Integrated Monitoring of Infrastructures
and Applications in Cloud Environments

Roberto Palmieri!, Pierangelo di Sanzo!, Francesco Quaglia®,
Paolo Romano?, Sebastiano Peluso?, and Diego Didona?

! Dipartimento di Informatica e Sistemistica, Sapienza Rome University, Italy
2 Distributed Systems Group, INESC-ID, Lisbon, Portugal

Abstract. One approach to fully exploit the potential of Cloud tech-
nologies consists in leveraging on the Autonomic Computing paradigm. It
could be exploited in order to put in place reconfiguration strategies span-
ning the whole protocol stack, starting from the infrastructure and then
going up to platform/application level protocols. On the other hand, the
very base for the design and development of Cloud oriented Autonomic
Managers is represented by monitoring sub-systems, able to provide au-
dit data related to any layer within the stack. In this article we present
the approach that has been taken while designing and implementing the
monitoring sub-system for the Cloud-TM FP7 project, which is aimed
at realizing a self-adapting, Cloud based middleware platform providing
transactional data access to generic customer applications.

1 Introduction

As well known, Cloud based technologies are making a revolutionary change in
the way systems and applications are built, configured and run. In particular,
the ability to acquire computational power and storage on-the-fly has opened
the possibility to massively put in place Autonomic Management schemes aimed
at optimizing performance/availability indexes vs specific cost metrics.

A relevant reflection of such a revolutionary change is in that several projects
targeting Cloud oriented software platforms and applications aim at designing/
integrating multi-modal operating modes. In particular, the target is to make dif-
ferentiated protocols coexist within both the platform and the application layer
in order to dynamically select the best suited protocol (and well suited parameter
settings for it) depending on specific environmental conditions, such as the current
workload profile. Consequently, the need arises for defining/implementing frame-
works and systems supporting audit and monitoring functionalities spanning the
whole set of differentiated layers within the Cloud based system.

At current date, several proposals exist in the context of monitoring the us-
age of infrastructure level resources (e.g. CPU and RAM) [I]. These are mostly
suited for Infrastructure-as-a-Service (IaaS) customers, to whom the possibil-
ity to trigger infrastructure level reconfigurations either automatically or on de-
mand, based on the monitoring outcomes, is provided. On the other hand, Cloud
providers offer the possibility to monitor the level of performance provided by

M. Alexander et al. (Eds.): Euro-Par 2011 Workshops, Part I, LNCS 7155, pp. 45 2012.
© Springer-Verlag Berlin Heidelberg 2012

46 R. Palmieri et al.

specific, supported platforms [4], such as Web based platforms, in order to enable,
e.g., auto-scale facilities aimed at dynamically resizing the offered computational
platform. This is suited for Platform-as-a-Service (PaaS) customers, who aim at
delivering specific performance levels, while relying on facilities already offered
by their reference Cloud providers.

In this paper we describe the approach we have taken in the design/
development of a Workload and Performance Monitor (WPM) that provides
audit data for both infrastructure resources and platform (or application) level
components in an integrated manner. The main distinguishing feature of our so-
lution is that it does not target any specific platform or application. Instead,
it is flexible and adaptable so to allow integration with differentiated plat-
form/application types. On the technological side, our design comes from the
integration of the Lattice framework (natively oriented to infrastructure mon-
itoring), which has been largely exploited in the context of the RESERVOIR
project [2], and the JMX JAVA oriented framework (suited for the audit of
JAVA based components). The whole design/implementation has been tailored
for integration within the platform targeted by the Cloud-TM FP7 project [3].
This project aims at designing/developing a self-adaptive middleware level plat-
form, based on the Infinispan in-memory data management layer [6], provid-
ing transactional data access services (according to agreed upon QoS vs cost
constraints) to the overlying customer applications.

2 Technological Background

2.1 The Lattice Framework

Lattice relies on a reduced number of interacting components, each one devoted
(and encapsulating) a specific task in relation to distributed data-gathering ac-
tivities. In terms of interaction abstraction, the Lattice framework is based on the
producer-consumer scheme, where both the producer and consumer components
are, in their turn, formed by sub-components, whose instantiation ultimately
determines the functionalities of the implemented monitoring system. A pro-
ducer contains data sources which, in turn, contain one or more probes. Probes
read data values to be monitored, encapsulate measures within measurement
messages and put them into message queues. Data values can be read by probes
periodically, or as a consequence of some event. A message queue is shared by the
data source and the contained probes. When a measurement message is avail-
able within some queue, the data source sends it to the consumer, which makes
it available to reporter components. Overall, the producer component injects
data that are delivered to the consumer. Also, producer and consumer have the
capability to interact in order to internally (re)configure their operating mode.

