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Abstract. Similarity-based queries play an important role in many large
scale applications. In bioinformatics, DNA sequencing produces huge col-
lections of strings, that need to be compared and merged. We present
PeARL, a data structure and algorithms for similarity-based queries on
many-core servers. PeARL indexes large string collections in compressed
tries which are entirely held in main memory. Parallelization of searches
and joins is performed using MapReduce as the underlying execution
paradigm. We show that our data structure is capable of performing
many real-world applications in sequence comparisons in main memory.
Our evaluation reveals that PeARL reaches a significant performance
gain compared to single-threaded solutions. However, the evaluation also
shows that scalability should be further improved, e.g., by reducing se-
quential parts of the algorithms.

1 Introduction

Similarity-based searches and joins are important for many applications such as
document clustering or plagiarism detection [7J16]. In bioinformatics, similarity-
based queries are used for sequence read alignment or for finding homologous
sequences between different species. In recent years, much effort has been spent
on developing tools to speed up similarity-based queries on sequences. Many
prominent tools use sophisticated index structures and filter techniques that
enable significant runtime improvements [2/8/[9].

A challenge arises from the immense growth of sequence databases in the
past few years. For example, the number of sequences stored in EMBL grows
exponentially every year and sums up to more than 300 billion nucleotides as
of May 2011. One strategy to deal with this huge amount of data is to divide
it into smaller parts and perform analyses partition-wise in parallel. For this
scenario, Google developed the programming paradigm MapReduce to enable a
massively-parallel processing of huge data sets in large distributed systems of
commodity hardware [4]. However, the main bottleneck of distributed MapRe-
duce is network bandwidth and disk I/O. Therefore, another option is to design
data structures and algorithms that adapt the MapReduce paradigm for many-
core servers [I1]. We argue that modern many-core servers, combined with the
constantly falling prices for main memory, are perfectly suited to perform many
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real-world applications in sequence analysis. Such settings are much easier to
maintain and do not suffer from bandwidth problems.

In this paper, we challenge the current opinion that problems in sequence anal-
ysis already have grown so big that distributed systems are the only solution.
We present PEARL, a main-memory data structure and parallel algorithms for
similarity-based search and join operations on sequence data. In particular, our
data structure uses compressed tries. In tries, the complexity for exact searches
only depends on string lengths and not on the number of stored strings [14].
This allows an efficient execution of exact searches even in large tries. In order
to retain these advantages for similarity-based queries, we store additional infor-
mation at each node that enable early pruning of whole subtries. Previously, we
demonstrated that these strategies effectively speed up similarity-based queries
in PETER [12], a disk-based index structure and predecessor of PeARL.

A crucial aspect in designing data structures for similarity based queries that
interact with MapReduce is to support proper data partitioning. Specifically, we
show how tries on top of large string collections can be compressed and par-
titioned for enabling in-memory MapReduce based search and join operations.
To our knowledge, this is the first work that parallelizes similarity-based string
searches and joins in tries. Our evaluation reveals that PeARL’s similarity-based
algorithms scale well.

The rest of this paper is organized as follows: Section 2 introduces basic con-
cepts needed for the design of our data structure and algorithms. We describe
design principles of PeARL and algorithms for similarity search and join, as well
as our parallelization strategy in Sect. 3. We evaluate our tool in Sect. 4 and
discuss related work in Sect. 5. Finally, we conclude our paper with an outlook
to future work.

2 Preliminaries

Let X* be the set of all strings of any finite length over an alphabet Y. The
length of a string s € X* is denoted by |s|. A substring s[i...j] of s starts at
position ¢ and ends at position j, (1 <4 < j < |s|). Any substring of length ¢ € N
is called ¢-gram. Conceptually, we will ground our algorithms on operators for
similarity search and similarity join, which are defined as follows:

Let s be astring, R a bag of strings, d a distance function, and k a threshold. The
similarity-based search operator is defined as simgearcn(s, R, k) = {r|d(r,s) <
k,r € R}.Similarly, for two bags of strings R, S, the similarity-based join operator
is defined as simjoin (R, S, k) = {(r, s)|d(r,s) < k,r € R,s € S}.

