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Abstract. In this paper, we report a study on the parallelization of an algorithm 
for removing impulsive noise in images. The algorithm is based on the concept 
of peer group and fuzzy metric. We have developed implementations using 
Open Multi-Processing (OpenMP) and Compute Unified Device Architecture 
(CUDA) for Graphics Processing Unit (GPU). Many sequential algorithms have 
been proposed to remove noise, but their computational cost is excessive for 
real-time processing of large images. We developed implementations for a mul-
ti-core CPU, for a multi-GPU (several GPUs) and for a combination of both. 
These implementations were compared also with different sizes of the image in 
order to find out the settings with the best performance. A study is made using 
the shared memory and texture memory to minimize access time to data in GPU 
global memory. The result shows that when the image is distributed in multi-
core and multi-GPU a greater number of Mpixels/second are processed. 

Keywords: remove impulsive noise, peer group, fuzzy metric, parallel  
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1 Introduction 

Image denoising is still an open problem in the field of image processing, because 
damaged images may affect the performance and accuracy of some processes. Also, 
images under consideration may be very large and may require a real-time processing 
and this requires optimal implementations. For instance, noise removal is of para-
mount importance in emerging applications related to biomedical science, earth 
science, cultural heritage preservation, video communications, image post-processing, 
robotic inspection and surveillance. Impulsive noise is commonly found in images 
caused by the malfunction of sensors during the process of image formation, aging of 
the storage material or transmission errors due to natural or man-made processes [1]. 
This type of noise affects individual pixels, changing its original value. The wide-
spread model of impulse noise is the “Salt and Pepper” model, or fixed-value noise. It 
considers that when a pixel is wrong, its value is an extreme value within the signal 
range. This is the model that we assume in the present paper.  
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Many algorithms (filters) to reduce impulsive noise in images have been intro-
duced: [1–13]. These cited works are based on the concept of “peer group”. Given a 
pixel xi, a peer group is the set of its neighbors that are similar to it, according to a 
chosen metric, [1] [10]. These filters have recently shown good results in quality but 
they do not seem to be appropriate for real-time processing.  

Resources for real-time processing are easily available. For example, the Graphics 
Processing Units (GPUs) are currently a very popular platform for developing parallel 
applications, considering price and speed. It is obvious the convenience to develop 
parallel filter implementations for them.  

In this paper, we introduce a parallel version of filters based on peer group and 
fuzzy metric in order to keep their best quality results while trying to improve its per-
formance, making them usable for real-time processing. We have tested these algo-
rithms using several GPUs (multi-GPU) in parallel, using also a multi-core CPU, and 
using the GPUs and the CPU in combination. We have investigated the most conve-
nient distribution of the pixels on the memories and caches for these devices (for in-
stance: shared memory versus texture memory) to take the most advantage of the 
hardware. 

The paper is organized as follows: Section 2 explains the two steps of the denois-
ing algorithm to be parallelized. Section 3 discusses how the algorithm has been im-
plemented in a multi-GPU and in a multi-core CPU. The results of the experimental 
study are shown in Section 4. Finally, section 5 presents the conclusions reached  
using heterogeneous computing to eliminate noise in the images. 

2 Denoising Algorithm 

Our algorithm uses the peer group of a central pixel xi in a window W according to 
[1], but with a fuzzy metric instead. The fuzzy distance [12] between pixels xi and xj 
in the color image is given by the following function: 

,௜ݔ൫ܯ  ௝൯ݔ ൌ ∏ ௠௜௡ ൛௫೔ሺ௟ሻ,௫ೕሺ௟ሻൟା௞௠௔௫  ൛௫೔ሺ௟ሻ,௫ೕሺ௟ሻൟା௞ ,ଷ௟ୀଵ  (1) 

where (xi(1), xi(2), xi(3)) is the color vector for the pixel xi in RGB and xj is a neighbor 
of xi. In [6], it was shown that k = 1024 is an appropriate setting to maintain the image 
quality, and this is therefore the value that we use in our study. 

