

M. Alexander et al. (Eds.): Euro-Par 2011 Workshops, Part I, LNCS 7155, pp. 502–510, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Peer Group and Fuzzy Metric to Remove Noise
in Images Using Heterogeneous Computing

Ma. Guadalupe Sánchez1, Vicente Vidal2, and Jordi Bataller2

1 Departamento de Sistemas y Computación, Instituto Tecnológico de Cd. Guzmán,
49100, Cd. Guzmán, Jalisco, Mexico

msanchez@dsic.upv.es
2 Departamento de Sistemas Informáticos y Computación E.P.S. Gandia,

Universidad Politécnica de Valencia, 46730, Grao de Gandia, Valencia, Spain
{vvidal,bataller}@dsic.upv.es

Abstract. In this paper, we report a study on the parallelization of an algorithm
for removing impulsive noise in images. The algorithm is based on the concept
of peer group and fuzzy metric. We have developed implementations using
Open Multi-Processing (OpenMP) and Compute Unified Device Architecture
(CUDA) for Graphics Processing Unit (GPU). Many sequential algorithms have
been proposed to remove noise, but their computational cost is excessive for
real-time processing of large images. We developed implementations for a mul-
ti-core CPU, for a multi-GPU (several GPUs) and for a combination of both.
These implementations were compared also with different sizes of the image in
order to find out the settings with the best performance. A study is made using
the shared memory and texture memory to minimize access time to data in GPU
global memory. The result shows that when the image is distributed in multi-
core and multi-GPU a greater number of Mpixels/second are processed.

Keywords: remove impulsive noise, peer group, fuzzy metric, parallel
algorithm, CUDA, OpenMP, multi-core, multi-GPU.

1 Introduction

Image denoising is still an open problem in the field of image processing, because
damaged images may affect the performance and accuracy of some processes. Also,
images under consideration may be very large and may require a real-time processing
and this requires optimal implementations. For instance, noise removal is of para-
mount importance in emerging applications related to biomedical science, earth
science, cultural heritage preservation, video communications, image post-processing,
robotic inspection and surveillance. Impulsive noise is commonly found in images
caused by the malfunction of sensors during the process of image formation, aging of
the storage material or transmission errors due to natural or man-made processes [1].
This type of noise affects individual pixels, changing its original value. The wide-
spread model of impulse noise is the “Salt and Pepper” model, or fixed-value noise. It
considers that when a pixel is wrong, its value is an extreme value within the signal
range. This is the model that we assume in the present paper.

 Peer Group and Fuzzy Metric to Remove Noise in Images 503

Many algorithms (filters) to reduce impulsive noise in images have been intro-
duced: [1–13]. These cited works are based on the concept of “peer group”. Given a
pixel xi, a peer group is the set of its neighbors that are similar to it, according to a
chosen metric, [1] [10]. These filters have recently shown good results in quality but
they do not seem to be appropriate for real-time processing.

Resources for real-time processing are easily available. For example, the Graphics
Processing Units (GPUs) are currently a very popular platform for developing parallel
applications, considering price and speed. It is obvious the convenience to develop
parallel filter implementations for them.

In this paper, we introduce a parallel version of filters based on peer group and
fuzzy metric in order to keep their best quality results while trying to improve its per-
formance, making them usable for real-time processing. We have tested these algo-
rithms using several GPUs (multi-GPU) in parallel, using also a multi-core CPU, and
using the GPUs and the CPU in combination. We have investigated the most conve-
nient distribution of the pixels on the memories and caches for these devices (for in-
stance: shared memory versus texture memory) to take the most advantage of the
hardware.

The paper is organized as follows: Section 2 explains the two steps of the denois-
ing algorithm to be parallelized. Section 3 discusses how the algorithm has been im-
plemented in a multi-GPU and in a multi-core CPU. The results of the experimental
study are shown in Section 4. Finally, section 5 presents the conclusions reached
using heterogeneous computing to eliminate noise in the images.

