In other words, each region is synchronized with its
neighborhood before each simulation phase.

Communication. D-MASON uses a well-known mechanism, based on the publish–
subscribe design pattern, to propagate agents state information: a multicast channel is
assigned to each region; users then simply subscribe to the channels associated with the
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regions which overlap with their AOI to receive relevant message updates. The current
version of D-MASON uses Java Message Service (JMS) for communication between
workers. We use a special machine that run an Apache ActiveMQ Server [1] and acts
as a JMS provider (i.e., it allows to generate and manage multicast channels and route
messages accordingly). D-MASON however, is designed to be used with any Message
Oriented Middleware that implements the publish–subscribe pattern. By providing a
mapping between the abstract D-MASON’s mechanism and the concrete implementa-
tion, it is possible, for instance, to use Scribe [3], a fully decentralized application-layer
multicast built on top of the DHT Pastry [6]. Of course, also other simpler commu-
nication protocols can be used (such as sockets, Remote Method Invocation, etc.) but
the effort of the programmer will be more consistent, since a mapping between a se-
mantically rich paradigm, such as the publish–subscribe, and a simpler communication
mechanism (stream, remote invocations, etc.) is needed.

Reproducibility. In order to guarantee an easy parallelization and to assure the repro-
ducibility of results, paramount objective of the research areas interested in the ABMs,
it is important to design the simulation is such a way that agents evolves simultane-
ously. Said in other words, during each simulation step, each agent computes its state at
step i based on the state of its neighbors at step i−1. Thereafter all the agents updates
their state simultaneously. Using this approach the simulation become embarrassingly
parallelizable (there are no dependencies between agents’ state), each simulation step
can be executed in parallel overall the agents. Moreover, using this approach the order
in which agents are scheduled does not affect the reproducibility of results1.

Heterogeneity. D-MASON uses a simple but efficient technique to cope with hetero-
geneity. The idea is to clone the software run by high capable workers so that they
could serve as multiple workers; i.e., a worker that is x times more powerful than other
workers could execute x virtual workers (that is, simulating, concurrently, x regions).

3.2 Architecture

D-MASON adds a new layer named D-simulation which extends the MASON simula-
tion layer. The new layer adds some features to the simulation layer that allows the
distribution of the simulation work on multiple, even heterogeneous, machines. Notice
that the new layer does not alter in any way the existing layers. Moreover, it has been
designed so as to enable the porting of existing applications on distributed platforms in
a transparent and easy way.

D-MASON architecture is divided into three functional blocks: Management,Workers
and Communication (see Fig. 1). The Management layer provides a master application
which will be used for coordinating the workers, handle the bootstrap and running the
simulation. The master is responsible for partitioning the field into regions and assign-
ing them to workers. Currently in D-MASON there are two types of field partitioning:

1 Some simulations, especially those that evolve using a randomized approach, still require
a mechanism that allows to schedule agents always in the same order, to obtain the
reproducibility of results.
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horizontal, where the division is done by splitting the field along one axis and square,
where the division is done by using a grid. When all the parameter are set it is possible
to start and interact with the entire distributed simulation (e.g. play, pause, stop). The
workers are in charge of: simulating the agents that belongs to the assigned regions;
handling the migration of agents; managing the synchronization between neighboring
regions. Workers communicate by using the communication layer which provides a
publish–subscribe mechanism.

D-MASON is available at http://www.isislab.it/projects/dmason/.

4 Testing

We performed a number of tests of D-MASON in order to assess both its ability to run
simulations that are impractical or impossible to execute on a single computer (e.g.,
for CPU or memory requirements), its scalability and its effectiveness on exploiting
heterogeneous hardware.

Setting of the Experiments. Simulations were conducted on a scenario consisting of five
different type of hosts/workers described in the following table.

The DFlockers testbed. We have performed our tests on DFlockers (see Fig. 2 right) by
considering more than 50 different test settings. DFlockers is the distributed version of
Flockers (see Fig. 2 left) which implements the boid model [16]. In the boid model each
agent, named boids (from birdoid), gets instilled a range of behaviors. The behaviors
are, in the most of cases, simply geometric calculations that every boid makes, consid-
ering the nearest boids it is flying with: for example the behavior called pursuit just let
the boid to pursuit a moving target (e.g. another boid). Boids react to their neighbors so
they must be able to identify them by filtering nearby boids out of the whole population.
The brute force approach to this filtering consists in a O(n2) proximity screening and
for this reason the efficiency of the implementation is yet to be considered an issue.