In PeARL, we support Hamming and edit distance as similarity measure. We
focus on edit distance based operations in this paper, but see [12] for the key
ideas on queries using Hamming distance. In general, the edit distance of r and
s is computed in O(|r| * |s|) using dynamic programming. As we are mostly
interested in finding highly similar strings within a previously defined distance
threshold k, we use the k-banded alignment algorithm [5] with time complexity
O(k * maz{|r|,|s|}) instead.
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Our parallelization strategy is inspired by the well-known programming model
MapReduce, a two-step approach that consists of a map and a reduce phase [4].
Essentially, data is stored in <key, value>-pairs and partitioned into several
subsets. In the map step, a user-defined function is applied to each input item
<k;,v;> and an intermediate list of <k;,v;> pairs is emitted. All intermediate
items generated by map are grouped on the basis of the keys and finally, the
user-defined reduce function is applied to each group in order to assemble the
final result set.

3 Data Structure and Algorithms

In this section, we introduce our data structure PeARL together with algorithms
for executing similarity string searches and joins in parallel.

Conceptually, a PeARL index (see Fig. [I]) is based on radix trees [I0] and
defined as follows: Let R be a bag of strings. A PeARL index Pg for R consists
of a set of rooted, compressed tries Tr, a sequence string seq, and a <key,value>
data structure Stringl D Map and meets the following conditions:

— (Identification of strings) The string seq is a concatenation of all r € R. We
assign a unique ID to each r, assembled from a serial number, the length of r,
and the start position of r in seq.

— (Node types) We distinguish between infix nodes and string nodes. An infix
node is a node that represents some substring r; of =, |r;] > 1. Each node
u represents a sequence of characters of length [ > 1. The labels of any two
children v, w of u start with different characters. Every r maps to exactly one
node = € Tk such that the concatenation of all labels from Tr’s root to x exactly
is r. Such nodes z are called string node. We store a pair that consists of the
node ID of x and the UID of 7 in the StringIDMap. If R contains multiple copies
of r, all corresponding UIDs are assigned to .

— (Storing infixes) Node labels are not stored directly in node u, but retrieved
via lookups in seq. Thus, u stores length and start position of the represented
infix in seq.

- (Additional information) Each node u stores additional attributes, namely the
minimum (min) and maximum (maz) lengths of strings stored in the subtrie
starting at u, a character frequency vector fv and a bit-string ¢gGr. The character
frequency vector fv(u) consists of |X| components and counts the number of
occurrences of ¢; € X in the prefix represented by u in component ¢. Similarly,
a bit in ¢Gr at position i represents the ith string of all strings over X' of length
q in lexicographical order. Bit 7 is set to 1, if the prefix represented by node
contains the corresponding g-gram.

— (Trie partitioning) For very large string collections, we expect the upper levels
of a trie to be completely filled. Therefore, we partition a single PeARL trie into
multiple tries on the basis of shared prefixes. Each partition is identified by the
prefix which was used for partitioning (see Fig. [Il). The prefix length used for
partitioning is user-defined.
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Figure [[l displays a PeARL index for strings over X' = {4, C,G,T}. Grey nodes
are string nodes, white nodes are infix nodes. Edge labels are not stored in
the index itself, but are displayed for better comprehensibility only. Displayed
g—gram sets indicate which bits in ¢Gr are set.

PeARL index for R

mmmmmmmm

“ACACCT" "TGCCTGGTA"

startpos:44
fengthio
minimax: 10710
{2233
aGri{ATGCTGCC,

R
NodelD | StringlD StringID [ String
2 [116 116 |AAcaccT
3 2813

""""" > 2813 | AACACCTCCGATT

T

7 154410 321 11| ACTGATTTCCT

“CCGATT

4.32_12| ACTGAGATTGGT

length:6
minjmax: 11/11

V| e,
| ar:{RAchAcAc,

{2,315}

Gr:{ACTG,CGTA,

GAcC ACCT, TGAT,GATT,
.CTCC, ATTT,TTTC,

TCCG,CCGA,

CGAT.GATT}

TIcCTCCT}

| (emr
s 49.10] AToCCTOGTA i [ammos sartposs
1 /max:

Fig. 1. PeARL index structure

3.1 Algorithms

Building the PeARL index for a set of strings R works as follows: In a first step,
R is sorted lexicographically, UIDs are assembled, and R is split into multiple
partitions based on shared prefixes. For each partition R; C R, we start with an
empty trie Tr, and iteratively insert each string contained in R; using preorder
DFS traversal. After all strings from R; have been inserted, we iterate once over
the whole trie and update the information min/max, fv and ¢Gr.