2 Denoising Algorithm

Our algorithm uses the peer group of a central pixel xi in a window W according to
[1], but with a fuzzy metric instead. The fuzzy distance [12] between pixels xi and xj
in the color image is given by the following function:

,௜ݔ൫ܯ ௝൯ݔ ൌ ∏ ௠௜௡ ൛௫೔ሺ௟ሻ,௫ೕሺ௟ሻൟା௞௠௔௫ ൛௫೔ሺ௟ሻ,௫ೕሺ௟ሻൟା௞ ,ଷ௟ୀଵ (1)

where (xi(1), xi(2), xi(3)) is the color vector for the pixel xi in RGB and xj is a neighbor
of xi. In [6], it was shown that k = 1024 is an appropriate setting to maintain the image
quality, and this is therefore the value that we use in our study.

The peer group of a pixel xi is comprised by the pixels of a window centered in xi
whose distance M from xi exceeds d:

 ܲሺݔ௜, ݀ሻ ൌ ൛ݔ௝ ߳ ܹ ׷ ,௜ݔ൫ܯ ௝൯ݔ ൒ ݀ൟ (2)

where 0 ≤ d ≤ 1 is the distance threshold.

504 M.G. Sánchez, V. Vidal, and J. Bataller

The sketch of the denoising algorithm has two main steps. In the first step,
detection, the pixels are labeled either as corrupted or as uncorrupted. In the second
step, filtering, the corrupted pixels are corrected. This is the description of the
processing for each pixel xi.

─ Detection: xi is declared as corrupted if # P (xi, d) ≤ (q + 1), where q is the value
defined to decide if the pixel is labeled as corrupted or uncorrupted, and # P the
cardinality of the set P.

─ Filtering: if xi was previously marked as corrupted, it is replaced using the well
known arithmetic mean filter (AMF) [2], [3]. This is the new value for xik (color
component k of xi) is (∑xij)/(#W-1) for all xj ϵ W with j ≠ i.

The algorithm must be divided into two steps because the AMF considers only uncor-
rupted pixels for the mean computation and, therefore, the second step cannot start
until the detection is completely done.

3 Multi-GPU and Multi-core CPU Implementations

We have developed three implementations of the algorithm described in the previous
section, for two parallel architectures. The first implementation is based on OpenMP
and targets a multi-core CPU. The second implementation is developed in CUDA for
a multi-GPU. The third version uses the combination of CPU and GPU.

The first decision to make is which part of the image is to be processed by each
computing unit. For instance, figure 1 shows the case of the CPU, in which rows
above the line s are assigned to one core, and the rest to a second core, leaving the
remaining cores and the GPUs idle. Figure 2 shows an example of dividing an image
into two parts, each one to be processed by a different GPU. Finally, figure 3 shows a
partition of the image into eight horizontal blocks, to be processed by a combination
of GPUs and cores CPU.

The implementations on GPUs have some differential traits. Data to be processed
must be transferred from main memory (RAM) to the GPU memory and the results
must be copied back to main memory. On the other hand, tasks to be executed by a
GPU are coded into functions called kernels. In order to ensure the synchronization of
the two steps of the algorithm, we have developed two kernels, one for detection and
another for filtering, so that the latter won’t start until the first ends. Therefore, before
the actual processing starts in a GPU, the CPU control program must select which
GPU to be used, to copy data to them, to launch the kernels (with the appropriate
scheduling) and to recover the results. It is obvious that the transfers will affect the
processing time.

An additional issue is that the GPUs have a stack of memories [16], [14] with dif-
ferent features (size, speed and access). This requires considering where to place and
how to access data once they are into the GPU. For instance, figure 4 shows two
choices: using shared memory (a) or using texture memory (b).

 Peer Group and Fuzzy Metric to Remove Noise in Images 505

Fig. 1. Image divided in 2 cores, none GPUs used

Fig. 2. Image divided in 2 GPUs, none cores used

Fig. 3. Image divided in 4 GPUs and 4 cores

506 M.G. Sánchez, V. Vidal, and J. Bataller

a

b

Fig. 4. GPU global memory access with a) shared memory b) texture memory

Fig. 5. Original image of a building

Using shared memory implies that data must be further copied from the GPU glob-
al memory to a shared memory block, available only to the set of threads being ex-
ecuted by the same multi-processor in a GPU. Texture memory is used in read-only
mode and accessed by the detection and filtering kernels.

4 Experimental Study

We conducted the experimentation on a Mac OS X (Intel Quad-Core Xeon 2 x 2.26
GHz, 8GB of RAM) with 4 NVIDIA GPUs. Each card is a GeForce GT120, 512MB
of memory, and 4 multi-processors. The image for the tests is shown in figure 5.
This image was taken from the Kodak database ([15]) and it was resized in several
sizes.