Three logical channels are defined for the interaction between the two
components, named

— data plane;
— info plane;
— control plane.

Integrated Monitoring of Infrastructures and Applications 47

The data plane is used to transfer data-messages, whose payload is a set of
measures, each kept within a proper message-field. The structure of the message
(in terms of amount of fields, and meaning of each field) is predetermined. Hence,
message-fields do not need to be explicitly tagged so that only data-values are
really transmitted, together with a concise header tagging the message with very
basic information, mostly related to source identification and timestamping. Such
a structure can be anyway dynamically reconfigured via interactions supported
by the info plane. This is a very relevant feature of Lattice since it allows minimal
message footprint for (frequently) exchanged data-messages, while still enabling
maximal flexibility, in terms of on-the-fly (infrequent) reconfiguration of the
monitoring-information structure exchanged across the distributed components
within the monitoring architecture.

Finally, the control plane can be used for triggering reconfiguration of the pro-
ducer component, e.g., by inducing a change of the rate at which measurements
need to be taken. Notably, the actual transport mechanism supporting the planes
is decoupled from the internal architecture of producer/consumer components.
Specifically, data are disseminated across these components through configurable
distribution mechanisms ranging from IP multicast to publish/subscribe sys-
tems, which can be selected on the basis of the actual deployment and which
can even be changed over time without affecting other components, in term
of their internal configuration. The framework is designed to support multiple
producers and multiple consumers, providing the chance to dynamically man-
age data source configuration, probe-activation/deactivation, data sending rate,
redundancy and so on.

2.2 Portability Issues

The Lattice framework is based on JAVA technology, so that producer/ consumer
components encapsulate sub-components that are mapped onto a set of JAVA
threads, each one taking care of specific activities. Some of these threads, such as
the data-source or the data-consumer, constitute the general purpose backbone
of the skeleton provided by Lattice. Other threads, most notably the probe-
thread and the reporter-thread, implement the actual logic for taking/reporting
measurement samples. The implementation of these threads can be seen as the
ad-hoc portion of the whole monitoring infrastructure, which performs activities
tailored to specific measurements to be taken, in relation to the context where
the monitoring system operates.

By the reliance on JAVA, portability issues are mostly limited to the imple-
mentation of the ad-hoc components. As an example, a probe-thread based on
direct access to the “proc” file system for gathering CPU/memory usage infor-
mation is portable only across (virtualized) operating systems supporting that
type of file system (e.g. LINUX). However, widening portability across general
platforms would only entail reprogramming the internal logic of this probe, which
in some cases can even be done by exploiting, e.g., pre-existing JAVA packages
providing platform-transparent access to physical resource usage.

48 R. Palmieri et al.

The aforementioned portability considerations also apply to reporter-threads,
which can implement differentiated, portable logics for exposing data to back-end
applications (e.g. by implementing logics that store the data within a conven-
tional database).

3 Architectural Organization

Figure[llshows the general architectural organization we have devised for WPM.
It has been defined according to the need for supporting the following two main
functionalities:

— statistical data gathering (SDG);
— statistical data logging (SDL).

The SDG functionality maps onto an instantiation of the Lattice framework. In
our instantiation, the elements belonging to the monitored infrastructure, such
as Virtual Machines (VMs), can be logically grouped, and each group will entail
per-machine probes targeting two types of resources: (A) hardware/virtualized
and (B) logical. Statistics for the first kind of resources are directly collected over
the Operating System (OS), or via OS decoupled libraries, while statistics related
to logical resources (e.g. the data-platform) are collected at the application level
by relying on the JMX framework for JAVA components.

GROUP 1
Virtual Machine 1 Virtual Machine n
SW
HW eee Groupi
Probes m Probes
Producers r— Producers
R
— LAN
v
Consumer

Local Storage(RAM/FS)

Optimized-transmission
Service (SFTP, FS sharing)

Tm

Log SerV|ce

Fig.1. WPM Architectural Organization

Integrated Monitoring of Infrastructures and Applications 49

The data collected by the probes are sent to the producer component via the
facilities natively offered by the Lattice framework. Each producer is coupled
with one or many probes and it is responsible of managing them. The consumer
is the Lattice component that receives the data from the producers, via differ-
entiated messaging implementations, which could be selected on the basis of the
specific system deployment. We envisage a LAN based clustering scheme such
that the consumer is in charge of handling one or multiple groups of machines be-
longing to the same LAN. Anyway, in our architectural organization, the number
of consumers is not meant to be fixed, instead it can be scaled up/down depend-
ing on the amount of instantiated probes/producers. Overall, the consumer can
be instantiated as a centralized or a distributed process. Beyond collecting data
from the producers, the consumer is also in charge of performing a local elab-
oration aimed at producing a suited stream representation to be provided as
the input to the Log Service, which is in turn in charge of supporting the SDL
functionality.