Similar to indexing, our algorithms for similarity-based searches and joins are
also grounded on preorder DFS traversal of all trie partitions. Each algorithm
is equipped with filtering strategies. These filters, namely prefix and edit dis-
tance pruning [I4], character frequency pruning [I], and g—gram filtering [6],
have been introduced in slightly different contexts before. Their concrete usage
and efficiency for trie-based search and join queries is shown in [12]. Therefore,
we only briefly summarize our search and join strategies in the following and
concentrate on our novel parallelization scheme later.

Similarity search starts with a given search string ¢ and traverses each trie
partition in a PeARL index starting at root. Whenever a new child of the current
node is reached, we first check whether we can prune this node (see [12] for details
on filtering). If all filters have been passed successfully, we compute the edit
distance between the query and the prefix of the node. If the distance exceeds a
threshold k, we start a backtracking routine and traverse the remaining, not yet
examined paths in the trie. Otherwise we descend forward to the leaves. When
a string node x is reached and d(gq, z) < k holds, we report a match.
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Similarity join for two sets R, S takes two PeARL indices Pr, Ps as input.
Each trie partition Tk, is joined with each partition Ts;. Recall that both tries
are partitioned by prefixes. We first check the partition prefixes on edit distance
and it might happen that k is already exceeded. In this case, we skip the cor-
responding trie pair. Otherwise, we compute the similarity-based intersection of
both partitions. As for search, we start at the root nodes and traverse both tries
concurrently. When unseen nodes are reached, we check all filters and prune, if
possible. Whenever two string nodes = € Tr,,y € Ts, are reached, and given
that d(z,y) < k holds, we report a match.
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Fig. 2. MapReduce workflow of similarity joins in PeARL

3.2 Parallelization with In-memory MapReduce

We use MapReduce to parallelize PeARL for an execution on multi-core servers.
However, a usage in distributed scenarios is conceptually also possible as PeARL
trie partitions could as well be spread over nodes in a distributed file system.

Recall that a user-defined function is applied to each input item <k;,v;> in
the map phase. Depending on the specific task, we use the map phase to either
execute the similarity join of any two PeARL partitions or, to search a certain
string in each partition of a PeARL index. Reduce phases are typically used
to compute aggregates of intermediate results. Figure 2] shows the workflow for
parallelizing similarity joins in PeARL with MapReduce. A master routine takes
two PeARL indices Pg, Ps as input, together with an error threshold k, and
a number of available threads ¢. As string collections stored with PeARL are
already partitioned into multiple tries, we get a natural data partitioning for the
map phase. The master generates a set of map tasks (stored in a FIFO data
structure mapTaskList), such that each trie partition Tg, € Pg is joined with
each trie partition Ts;, € Ps and starts the map phase.
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Each map thread has access to mapTaskList and extracts one task (T'r,, T, )
out of this list. After some initialization steps, map calls the join routine, that
executes the similarity join of Tk, > Ts; and returns the set of all similar
string pairs contained in (T'r,,T’s;) within the given distance k. These items are
inserted into an intermediate data structure. For each similar string pair (r, s),
an intermediate key is set to the UID of . When one map iteration has finished
and as long as mapTaskList is not empty, the map thread extracts the next
(Tr;,Ts,) pair out of this list and again computes the similarity join.

When all map tasks have been processed, the master partitions all inter-
mediate data on the basis of intermediate keys and passes each partition to a
separate reduce thread. This ensures that all similar string pairs which involve
r are assigned to the same intermediate partition. Finally, reduce sorts all (r, s)
pairs based by edit distance. Optionally, reduce can also emit the number of
similar strings found in S for each r, or filter the results found for r on best
score.