The peer group of a pixel xi is comprised by the pixels of a window centered in xi 
whose distance M from xi exceeds d: 

 ܲሺݔ௜, ݀ሻ ൌ ൛ݔ௝ ߳ ܹ ׷ ,௜ݔ൫ܯ ௝൯ݔ ൒ ݀ൟ (2) 

where 0 ≤ d ≤ 1 is the distance threshold. 
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The sketch of the denoising algorithm has two main steps. In the first step,  
detection, the pixels are labeled either as corrupted or as uncorrupted. In the second 
step, filtering, the corrupted pixels are corrected. This is the description of the 
processing for each pixel xi. 

─ Detection: xi is declared as corrupted if  # P (xi, d) ≤ (q + 1), where q  is the value 
defined to decide if the pixel is labeled as corrupted or uncorrupted, and # P  the 
cardinality of the set P. 

─ Filtering: if xi was previously marked as corrupted, it is replaced using the well 
known arithmetic mean filter (AMF) [2], [3]. This is the new value for xik (color 
component k  of xi) is (∑xij)/(#W-1) for all xj ϵ W with j ≠ i.  

The algorithm must be divided into two steps because the AMF considers only uncor-
rupted pixels for the mean computation and, therefore, the second step cannot start 
until the detection is completely done.  

3 Multi-GPU and Multi-core CPU Implementations 

We have developed three implementations of the algorithm described in the previous 
section, for two parallel architectures. The first implementation is based on OpenMP 
and targets a multi-core CPU. The second implementation is developed in CUDA for 
a multi-GPU. The third version uses the combination of CPU and GPU. 

The first decision to make is which part of the image is to be processed by each 
computing unit. For instance, figure 1 shows the case of the CPU, in which rows 
above the line s are assigned to one core, and the rest to a second core, leaving the 
remaining cores and the GPUs idle. Figure 2 shows an example of dividing an image 
into two parts, each one to be processed by a different GPU. Finally, figure 3 shows a 
partition of the image into eight horizontal blocks, to be processed by a combination 
of GPUs and cores CPU.  

The implementations on GPUs have some differential traits. Data to be processed 
must be transferred from main memory (RAM) to the GPU memory and the results 
must be copied back to main memory. On the other hand, tasks to be executed by a 
GPU are coded into functions called kernels. In order to ensure the synchronization of 
the two steps of the algorithm, we have developed two kernels, one for detection and 
another for filtering, so that the latter won’t start until the first ends. Therefore, before 
the actual processing starts in a GPU, the CPU control program must select which 
GPU to be used, to copy data to them, to launch the kernels (with the appropriate 
scheduling) and to recover the results. It is obvious that the transfers will affect the 
processing time. 

An additional issue is that the GPUs have a stack of memories [16], [14] with dif-
ferent features (size, speed and access). This requires considering where to place and 
how to access data once they are into the GPU. For instance, figure 4 shows two 
choices: using shared memory (a) or using texture memory (b). 
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Fig. 1. Image divided in 2 cores, none GPUs used 

 

Fig. 2. Image divided in 2 GPUs, none cores used 

 

Fig. 3. Image divided in 4 GPUs and 4 cores 
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a 

 

b 

Fig. 4. GPU global memory access with a) shared memory b) texture memory 

 

Fig. 5. Original image of a building 

Using shared memory implies that data must be further copied from the GPU glob-
al memory to a shared memory block, available only to the set of threads being ex-
ecuted by the same multi-processor in a GPU. Texture memory is used in read-only 
mode and accessed by the detection and filtering kernels. 

4 Experimental Study 

We conducted the experimentation on a Mac OS X (Intel Quad-Core Xeon 2 x 2.26 
GHz, 8GB of RAM) with 4 NVIDIA GPUs. Each card is a GeForce GT120, 512MB 
of memory, and 4 multi-processors. The image for the tests is shown in figure 5. 
This image was taken from the Kodak database ([15]) and it was resized in several 
sizes. 

The first tests performed were to compare the use of shared memory versus texture 
memory, using 1, 2 and 4 GPUs. Table 1 summarizes the results. This results shows 
improvements if texture memory is used. Therefore, in the following tests, texture 
memory is always used. 