We decided to exploit the file system locally available at the consumer side
to temporarily keep the stream instances to be sent towards the Log Service.
The functional block which is responsible for the interaction between SDG and
SDL is the so called optimized-transmission service. This can rely on top of
differentiated solutions depending on whether the instance of SDL is co-located
with the consumer or resides on a remote network. Generally speaking, with
our organization we can exploit, e.g., SFTP or a locally shared File System.
Also, stream compression schemes can be actuated to optimize both latency and
storage occupancy.

The Log Service is the logical component responsible for storing and managing
all the gathered data. It must support queries from any external application so to
expose the statistical data for subsequent processing/analysis. The Log Service
could be implemented in several manners, in terms of both the underlying data
storage technology and the selected deployment (centralized vs distributed). As
for the first aspect, different solutions could be envisaged in order to optimize
access operations depending on, e.g. suited tradeoffs between performance and
access flexibility. This is also related with the data model ultimately supported by
the Log Service, which might be a traditional relational model or, alternatively,
a <key,value> model. Further, the Log Service could maintain the data onto a
stable storage support or within volatile memory, for performance vs reliability
tradeoffs. The above aspects could depend on the the functionality/architecture
of the application that is responsible for analyzing statistical data, which could
be designed to be implemented as a geographically distributed process in order to
better fit the WPM deployment (hence taking advantage from data partitioning
and distributed processing).

3.1 Implementation of Infrastructure Oriented Probes

In this section we provide some technical specification for the probes developed in
WPM. The design and the implementation of the infrastructure oriented probes
has been tailored to the acquisition of statistical data in relation to (virtualized)

50 R. Palmieri et al.

hardware resources with no binding on a specific Operating System. This has
been done by implementing the JAVA code associated with the probe on top of
the SIGAR cross-platform JAVA based library (version 1.6.4) [5]. Infrastructure
oriented probes are in charge of gathering statistical data on

1) CPU (per core): %user, %system, %idle.

2) RAM: kB free memory, kB used memory.

3) Network interfaces: total incoming data bytes, total outgoing data bytes,
inbound bandwidth usage, outbound bandwidth usage.

4) Disks: %Free space (kB), %Used space (kB), mountPoint or Volume.

For all of the above four resources, the associated sampling process can be config-
ured with differentiated timeouts whose values can be selected on the basis of the
time-granularity according to which the sampled statistical process is expected
to exhibit non-negligible changes.

3.2 Implementation of Data Platform Oriented Probes

The implementation of the data platform oriented probes has been extensively
based on the JMX framework [7], which is explicitly oriented to support audit
functionalities for JAVA based components. Essentially, each data platform ori-
ented probe implements a JMX client, which can connect towards the JMX server
running within the process where the monitored component resides. Then, via the
JMX standard API, the probe retrieves the audit information internally produced
by the monitored JAVA component in relation to its own activities. Anyway, the
adoption of JMX Framework as a reference technology for implementing appli-
cation level probes is not necessarily tied to a JAVA component. This is because
a generic JMX probe can retrieve data form a JAVA component that wraps any
possible monitored application, also written using any programming language.

As an instantiation of application level probes, in our implementation we
developed a data platform probe that accesses the internal audit system of single
Infinispan [6] caches (E), in order to sample some parameters such as the Number
of Commit, Number of Rollback, the Commit latency, etc.

3.3 Startup and Base Message Tagging Rules

Particular care has been taken in the design of the startup phase of WPM
components, in relation to the fact that each probe could be deployed within
a highly dynamic environment, where the set of monitored components (either
belonging to the infrastructure or to the data platform) and the related instances
can vary over time.

As pointed out, WPM will be a part of the Autonomic Manager of the Cloud-
TM platform, which will rely on a Repository of Tunable Components where
an XML description for each component currently taking part to the Cloud-TM

! We recall that Infinispan has been selected as the data layer within the Cloud-TM
project, for which WPM constitutes one of the building blocks.

Integrated Monitoring of Infrastructures and Applications 51

platform is recorded at component startup time. In the design of the WPM we
rely on this repository, by exploiting it as a registry, where each probe can au-
tomatically retrieve information allowing it to univocally tag each measurement
message sent to the Lattice consumer with the identity of the corresponding
monitored component instance, as currently maintained by the registry. This
will allow supporting a perfect matching between the measurement message and
the associated instance of component, as seen by the overall infrastructure at any
time instant. Such a process has been supported by embedding within Lattice
probes a sensing functionality, allowing the retrieval of basic information related
to the environment where the probe is activated (e.g. the IP number of the VM
hosting that instance of the probe), which has been coupled with a matching
functionality vs the registry in order to both

(a) retrieve the ID of the currently monitored component instance;
(b) retrieve information needed to correctly carry out the monitoring task, in
relation to the target component instance.