Parallelizing similarity searches is analog to the parallelization of similarity
joins. The main difference is that Ps is replaced with one or a list of search se-
quences. If not existent, each search pattern is assigned a unique ID. For searches,
the mapTaskList contains <k;,v;> pairs where k; is a partition prefix of and v;
consists of Tg, and the search sequence(s). As for join, similarity search is per-
formed in the map phase.

4 Evaluation

We evaluated the performance of PeARL on a NUMA server with 24 cores and
256 GB main memory available. All experiments were executed with numactl
-localalloc to control the memory accession strategy and thread placement.
Test data sets (see Table[I]) are extracted from dbESTH as of March 7th, 2011 for
the organism mouse. Indexing is linear in the number of indexed strings [12] and
is not included in the reported measurements. In terms of memory consumption,
PeARL needs roughly 20 GB of main memory to index all infixes of length 2,000
bp in the C. elegans genome (roughly 100M strings). For computing the similarity
join ITI<ix IV, PeARL needs approx. 8 GB of main memory.

Table 1. Data sets extracted from dbEST

Set # strings & length (min / max) # characters
I 10,000 511.99 (49 / 1,190) 5,120,495

II 240,000 455.94 (18 / 2,160) 109,425,487
III 300,000 446.74 (18 / 2,160) 134,023,819
IV 1,000,000 512.12 (7 / 3,920) 512,123,043

! www.ncbi.nlm.nih.gov/dbEST/



Scalable Sequence Similarity Search and Join in Main Memory 19

4.1 Performance of Similarity-Based Operators

First, we compared the performance of all similarity-based operations in PeARL
with its predecessor PETER in single-threaded mode. The main difference of
both tools is that in PeARL, all parts of the index are kept in main memory
whereas in PETER, disk I/O was necessary during search and join. Another
difference is that g-gram sets in PeARL are stored persistently in the index
whereas previously, ¢g-grams were computed on the fly. Trie partitioning and
parallelization was also not present in the predecessor. Overall, we observed that
these improvements increased the efficiency of our filters. Whereas in PETER,
filtering lead to runtime improvements of up to 80% compared to the baseline
with no filters enabled, we now achieve runtime improvements of up to 99%
caused by filtering (data not shown).

We evaluated the runtime of similarity search and measured 10,000 individual
searches of non-indexed patterns from set I in the PeARL index for set IV, see
Fig. [ (left). In single-threaded mode, searches in PETER ran significantly faster
than in PeARL (up to factor 10 on k = 2). This is not surprising, as there is
some overhead introduced in PeARL by the added functionality for MapReduce
based parallelization, which is also present in single-threaded searches. However,
we will see in the following section that this overhead pays out for multi-threaded
similarity searches and joins. We also compared PeARL to Flamingo, a library
for string searching developed at UC Irvindd. As displayed in Fig.[Bleft), PeARL
outperforms Flamingo for search in single threaded mode for small thresholds
(factor 20 for k = 1 and factor 3 for k = 2). For larger k, Flamingo begins to
outperform PeARL.

For evaluating the runtime of similarity joins in PETER and PeARL, we
computed the join between set IV and varying subsets taken from set II. As
shown in Fig. Bl (right), similarity joins in PeARL are computed considerably
faster than in PETER. For example, we reached an improvement of factor 3
on k = 2 at a join cardinality of 2e+11. Generally speaking, the implemented
improvements in PeARL are the more profitable when indexed string sets grow
large. We could not compare PeARL to Flamingo for joins, since no reference
implementation was available.

4.2 Scalability of PeARL

We compared the multi-threaded execution of 10,000 individual searches of pat-
terns from set I in set IV with PeARL (24 threads) to a single-threaded execution
with PeARL and Flamingo. As displayed in Fig. @l (left), the multi-threaded ex-
ecution in PeARL outperforms the single-threaded execution in Flamingo with
factors in the range of 6 (k = 3) to 57 (k = 1). We also observed that the
24-threaded outperforms the single-threaded execution in PeARL with factors
in the range of 5.5(k = 1) to 6.2 (k = 3). For similarity joins, we could only
compare the 24-threaded to the single-threaded execution in PeARL since no

2 http://flamingo.ics.uci.edu/
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external reference implementation was available. Thus, we measured the exe-
cution times of ITIdye(1,2,531V. As displayed in Fig. @ (right), we measured a
runtime improvement of factors in the range of 4.2 (k = 2) to 4.9 (k =1).