The boid model is designed for the aggregate motion of a simulated flock of boids as
the result of the interactions of the relatively simple behaviors but, for the purposes of
the test, this simulation reproduces common problems that must be taken into account in
every other simulation: the search for nearest neighbors and a phase during which each
agents updates its state. In the following we will use Flockers to indicate the MASON

version of the simulation and with DFlockers we will indicate its D-MASON version.
Each test setting is characterized by the choice of the following parameter: num-

ber of agents (the size of the field is updated accordinglyin order to maintain a fixed
density); regions-workers configuration, which establishes: the granularity of the field
decomposition (i.e., the number of regions), the number of workers and the association
between regions and workers.

http://www.isislab.it/projects/dmason/
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Fig. 2. (left) The Flockers testbed application. (right) DFlockers with 4 regions.

The configuration of each run of the test is represented by k couples (type of
host, # of regions), where k is the number of hosts. For instance, the configuration
{(P4, 1), (Xeon, 2), (Opt, 2), (i7, 4), (i7, 16)} denotes a simulation run with k = 5
hosts (a P4 simulating one region, a Xeon simulating two regions, an Opt simulat-
ing two regions and two i7 simulating respectively 4 and 16 regions). Overall the field
decomposition comprises 1 + 2 + 2 + 4 + 16 = 25 regions.

In the following tests, each region is simulated by using a dedicated Java Virtual Ma-
chine (JVM). D-MASON also allows to simulate several regions on the same JVM by
using different threads but the use of this approach requires tuning each virtual machine
by increasing the amount of heap space accordingly to the number of regions simulated:
this would be too burdensome to the heterogeneous setting we are envisioning, where
we would like the users of PCs involved only marginally in the configurations. For sake
of conciseness we opted for a one-JVM-one-region assignment since this represents
also the worst-case for D-MASON (e.g. the overhead of the JVM is paid for each re-
gion, even on the same host). This decision also allowed us to uniquely indicate with
JDK 1.6.0 update 25 the configuration of the JVM.

The communication is managed by a dedicated host running Apache ActiveMQ
Server. Master, Workers and the Communication Server are connected using a standard
100Mbit LAN network (see Fig. 1). Each run is composed by 100 simulation steps and
we used the average of each step running time, in our comparisons while the variance
of such values was not significant.

Fig. 3. D-MASON performances
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4.1 Beyond MASON Limits

We first tested the limits of Flockers on MASON and we found that it is not possi-
ble to simulate more than 900, 000 agents. Moreover, using our best host (i.e., the
i7), the simulation with 900, 000 agents took about 12 seconds for each simulation
step. The purpose of this test is to show that the limits of MASON can easily be over-
come by using a small number of workers. We performed a set of simulations with
D-MASON on up to 7 homogeneous (i7) hosts (see Fig. 3). Results show that: (1)
D-MASON is able to simulate far more agents than MASON does. The configuration
{(i7, 4), (i7, 4), (i7, 4), (i7, 4), (i7, 3), (i7, 3), (i7, 3)} allows to run a DFlockers simula-
tion with 12, 000, 000 agents and an average simulation step timing around 12 seconds;
(2) D-MASON scales pretty well, using a fine grained field partitioning, as the number
of workers increases we are able to increase D-MASON performances.

We have also analyzed the workload of the communication layer in order to check
whether it may represent a bottleneck for the whole system performances. Clearly, we
discovered that the communication cost of simulations increases proportionally to the
number of regions used. However, our tests report that the workload on the communi-
cation server was always reasonably low and, therefore, it would be possible to further
increase the granularity of partitioning and thus improve both the degree of parallelism,
and load balancing.

