
On-Line Monitoring of Service-Level

Agreements in the Grid

Bartosz Balis1,2, Renata Slota1, Jacek Kitowski1, and Marian Bubak1,3

1 AGH University of Science and Technology,
Department of Computer Science, Krakow, Poland

2 ACC Cyfronet AGH, Krakow, Poland
3 University of Amsterdam, Institute for Informatics, Amsterdam, The Netherlands

balis@agh.edu.pl

Abstract. Monitoring of Service Level Agreements is a crucial phase of
SLA management. In the most challenging case, monitoring of SLA ful-
fillment is required in (near) real-time and needs to combine performance
data regarding multiple distributed services and resources. Currently ex-
isting Grid monitoring and information services do not provide adequate
on-line monitoring capabilities to fulfill this case. We present an applica-
tion of Complex Event Processing principles and technologies for on-line
SLA monitoring in the Grid. The capabilities of the presented SLA mon-
itoring framework include (1) on-demand definition of SLA metrics us-
ing a high-level query language; (2) real-time calculation of the defined
SLA metrics; (3) advanced query capabilities which allow for defining
high-level complex metrics derived from basic metrics. SLA monitoring
of data-intensive grid jobs serves as a case study to demonstrate the
capabilities of the approach.

Keywords: on-line monitoring, SLA monitoring, Grid computing, com-
plex event processing.

1 Introduction and Motivation

Grid infrastructures federate resources from different providers [11], hence Ser-
vice Level Agreements between computing centers comprising the Grid, and
users running jobs, are needed to ensure the desired quality of service [10,7]. An
essential phase in SLA management is the monitoring of SLA fulfillment. The
prevailing approach is off-line SLA monitoring: data about resource usage and
performance is periodically sampled, stored, and subsequently analyzed for SLA
violations, like in the European EGI/EGEE infrastructure [13]. In on-line SLA
monitoring, on the other hand, resource usage and performance are analyzed
on the fly which allows for immediate alerts or corrective actions when an SLA
violation is detected or predicted.

We present a framework for on-line monitoring of SLA contracts in the Grid.
The solution is based on leveraging Complex Event Processing for on-line mon-
itoring in the Grid – GEMINI2 [1]. In this approach, basic SLA performance

M. Alexander et al. (Eds.): Euro-Par 2011 Workshops, Part II, LNCS 7156, pp. 76–85, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

On-Line Monitoring of Service-Level Agreements in the Grid 77

metrics are collected on-line, while complex SLA metrics can be defined on-
demand as queries in a general-purpose continuous query languages EPL, and
calculated in real-time in a CEP engine. Advanced query capabilities are afforded
by this approach: value aggregations, filtering, distributed correlations, joining
of multiple streams of basic metrics, etc. Furthermore, client-perspective SLA
monitoring is made possible. The capabilities of the solution are demonstrated
in a case study: SLA monitoring of data-intensive Grid jobs.

This paper is organized as follows. Section 2 presents related work. Section 3
describes the framework for on-line SLA Monitoring in the Grid. In section 4,
SLA monitoring of data intensive jobs is studied. Section 5 concludes the paper.

2 Related Work

On-line monitoring of large-scale infrastructures is essential for many purposes
such as performance steering [16], system intrusion detection [12] or self-healing
[3]. There are a few approaches for on-line SLA monitoring in the Grid [4,5,15].

Menychtas et al. [5] propose a QoS provisioning approach which takes into
account real-time monitoring information about jobs and resources. A generic
mapping mechanism is employed in order to map low-level metrics to high-level
QoS parameters.

Litke et al. [4] present an execution management framework for OGSA-based
Grids which, given a set of client requirements expressed in SLAs, finds can-
didate services satisfying these requirements, executes them, and monitors the
SLA fulfillment. The monitoring service is tightly coupled with the framework
and provides basic QoS metrics (such as CPU / memory / disk usage, network
bandwidth). On-line monitoring boils down to periodical notifications of QoS
metrics.

Truong et al [15] describe a framework for monitoring and analyzing QoS
metrics of Grid services. On-line monitoring of QoS is based on the SCALEA-G
framework [14]. In comparison to CEP, query capabilities of SCALEA-G are
limited. A client essentially can choose which entities to monitor, select desired
metrics, and optionally specify XQuery or XPath filters (data is represented in
XML). Moreover, unlike CEP, XQuery/XML have not been designed for real-
time queries over data streams.