Such a behavior is shown in Figure Bl where the interaction with the registry
is actuated as a query over specific component types, depending on the type of
probe issuing the query (an infrastructure oriented probe will query the registry
for extracting records associated with VM instances, while a data platform ori-
ented probe will query the registry for extracting records related to the specific
component it is in charge of).

As for point (b), data platform probes rely on the use of JMX servers ex-
posed by monitored components. Hence, the information requested to correctly
support the statistical data gathering process entails the address (e.g. the port
number) associated with the JMX server instance to be contacted. The infor-
mation associated with point (b) is a “don’t care” for infrastructure oriented
probes since they do not operate via any intermediary (e.g. JMX server) entity.

3.4 Implementation of the Optimized-Transmission Service

In the current implementation, the optimized-transmission service has been im-
plemented by relying on the use of zip and SSL-based file transfer functionalities.
Each data stream portion assembled by the Lattice consumer is locally logged
within a file, which is then zipped and sent towards the Log Service front-end via
SSL. Exactly-once transmission semantic has been guaranteed via well known
retransmission /filtering schemes, which have been based on a univocally deter-
mined name for each transmitted zipped file. Specifically, each Lattice consumer
is univocally identified via a consumer ID, which has been used to generate
unique file names in the form

consumer ID + start timestamp + end timestamp

where start and end timestamp values within the file name identify the time
interval during which the statistical data have been gathered by the consumer.
These timestamp values are determined by exploiting the local clock accessible
at the consumer side via the System.currentTimeMillis () service.

52 R. Palmieri et al.

XML records

(e.g. VM records)
probe registry
// |

matching

environmental sensing Pt
(e.g. local IP retrieve)

Fig. 2. Interaction between the Probes and the Registry

3.5 Implementation of the Log Service

As for the Cloud-TM data layer, the Log Service has been implemented by
still relying on Infinispan [6], specifically by instantiating it as an Infinispan
application that parses the input streams received from the Lattice consumer,
and performs put operations on top of an Infinispan cache instance. The keys
used for put operations correspond to message tags, as defined by the Lattice
producer and its hosted probes. In particular, as explained above, each probe
tags measurement messages with the unique ID associated with the monitored
component. This ID has been used in our implementation to determine a unique
key, to be used for a put operation, formed by:

component ID + type of measure + measure timestamp

where the type of measure identifies the specific measure carried out for that
component (e.g. CPU vs RAM usage in case of a VM component), and the
value expressed by measure timestamp is again generated via the local clock
accessible by the probe instance producing the message. Currently, the Log Ser-
vice exposes to the external applications the Infinispan native <key,value> API,
which does not prevent the possibility of supporting a different API in future
releases.

4 Summary

In this article we have presented the architecture and the implementation of a
Workload and Performance Monitor to be integrated within the architectural
design of the Cloud-TM FP7 project platform. Our monitoring system provides
integrated supports for gathering samples related to both hardware/virtualized
resources and logical resources. It relies on the integration between the Lattice
framework and JMX.

Integrated Monitoring of Infrastructures and Applications 53

References

1. Clayman, S., Galis, A., Chapman, C., Toffetti, G., Rodero-Merino, L., Vaquero,
L.M., Nagin, K., Rochwerger, B.: Monitoring Service Clouds in the Future Internet.
I0S Press (2010)
. http://www.reservoir-£fp7.eu/index.php?page=open-source-code
http://www.cloudtm.eu/
http://aws.amazon.com/ec2/
http://www.hyperic.com/products/sigar
. http://www. jboss.org/infinispan
. Java Management Extensions (JMX) Technology,
http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html

No o

http://www.reservoir-fp7.eu/index.php?page=open-source-code
http://www.cloudtm.eu/
http://aws.amazon.com/ec2/
http://www.hyperic.com/products/sigar
http://www.jboss.org/infinispan
http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html

	Integrated Monitoring of Infrastructures
and Applications in Cloud Environments
	Introduction
	Technological Background
	 The Lattice framework
	 Portability issues

	Architectural Organization
	Implementation of Infrastructure Oriented Probes
	Implementation of Data Platform Oriented Probes
	 Startup and base message tagging rules
	Implementation of the Optimized-Transmission Service
	 Implementation of the Log Service

	Summary
	References