The first tests performed were to compare the use of shared memory versus texture
memory, using 1, 2 and 4 GPUs. Table 1 summarizes the results. This results shows
improvements if texture memory is used. Therefore, in the following tests, texture
memory is always used.

The following test was the use of the CPU with 16 cores for the noise removal on
different sizes of the image. Figure 6 shows the results. For sizes larger than 384x256,
we got the best results when all the 16 cores are used. On the contrary, for smaller
sizes, it is better using only 8 cores.

 Peer Group and Fuzzy Metric to Remove Noise in Images 507

Table 1. Results in Mpixels/sec when the image is processed and stored in texture memory and
shared memory

Image size Texture memory Shared memory GPU
6144x4096
6144x4096
6144x4096

20.6599
30.5744
47.1182

17.3378
29.4889
41.3707

1
2
4

Now, our study focuses on the effect of using several GPUs. Figure 7 collects the

results in function of the number of GPUs used, but only for the execution inside the
GPUs, this is, without data transfer RAM-GPU. It is clear that the better outcomes
occur when all the GPUs are used (4 in our case). On the other hand, figure 8 shows
results for the overall execution, now including the data transfer RAM-GPU. If the
image is smaller than 1536x1024 pixels, it is better to use a single GPU because the
time used in transfers is not compensated by the use of more GPUs. On the contrary,
for larger sizes than 1536x1024, using more GPUs improves the performance despite
the memory transfers. Therefore, we conclude the following:

─ for image sizes less than 768x512, it’s better to use one GPU.
─ for image sizes between 768x512 and 3072x2048, it’s better to use two GPUs.
─ for image sizes greater than 6144x4096, it’s better to use four GPUs.

Fig. 6. Parallelizing image with multi-core

0

2

4

6

8

10

12

14

16

18

1 2 4 8 16

M
pi
xe
ls
/s
ec
on

d

cores

96x64

192x128

384x256

768x512

1536x1024

3072x2048

6144x4096

508 M.G. Sánchez, V. Vidal, and J. Bataller

Fig. 7. Mpixels/sec executed by both kernels (no memory transfers accounted)

Fig. 8. Mpixels Mpixels/sec executed by both kernels (total processing)

In the last tests, the cores CPU and the GPUs were simultaneously used. Table 2
compares the best results if only the CPU, only the GPU or both are used. For any
size of the image, it is better to use the combination of both.

Table 3 shows the combination GPU and CPU, and how many cores and GPUs
was used for each size of the image, also the table shows the size of the image as-
signed to the GPU (the rest is processed by the CPU, obviously). If the image size
increases, more processing is done on the GPU and more GPUs are used.

0

20

40

60

80

100

120

140

160

1 2 4

M
pi
xe
ls
/s
ec
on

d

GPUs

96x64

192x128

384x256

768x512

1536x1024

3072x2048

6144x4096

0
5

10
15
20
25
30
35
40
45
50

1 2 4

M
pi
xe
ls
/s
ec
on

d

GPUs

96x64

192x128

384x256

768x512

1536x1024

3072x2048

6144x4096

 Peer Group and Fuzzy Metric to Remove Noise in Images 509

Table 2. Megapixels/sec results for processing using only Multi-core, only Multi-GPU,
 and both

Image size Multicore MultiGPU Multicore and
MultiGPU

96x64
192x128
384x256
768x512
1536x1024
3072x2048
3072x2048
6144x4096

6.8267
9.4523
10.5703
12.4043
14.8805
15.9601
15.9601
16.1206

6.83
10.69
12.60
13.51
18.86
24.34
24.10
47.12

8.3706
15.5446
20.0130
37.1379
42.3953
43.7819
69.9105
68.4600

Table 3. The size of the image assigned to the GPU for processing, the cores and the
GPU used

Image size GPUs Cores Size on GPU
96x64
192x128
384x256
768x512
1536x1024
3072x2048
3072x2048
6144x4096

1
1
1
1
2
2
4
4

16
11
7
9
9
9
11
7

1/4
3/8
1/2
3/4
3/4
3/4
7/8
7/8

5 Concluding Remarks

The availability of inexpensive parallel processing hardware provided by graphics
processing units has boosted the development of many applications for demanding
problems. Image denoising is a problem that fits very well in this scenario because
images may be large, the processing is costly, and image pixels, to an extent, can be
handled simultaneously.