There have been some efforts to support on-line SLA monitoring for Web
Services [6,9]. Michlmayr et al. [6] present an approach similar to our work in
that it leverages event-based monitoring and Complex Event Processing. How-
ever, the way CEP is used has some restrictions in comparison to our approach.
Basically only three event streams exist which represent QoS properties at the
level of service, service revision, and service operation, respectively. The use
of CEP query constructs is limited to sliding windows, aggregations and filter-
ing. Overall the approach is strictly oriented to Web Services. In contrast, we
propose a generic framework in which event streams represent individual per-
formance metrics which can be combined into high-level composite metrics. The
way these metrics are mapped into SLA obligations is out of scope of this paper.

78 B. Balis et al.

In [9], the authors propose the timed automata formalism to express SLA
violations, and automatically generate monitors for these violations. Exactly the
same can be achieved with Complex Event Processing: continuous query lan-
guage enables one to express SLA violations, while installing a query in a generic
CEP engines is equivalent to creating a new monitor. However, CEP has the
advantage of availability of mature and efficient technologies. Moreover, a con-
tinuous query engine is more user-friendly and arguably no less expressive than
a timed automata. In fact, automata are formalisms often used in the implemen-
tation of CEP engines [8].

3 On-Line SLA Monitoring Framework

3.1 Architecture

Fig. 1 presents a high-level view over the architecture of the on-line SLA mon-
itoring framework. The SLA Monitoring Service and the Resource Information
Registry are the core components of the framework. Also shown are Resources
of the Grid Infrastructure (computers, storage devices, software services), a Re-
source Provider, and a Service-Level Management Service which uses the SLA
Monitoring Service to define SLA Metrics, and makes corrective actions when
an SLA violation takes place or is predicted.

The resources of the Grid infrastructure provide event streams of basic SLA
metrics, such as current CPU load, current memory consumption, current data
transfer rate, response time to the latest client service request, etc. Additional
metrics can also be provided by the client side (response times, transfer rates
measured by the client, etc.).

Fig. 1. Architecture of Grid On-Line SLA Monitoring Framework

On-Line Monitoring of Service-Level Agreements in the Grid 79

The streams of basic metrics are consumed by the SLA Monitoring Service
wherein they can be transformed into composite metrics derived from one or
more basic streams. The composite metrics are defined on demand using the
continuous query language, and calculated in real-time in the CEP engine. Ex-
amples of composite metrics include:

– Value aggregations: average / minimum / maximum values in a specified
time window, etc. For example: Average CPU load on every monitored host
within last 5 minutes.

– Stream joining: combination of values from different streams joined by a com-
mon attribute value. Example: return all host names whose average CPU
load over last 5 minutes exceeds 90% AND top 10 processes on those hosts
in terms of CPU consumption.

– Distributed correlations: event patterns, such as event not followed by an-
other one within a specified time, occurrence of any of two events, etc.

Additional query mechanisms available for defining composite metrics include
value filtering, results grouping and ordering, etc.

The functionality of the SLA Monitoring Service is complemented by the
Resource Information Registry. While the SLA Monitoring Service deals with
dynamic metrics of the resources, the Registry stores their static attributes (OS
info, total memory, CPU type, total storage capacity, etc.), as well as long-term
metrics (monthly, yearly, all-time average, etc.). Information about static at-
tributes is published by the resources using advertisements – special messages
sent periodically to the SLA Monitoring Service which in turn updates the Reg-
istry if necessary. If the advertisement is not received for a certain period of time,
the resource is considered unavailable and its corresponding entry is marked inac-
tive. The SLA Monitoring Service can also be configured to update the long-term
metrics in the Registry based on the values from the event streams.

Such an architecture enables one to monitor long-term SLA metrics (e.g.
monthly availability), and to define even more complex composite metrics which
combine calculations based on dynamic metrics and constraints imposed on static
attributes. The values from the Registry can be joined in a continuous query with
other real-time streams. Example: return all host names whose average CPU load
exceeds 90% within the last 5 minutes, and whose operating system is a Linux
distribution.

3.2 Design and Implementation

The SLA Monitoring Service is designed and implemented on the basis of the
GEMINI2 monitoring system [1]. GEMINI2 provides a framework for on-line
monitoring which encompasses a CEP-based monitoring server (GEMINI2 Mon-
itor) and local sensors (GEMINI2 Sensors). Monitoring data is represented as
events (collections of name – value pairs) which typically contain at least a unique
resource identifier (e.g. a host name), and a set of associated metrics (e.g. current
CPU load on the host).