4.2 Exploiting Heterogeneity

We performed another test with the aim of assessing D-MASON capability on exploiting
heterogeneous platforms. Since the simulation is locally synchronized after each step,
the application advances with the same speed provided by the slower worker/region in
the system. For this reason it is necessary to configure the system in order to balance the
load between the workers. In this test the field partitioning is always 5 × 5 square (25
regions), while we tested seven different configurations with five hosts and two values
of the number of agents (3, 000, 000 and 5, 000, 000). We decided to use very different
hosts with the aim of showing that by adding a set of few old (usually unused) ma-
chines to a very powerful machine, one can measure sensibly improved performances
(see Fig. 4). We will shortly discuss each of the bar in the figure: (a) D-MASON perfor-
mances using only one i7 machine; (b, c) by assigning regions to workers proportionally
to each worker computational capability, it is possible to significantly improve perfor-
mances; (d, e) gave the best performance with both 3, 000, 000 (improvement 24%)
and 5, 000, 000 (improvement 28%) of agents; (f) reveals that one of the slowest ma-
chines has reached its limits and this badly reflects on overall simulation speed; (g)
is the worst case in which the distribution of the region is uniform among machines,
the slowest machines slow down the simulation while the fastest machines waste time
waiting for synchronization.

The higher is the granularity of the partitioning, the better is the balancing that can
be achieved. For instance, running the same simulation with a coarser granularity (e.g.,
3× 3 partition) would not allow to exploit the computational power of slower machines
(each region is too computationally expensive for such machines).
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Fig. 4. D-MASON on a heterogeneous system. Seven different configurations are compared on
DFlockers with 3, 000, 000 and 5, 000, 000 agents.

4.3 Fixed Timing Analysis

Iso-timing tests are justified by the need of having an interactive tool that allows faster
development, debug and analysis of complex simulations. We intend to measure the
maximum number of agents at a fixed simulation step pace of one step per second.
The test is designed to measure this value on up to 7 homogeneous (i7) hosts while the
field partitioning is always 5× 5 square (25 regions). Regions are distributed uniformly
among hosts. Then for each h ∈ {1, 2, 3, 4, 5, 6, 7} we designed a set of simulations
with h hosts. With each simulation we iteratively increased the number of agents until
the average simulation step duration under 1 second. Under the conditions above in
Fig. 5 we represent the performances of D-MASON.

Fig. 5. Isotiming Analysis

In order to have a comparison for these results, we have performed a similar test
on MASON. We used the same host (i7) and we increased the heap size of the JVM
to 1024MB to let the machine to accommodate the increasing number of agents up to
1, 700, 000. Obviously the performances of MASON fall down dramatically as along as
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the number of agents increase. In the slowest configuration the average step completion
time was around 25 seconds while, on 7 hosts D-MASON is 24 times faster. While this
may reveal a superlinear speed up it is worth noting that each of the i7 machines has a
quad-core CPU. Of course D-MASON has been designed to exploit such configurations
whose increasing presence seems to be a clear trend in the next years.

5 Conclusion and Future Work

D-MASON is a distributed version of MASON. MASON is a quite widespread frame-
work for ABMs. Commonly to many kind of simulations, ABMs are CPU intensive
applications and requires large amount of memory: these two characteristics put some
limitations on the number and the complexity of the simulated agents. On the other
hand the need for more complex simulations involving a large number of agents is al-
ways felt by researchers and practitioners. The rationale of developing D-MASON is
to tackle this problem by providing a solution that does not require the user to rewrite
his simulations and, nonetheless, pushing the limits of the maximum number of agents.
This result is achieved by harvesting the unused CPU power usually largely available
in installations like laboratories and by letting the computational work to be distributed
among machines by addressing heterogeneity.

This paper reports on an currently undergoing project, and several issues are going
to be tackled in the future. About the architectural level, first of all, we will further
refine and try to optimize the thread-based version of D-MASON (i.e., when each region
is a separate thread and not a separate JVM) by optimizing the thread management
and providing short circuit of communication among regions on the same worker. This
should further improve the already good results on performances. Then, we are planning
to tackle load balancing issues by, first, allowing regions to migrate from particularly
loaded workers to unloaded ones, and, then, modify the size and (possibly) the shape of
regions on-the-fly.

About the simulation library, we are currently tackling other fields, since different
categories (such as 3D, graph-based, etc.) do require suitably tailored approaches for
the partitioning in regions. A long-term objective is also an improved management of
parallelism, with distributed visualization and monitoring workers.

Finally, the project will be soon released under a Free and Open Software license.
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