In this paper we have adapted a denoising algorithm, based on the peer group con-
cept and using a fuzzy metric, to run concurrently. Our implementation was devel-
oped to be executed either on a multi-core CPU, on several GPUs, or using the CPU
along with the GPUs. The results showed that this latter option (CPU+GPUs) gives
the best performance. On the way, we have shown the best settings when using GPUs,
because they need a very fine tuning to get the best yield.

510 M.G. Sánchez, V. Vidal, and J. Bataller

The final conclusion is that implementing image denoising algorithms to be run on
multi-core CPUs and GPUs are very advisable. This opens the door to use such algo-
rithms for real-time processing. In future works, we plan to test our programs on the
last generation GPUs cards and to try other common problems on images, such as
edge detection.

Acknowledgments. This work was funded by the Spanish Ministry of Science and
Innovation (Project TIN2008-06570-C04-04) and M. Guadalupe would also like to
acknowledge DGEST ITCG for the scholarship awarded through the PROMEP
program (Mexico).

References

1. Smolka, B.: Peer group switching filter for impulse noise reduction in color images. Pat-
tern Recognition Letters 31, 484–495 (2010)

2. Camarena, J.G., Gregori, V., Morillas, S., Sapena, A.: Fast detection and removal of im-
pulsive noise using peer group and fuzzy metrics. Journal of Visual Communication and
Image Representation 19, 20–29 (2008)

3. Toprak, A., Guller, I.: Impulse noise reduction in medical images with the use of switch
mode fuzzy adaptive median filter. Digital Signal Processing 17(4), 711–723 (2007)

4. Schulte, S., Nachtegael, M., De Witte, V., Van der Weken, D., Kerre, E.E.: A Fuzzy Im-
pulse Noise Detection and Reduction Method. IEEE Transaction on Image Processing 15,
5 (2006)

5. Shulte, S., Morillas, S., Gregori, V., Kerre, E.E.: A New Fuzzy Color Correlated Impulse
Noise Reduction Method. IEEE Transaction on Image Processing 15, 10 (2007)

6. Shulte, S., De Witte, V., Nachtegael, M., Van der Weken, D., Kerre, E.E.: Fuzzy Two
Step Filter for Impulse Noise Reduction From Color Images. IEEE Transaction on Image
Processing 15, 11 (2006)

7. Shulte, S., De Witte, V., Nachtegael, M., Van der Weken, D., Kerre, E.E.: Fuzzy random
impulse noise reduction method. Journal Fuzzy Sets and Systems 158(3) (2007)

8. Mélange, T., Nachtegael, M., Kerre, E.E.: Fuzzy Random Impulse Noise Removal From
Colour Image Sequences: IEEE (2010)

9. Morillas, S., Gregori, V., Hervas, A.: Fuzzy Peer Groups for Reducing Mixed Gaussian-
Impulse Noise From Color Images. IEEE Transaction on Image Processing 18, 7 (2009)

10. Camarena, J.G., Gregori, V., Morillas, S., Sapena, A.: Some improvements for image
filtering using peer group techniques. Image Vis. Comput. 28(1), 188–201 (2010)

11. Morillas, S., Gregori, V., Peris-Fajarnés, G.: Isolating impulsive noise pixels in color
images by peer group techniques. Comput. Vis. Image Underst. 110(1), 102–116 (2008)

12. Camarena, J.G., Gregori, V., Morillas, S., Sapena, A.: Two-step fuzzy logic based method
for impulse noise detection in colour images. Pattern Recognition Letters 31, 1842–1849
(2010)

13. Smolka, B.: Fast detection and impulsive noise remolval in color images. Real-Time
Imaging 11, 389–402 (2005)

14. Sánchez, M.G., Vidal, V., Bataller, J., Arnal, J.: Implementing a GPU fuzzy filter for
Impulsive Image Noise Correction. In: CMSSE (2010)

15. Kodak, http://r0k.us/graphics/kodak/index.html
16. Nvidia, http://www.nvidia.es/page/home.html

	Peer Group and Fuzzy Metric to Remove Noise
in Images Using Heterogeneous Computing
	Introduction
	Denoising Algorithm
	Multi-GPU and Multi-core CPU Implementations
	Experimental Study
	Concluding Remarks
	References