80 B. Balis et al.

Sensors are responsible for measuring the metrics and publishing the associ-
ated events to a Monitor. The Monitor contains a CEP engine (Esper [2]) and
exposes a service to formulate queries in the Event Processing Language (EPL).
The event streams from Sensors are processed against the queries in the CEP
engine which results in derived complex metrics returned to the requester.

Besides monitoring event streams, Sensors also periodically publish Advertise-
ment events in the Monitor. These events register a resource with the Monitor,
along with their static attributes.

3.3 Defining Composite SLA Metrics Using EPL

Composite SLA metrics are defined as EPL queries over streams of basic metrics.
Let us consider a relatively complex composite metric which demonstrates the
query capabilities of the EPL language: return host names whose average CPU
load exceeds 95% in the last 5 minutes, and top 10 processes on those hosts in
terms of CPU usage. Expressed in EPL:

select host.hostName , avg(host.cpuLoad),
proc.pid , avg(proc.cpuUsage)

from HostMs.win:time(5min) as host ,
ProcessMs.win:time(5min) as proc

where proc.hostName = host.name /* join 2 streams */
group by host.name , pid
having avg(host.cpuLoad) > 95
output all every 2 minutes
order by avg(proc.cpuUsage) desc /* sort results */
limit 10 /* display top 10 results */

This request selects attributes from two streams: HostMs (which contains host
name and host metrics such as the current CPU load), and ProcessMs (which
contains a process identifier, host name on which the process is running, and
metrics, such as the CPU usage). The streams are joined with the value of the
common attribute: the host name.

3.4 Registry

Registry is a database associated with a Monitor which contains information
about resources, specifically their static attributes (metadata) which are not
published in the monitoring event streams.

In order to combine data from the event streams and the Registry, the EPL
request can contain an SQL query. For example the request from section 3.1 is
expressed in EPL as follows:

select rh.host_name , avg(host.cpuLoad)
from HostMs.win:time(5min) as host ,

sql:Registry [’’select host_name from Host
where host_name = ${host.hostName }

and host_os = ’Linux ’’’] as rh
having avg(host.cpuLoad) > 0.9

On-Line Monitoring of Service-Level Agreements in the Grid 81

Fig. 2. Example deployment of resources and SLA Monitoring system components for
the monitoring of data-intensive jobs scenario

4 SLA Monitoring for Data-Intensive Computations

The capabilities of the presented SLA Monitoring solution will be demonstrated
in a case study which involves data storage and data-intensive computations. The
main entities involved in this case study are: (1) storage resources (local disks,
disk arrays and hierarchical storage management (HSM) devices); (2) jobs pro-
cessing large volumes of data, running on worker nodes of the Grid infrastructure;
(3) user interface.

An example deployment of these entities is shown in Fig. 2. In this case,
a job running on a worker node retrieves data from a disk array in order to
run a simulation, whose results are visualized on a graphical user interface.
Furthermore, the simulation is interactive: the user can steer it on the fly.

For the purpose of SLA monitoring, storage resources publish streams of
performance metrics. However, the client host and GUI application are also
instrumented in order to publish client-side performance metrics, such as re-
sponse times and inbound data transfer rates. This allows for SLA monitor-
ing also from the client perspective. The monitored entities, their attributes
(only applicable for storage resources), and SLA metrics are summarized in
Table 1.

82 B. Balis et al.

Table 1. Monitored entities, their attributes and basic SLA metrics

Entity / Static attributes Basic SLA metrics
Event stream name & long-time metrics
Local disk average read/write transfer rate current read/write transfer rate
LDMs total capacity free capacity
Disk array average read/write transfer rate current read/write transfer rate
DAMs total capacity free capacity

raid level
strip size

Hierarchical storage average read/write transfer rate current read/write transfer rate
management (HSM) device total capacity free capacity
HSMMs average mount time

average load time
average position time
number of libraries,
drivers and tapes

Client GUI
ClientPerfMs N/A response time of steering requests
Client host
DataTransferPerfMs N/A inbound data transfer rate

outbound data transfer rate

Let us consider a number of examples of composite SLA metrics formulated
in the EPL query language. The first three metrics rely on storage resource
performance metrics.