The following test was the use of the CPU with 16 cores for the noise removal on 
different sizes of the image. Figure 6 shows the results. For sizes larger than 384x256, 
we got the best results when all the 16 cores are used. On the contrary, for smaller 
sizes, it is better using only 8 cores. 
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Table 1. Results in Mpixels/sec when the image is processed and stored in texture memory and 
shared memory 

Image size Texture memory Shared memory GPU 
6144x4096 
6144x4096 
6144x4096 

20.6599 
30.5744 
47.1182 

17.3378 
29.4889 
41.3707 

1 
2 
4 

 
Now, our study focuses on the effect of using several GPUs. Figure 7 collects the 

results in function of the number of GPUs used, but only for the execution inside the 
GPUs, this is, without data transfer RAM-GPU. It is clear that the better outcomes 
occur when all the GPUs are used (4 in our case). On the other hand, figure 8 shows 
results for the overall execution, now including the data transfer RAM-GPU. If the 
image is smaller than 1536x1024 pixels, it is better to use a single GPU because the 
time used in transfers is not compensated by the use of more GPUs. On the contrary, 
for larger sizes than 1536x1024, using more GPUs improves the performance despite 
the memory transfers. Therefore, we conclude the following: 

─ for image sizes less than 768x512, it’s better to use one GPU. 
─ for image sizes between 768x512 and 3072x2048, it’s better to use two GPUs. 
─ for image sizes greater than 6144x4096, it’s better to use four GPUs. 

 

 

Fig. 6. Parallelizing image with multi-core 
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Fig. 7. Mpixels/sec executed by both kernels (no memory transfers accounted) 

 

Fig. 8. Mpixels Mpixels/sec executed by both kernels (total processing) 

In the last tests, the cores CPU and the GPUs were simultaneously used. Table 2 
compares the best results if only the CPU, only the GPU or both are used. For any 
size of the image, it is better to use the combination of both. 

Table 3 shows the combination GPU and CPU, and how many cores and GPUs 
was used for each size of the image, also the table shows the size of the image as-
signed to the GPU (the rest is processed by the CPU, obviously). If the image size 
increases, more processing is done on the GPU and more GPUs are used. 
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Table 2. Megapixels/sec results for processing using only Multi-core, only Multi-GPU, 
 and both 

Image size Multicore MultiGPU Multicore and 
MultiGPU 

96x64
192x128 
384x256 
768x512 
1536x1024 
3072x2048 
3072x2048 
6144x4096 

6.8267 
9.4523 
10.5703 
12.4043 
14.8805 
15.9601 
15.9601 
16.1206 

6.83
10.69 
12.60 
13.51 
18.86 
24.34 
24.10 
47.12 

8.3706
15.5446 
20.0130 
37.1379 
42.3953 
43.7819 
69.9105 
68.4600 

 

Table 3. The size of the image assigned to the GPU for processing, the cores and the  
GPU used 

 
Image size GPUs Cores Size on GPU
96x64 
192x128 
384x256 
768x512 
1536x1024 
3072x2048 
3072x2048 
6144x4096 

1 
1 
1 
1 
2 
2 
4 
4 

16
11 
7 
9 
9 
9 
11 
7 

1/4
3/8 
1/2 
3/4 
3/4 
3/4 
7/8 
7/8 

5 Concluding Remarks 

The availability of inexpensive parallel processing hardware provided by graphics 
processing units has boosted the development of many applications for demanding 
problems. Image denoising is a problem that fits very well in this scenario because 
images may be large, the processing is costly, and image pixels, to an extent, can be 
handled simultaneously. 

In this paper we have adapted a denoising algorithm, based on the peer group con-
cept and using a fuzzy metric, to run concurrently. Our implementation was devel-
oped to be executed either on a multi-core CPU, on several GPUs, or using the CPU 
along with the GPUs. The results showed that this latter option (CPU+GPUs) gives 
the best performance. On the way, we have shown the best settings when using GPUs, 
because they need a very fine tuning to get the best yield.  
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The final conclusion is that implementing image denoising algorithms to be run on 
multi-core CPUs and GPUs are very advisable. This opens the door to use such algo-
rithms for real-time processing. In future works, we plan to test our programs on the 
last generation GPUs cards and to try other common problems on images, such as 
edge detection. 
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