When analyzing the parallelized search and join algorithms in terms of speed-
up, the first step is to estimate the fractions of parallelizable and non-parallelizable
parts in our algorithms. In general, the parallelizable fractions dominate, since
only reading the indices into main memory, extracting tasks from mapJoinList,
sorting intermediate partitions before executing reduce, and writing the final out-
put to file is performed in serial. We estimated the size of the parallelizable fraction
based on the measured speed-up using N = 24 CPU cores. According to this, 10 %
of our search and 20 % of our join algorithm remain serial.

Figure [ (left) displays the speed-up of searches of all ESTs from set I in the
indexed set IV with regard to the number of CPU cores. We observed that the
speed-up for measured runtimes almost perfectly fits the theoretical curve of
Amdahl’s law for P = 0.90. Similarly, we observed for joins that the measured
speed-up fits well to Amdahl’s law for P = 0.80 (see Fig.[H (right)). This indicates
that estimating the non-parallelizable fraction with 10 % for searches and 20 %
for joins is sound. Using 24 CPU cores with 24 map and reduce workers, we
achieve a speed-up of our join algorithm of 4.3. According to that, the maximal
speed-up for join is 4.9 using > 1,000 cores. This indicates that executing the
current implementation of PeARL is limited by the serial parts contained in our
algorithms.
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Fig. 3. Performance of single-threaded similarity operations. Left: search of 10,000
patterns from set I in set IV. Right: join IV><i;z—2II on subsets of II.

5 Related Work

Morrison [I0] introduced prefix trees as an index structure for storing strings and
exact string matching. Shang et al. [I4] extended prefix trees with dynamic pro-
gramming techniques to perform inexact matching. Prefix pruning was studied
in [I4] and is based on the observation that edit distance can only grow with pre-
fix length. Aghili et al. [I] proposed character frequency distance based filtering
to reduce candidate sets for similarity-based string searches. Indexing methods
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Fig. 5. PeARL speed-up. Left: sim. search on k = 2. Right: sim. join on k = 3.

based on g-grams restrict search spaces efficiently for edit distance based opera-
tions. They take advantage of the observation that two strings are within a small
edit distance iff they share a large number of ¢-grams [15].

The MapReduce programming model for parallel data analysis was initially
proposed by Dean and Ghemawat [4]. Vernica et al. [I7] present an algorithm
set-similarity string joins with distributed MapReduce. We could not compare
to their solution, since no in-memory version was available. Ranger et al. [I1] de-
veloped a MapReduce based programming framework for shared-memory multi-
core servers with a scalability almost reaching hand-coded solutions.

A main application for similarity-based string searches and joins in bioinfor-
matics is read alignment. Almost all tools follow the seed-and-extend approach.
BLAST [2] seeds the alignment with hash-table indices and extend the initially
ungapped seeds with a banded local alignment algorithm. However, algorithms
that use only ungapped seeds might miss some valuable alignments. BWA-SW [§]
is one tool that allows gap and mismatches in the seeds. We also applied PeARL
for read alignment and compared the execution times to BWA-SW. BWA-SW
significantly outperforms PeARL (data not shown), but it must be noted that it
is a heuristic that misses solutions, while PEARL solves the alignment problem
exactly. CloudBurst [13] is another another tool for read alignment using MapRe-
duce on top of Hadoop [3]. A comparison between PEARL and CloudBurst is
pending.
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Conclusions and Future Work

In this paper, we presented PeARL, a data structure and parallel algorithms
for similarity-based search and join operations in compressed tries. PeARL is
parallelized in main memory with MapReduce on a multi-core server. Our eval-
uation revealed that the speed-up of our search and join algorithms executed on
multi-core servers cannot grow infinitely large due to the serial parts contained
in our workflow. We are currently working on reducing these bottlenecks and on
performing a detailed comparison between PeARL and CloudBurst.
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