1. Return average read transfer rate for a disk array with particular ID for the
last 80 minutes.

select avg(currentReadTransferRate)
from DAMs(id = ’IP:mountDir ’).win:time(80 min);

2. Every 5 minutes return average read transfer rate for those disk arrays for
which it exceeded 100MB/s within the last 40 minutes.

select serverName , id, avg(currentReadTransferRate)
from DAMs.win:time(40 min) group by serverName , id
having avg(currentReadTransferRate) > 100
output all every 5 minutes ;

3. Return current free capacity and average write transfer rate for all disk ar-
rays managed by server zeus.cyfronet.pl. This request may be useful, e.g., to
predict the running out of the disk space.

select id , freeCapacity , avg(currentWriteTransferRate)
from DAMs(serverName=’zeus.cyfronet .pl’).win:time(5 min),
group by id
output all every 5 minutes ;

The next example shows a metric which combines data from event streams and
the Registry. The request selects HSM devices which currently undergo high
write transfer rates. In addition, the historical average for the device is returned.

select hsm.id , avg(hsm.currentWriteTransferRate), hsmreg.avgWriteTransferRate
from HSMMs.win:time(5 min) as hsm ,

sql:Registry [’’select avg_write_transfer_rate as avgWriteTransferRate
from HSM
where res_id = ${hsm.id}’’]

having avg(hsm.currentWriteTransferRate) > 60

On-Line Monitoring of Service-Level Agreements in the Grid 83

Finally, the following example demonstrates SLAMonitoring that includes client-
side metrics. Let us assume that the user running and steering the simulation
would like that two requirements are satisfied:

– The simulation is sufficiently responsive to user steering actions.
– The simulation results are delivered to GUI with transfer rate large enough

for real-time visualization.

Consequently, the following SLA could be requested: (a) average response time
of user interactions does not exceed 100ms, AND (b) average data transfer rate
from the processing job to the GUI does not drop below 128KB/s. Expressed in
EPL:

select avg(a.responseTime , 90), avg(b.inTransferRate)
from pattern [every (a=ClientPerfMs(appId=’app1’) or
(b=DataTransferPerfMs(port=’1111’)))
].win:time(5 min)
having avg(a.responseTime , 90) > 100 or

avg(b.inTransferRate) < 128

This request consumes two event streams mentioned earlier: ClientPerfMs, which
contains, among others, response time of the latest simulation steering request;
DataTransferPerfMs which contains performance metrics of data transfers
to/from a host. The first stream also contains attribute appId which identifies
the particular simulation session, and which is used to filter the stream. The sec-
ond stream is also filtered against port number 1111 on which the GUI receives
the simulation results. The request defines an event pattern ‘AorB’ – fulfilled if
either of two event happens.

5 Conclusion

This paper presents a novel and generic solution for efficient, near real time mon-
itoring of Service Level Agreements in the Grid. This solution is based on the
application of Complex Event Processing principles and supporting technologies.
We have elaborated a generic framework in which event streams represent indi-
vidual performance metrics which, in turn, can be combined into high-level com-
posite metrics. The main features of the monitoring framework are: on-demand
definition of SLA metrics using a high-level query language, real-time calcula-
tion of the defined SLA metrics and advanced query capabilities which allow for
defining high-level complex metrics derived from basic metrics. Resource infor-
mation registry complements the functionality of the framework by providing
a space for storing historical or long-term metrics, as well as resource metadata.
The information from the Registry can also be used in continuous queries, fur-
ther enhancing the capabilities of the framework in terms of definition of complex
SLA metrics. The case study of the data-intensive application have demonstrated
the feasibility of this approach.

Future work involves the investigation of an efficent way of mapping of high-
level metrics into SLA obligations, improvement of performance of the frame-
work, and investigation of other on-line SLA monitoring use cases.

84 B. Balis et al.

Acknowledgments. This work is partially supported by the European Union
Regional Development Fund, POIG.02.03.00-00-007/08-00 as part of the PL-
Grid Project.

References

1. Balis, B., Kowalewski, B., Bubak, M.: Real-time Grid monitoring based on complex
event processing. Future Generation Computer Systems 27(8), 1103–1112 (2011),
http://www.sciencedirect.com/science/article/pii/S0167739X11000562

2. Berhardt, T., Vasseur, A.: Complex Event Processing Made Simple Using Esper
(April 2008), http://www.theserverside.com/news/1363826/
Complex-Event-Processing-Made-Simple-Using-Esper

(last accessed June 30, 2011)
3. Gorla, A., Mariani, L., Pastore, F., Pezzè, M., Wuttke, J.: Achieving Cost-Effective

Software Reliability Through Self-Healing. Computing and Informatics 29(1), 93–
115 (2010)

4. Litke, A., Konstanteli, K., Andronikou, V., Chatzis, S., Varvarigou, T.: Manag-
ing service level agreement contracts in OGSA-based Grids. Future Generation
Computer Systems 24(4), 245–258 (2008)

5. Menychtas, A., Kyriazis, D., Tserpes, K.: Real-time reconfiguration for guarantee-
ing QoS provisioning levels in Grid environments. Future Generation Computer
Systems 25(7), 779–784 (2009)

6. Michlmayr, A., Rosenberg, F., Leitner, P., Dustdar, S.: Comprehensive QoS moni-
toring of Web services and event-based SLA violation detection. In: Proceedings of
the 4th International Workshop on Middleware for Service Oriented Computing,
pp. 1–6. ACM (2009)

7. Moscicki, J., Lamanna, M., Bubak, M., Sloot, P.: Processing moldable tasks on
the grid: Late job binding with lightweightuser-level overlay. Future Generation
Computer Systems 27(6), 725–736 (2011),
http://www.sciencedirect.com/science/article/pii/S0167739X11000057

8. Mühl, G., Fiege, L., Pietzuch, P.: Distributed Event-Based Systems. Springer (Au-
gust 2006)

9. Raimondi, F., Skene, J., Emmerich, W.: Efficient online monitoring of web-service
slas. In: Proceedings of the 16th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, pp. 170–180. ACM (2008)

10. Sahai, A., Graupner, S., Machiraju, V., van Moorsel, A.: Specifying and Monitoring
Guarantees in Commercial Grids through SLA. In: CCGRID 2003: Proceedings of
the 3st International Symposium on Cluster Computing and the Grid, p. 292. IEEE
Computer Society, Washington, DC (2003)

11. Schwiegelshohn, U., Badia, R.M., Bubak, M., Danelutto, M., Dustdar, S.,
Gagliardi, F., Geiger, A., Hluchy, L., Kranzlmüller, D., Laure, E., Priol, T., Reine-
feld, A., Resch, M., Reuter, A., Rienhoff, O., Rüter, T., Sloot, P., Talia, D., Ull-
mann, K., Yahyapour, R., von Voigt, G.: Perspectives on grid computing. Future
Generation Computer Systems 26(8), 1104–1115 (2010),
http://www.sciencedirect.com/science/article/pii/S0167739X10000907

12. Smith, M., Schwarzer, F., Harbach, M., Noll, T., Freisleben, B.: A Streaming Intru-
sion Detection System for Grid Computing Environments. In: HPCC 2009: Pro-
ceedings of the 2009 11th IEEE International Conference on High Performance
Computing and Communications, pp. 44–51. IEEE Computer Society, Washing-
ton, DC (2009)

http://www.sciencedirect.com/science/article/pii/S0167739X11000562
http://www.theserverside.com/news/1363826/Complex-Event-Processing-Made-Simple-Using-Esper
http://www.theserverside.com/news/1363826/Complex-Event-Processing-Made-Simple-Using-Esper
http://www.sciencedirect.com/science/article/pii/S0167739X11000057
http://www.sciencedirect.com/science/article/pii/S0167739X10000907

On-Line Monitoring of Service-Level Agreements in the Grid 85

13. Szepieniec, T., Tomanek, M., Twaróg, T.: Grid Resource Bazaar: Efficient
SLA Management. In: Proc. Cracow Grid Workshop 2009, pp. 314–319. ACC
CYFRONET AGH, Krakow (2009)

14. Truong, H.L., Fahringer, T.: SCALEA-G: a Unified Monitoring and Performance
Analysis System for the Grid. Scientific Programming 12(4), 225–237 (2004)

15. Truong, H., Samborski, R., Fahringer, T.: Towards a framework for monitoring and
analyzing QoS metrics of grid services. In: Second IEEE International Conference
on e-Science and Grid Computing, e-Science 2006, p. 65. IEEE (2006)

16. Wright, H., Crompton, R., Kharche, S., Wenisch, P.: Steering and visualization:
Enabling technologies for computational science. Future Generation Computer Sys-
tems 26(3), 506–513 (2010)

	On-Line Monitoring of Service-Level Agreements in the Grid
	Introduction and Motivation
	Related Work
	On-Line SLA Monitoring Framework
	Architecture
	Design and Implementation
	Defining Composite SLA Metrics Using EPL
	Registry

	SLA Monitoring for Data-Intensive Computations
	Conclusion
	References

