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Abstract. The increasing size and complexity of high performance com-
puting systems have lead to major concerns over fault frequencies and
the mechanisms necessary to tolerate these faults. Previous studies have
shown that state-of-the-field checkpoint/restart mechanisms will not scale
sufficiently for future generation systems. In this work, we explore the
feasibility of checkpoint data compression to reduce checkpoint commit
latency and storage overheads. Leveraging a simple model for check-
point compression viability, we conclude that checkpoint data compres-
sion should be considered as a part of a scalable checkpoint/restart solu-
tion and discuss additional scenarios and improvements that may make
checkpoint data compression even more viable.

Keywords: Checkpoint data compression, extreme scale fault-tolerance,
checkpoint/restart.

1 Introduction

Over the past few decades, high-performance computing (HPC) systems have
increased dramatically in size, and these trends are expected to continue. On
the most recent Top 500 list [27], 223 (or 44.6.%) of the 500 entries have greater
than 8,192 cores, compared to 15 (or 3.0%) just 5 years ago. Also from this most
recent listing, four of the systems are larger than 200K cores; an additional six are
larger than 128K cores, and another six are larger than 64K cores. The Lawrence
Livermore National Laboratory is scheduled to receive its 1.6 million core system,
Sequoia [2], this year. Furthermore, future extreme systems are projected to have
on the order of tens to hundreds of millions of cores by 2020 [14].

It also is expected that future high-end systems will increase in complexity;
for example, heterogeneous systems like CPU/GPU-based systems are expected
to become much more prominent. Increased complexity generally suggests that
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individual components likely will be more failure prone. Increased system sizes
also will contribute to extremely low mean times between failures (MTBF), since
MTBF is inversely proportional to system size. Recent studies indeed conclude
that system failure rates depend mostly on system size, particularly, the number
of processor chips in the system. These studies also conclude that if current HPC
system growth trend continues, expected system MTBF for the biggest systems
on the Top 500 lists will fall below 10 minutes in the next few years [10,26]

Checkpoint/restart [5] is perhaps the most commonly used HPC fault-tolerance
mechanism. During normal operation, checkpoint/restart protocols periodically
record process (and communication) state to storage devices that survive tol-
erated failures. Process state comprises all the state necessary to run a process
correctly including its memory and register states. When a process fails, a new
incarnation of the failed process is resumed from the intermediate state in the
failed process’ most recent checkpoint – thereby reducing the amount of lost com-
putation. Rollback recovery is a well studied, general fault tolerance mechanism.
However, recent studies [7,10] predict poor utilizations (approaching 0%) for ap-
plications running on imminent systems and the need for resources dedicated to
reliability.

If checkpoint/restart protocols are to be employed for future extreme scale
systems, checkpoint/restart overhead must be reduced. For the checkpoint com-
mit problem, saving an application checkpoint to stable storage, we can consider
two sets of strategies. The first set of strategies hide or reduce commit laten-
cies without actually reducing the amount of data to commit. These strategies
include concurrent checkpointing [17,18], diskless checkpointing [22] and check-
pointing filesystems [3]. The second set of strategies reduce commit latencies
by reducing checkpoint sizes. These strategies include memory exclusion [23],
incremental checkpointing [6] and multi-level checkpointing [19].

This work falls under the second set of strategies. We focus on reducing the
amount of checkpoint data, particularly via checkpoint compression. We have
one fundamental goal: to understand the viability of checkpoint compression
for the types of scientific applications expected to run at large scale on future
generation HPC systems. Using several mini-applications or mini apps from the
Mantevo Project [12] and the Berkeley Lab Checkpoint/Restart (BLCR) frame-
work [11], we explore the feasibility of state-of-the-field compression techniques
for efficiently reducing checkpoint sizes. We use a simple checkpoint compression
viability model to determine when checkpoint compression is a sensible choice,
that is, when the benefits of data reduction outweigh the drawbacks of compres-
sion latency.

In the next section, we present a general background of checkpoint/restart
methods, after which we describe previous work in checkpoint compression and
our checkpoint compression viability model. In Section 3, we describe the ap-
plications, compression algorithms and the checkpoint library that comprise our
evaluation framework as well as our experimental results. We conclude with a
discussion of the implications of our experimental results for future checkpoint
compression research.
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2 Checkpoint Compression

In this section, we describe the checkpoint compression viability model that we
use to determine when checkpoint compression should be considered. We then
discuss previous research directly and indirectly related to our checkpoint data
compression study.

2.1 A Checkpoint Compression Viability Model

Intuitively, checkpoint compression is a viable technique when benefits of check-
point data reduction outweigh the drawbacks of the time it takes to reduce the
checkpoint data. Our viability model is very similar to the concept offered by
Plank et al [24]. Fundamentally, checkpoint compression is viable when:

compression latency + time to commit < time to commit
compressed checkpoint uncompressed checkpoint

or

|checkpoint|
compression-speed

+
(1 − compression-factor)× |checkpoint|

commit-speed
<

|checkpoint|
commit-speed

where |checkpoint| is the size of the original, compression-factor is the percent-
age reduction due to data compression, compression-speed is the rate of data
compression, and commit-speed is the rate of checkpoint commit (including all
associated overheads). The last equation can be reduced to:

commit-speed

compression-speed
< compression-factor (1)

In other words, if the ratio of the checkpoint commit speed to checkpoint com-
pression speed is less than the compression factor, checkpoint data compression
provides an overall time (and space) performance reduction. Our model assumes
that checkpoint commit is synchronous; that is, the primary application pro-
cess is paused during the commit operation and is not resumed until checkpoint
commit is complete. In Section 4, we discuss the implications of this assumption.

2.2 Previous Work

Li and Fuchs implemented a compiler-based checkpointing approach, which ex-
ploited compile time information to compress checkpoints [16]. They concluded
from their results that a compression factor of over 100% was necessary to
achieve any significant benefit due to high compression latencies. Plank and
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Li proposed in-memory compression and showed that, for their computational
platform, compression was beneficial if a compression factor greater than 19.3%
could be achieved [24]. In a related vein, Plank et al also proposed differen-
tial compression to reduce checkpoint sizes for incremental checkpoints [25].
Moshovos and Kostopoulos used hardware-based compressors to improve check-
point compression ratios [20]. Finally, in a related but different context, Lee et
al study compression for data migration in scientific applications [15].

Our work (currently) focuses on the use of software-based compressors for
checkpoint compression. Given recent advances in processor technologies, we
demonstrate that since processing speeds have increased at a faster rate than
disk and network bandwidth, data compression can allow us to trade faster CPU
workloads for slower disk and network bandwidth.

3 Evaluating Checkpoint Compression

The goal of this work is to evaluate the use of state-of-the-field algorithms for
compressing checkpoint data from applications that are representative of those
expected to run at large scale on current and future generation HPC systems.

3.1 The Applications

We chose four mini-applications or mini apps1 from the Mantevo Project [12],
namely HPCCG version 0.5, miniFE version 1.0, pHPCCG version 0.4 and
phdMesh version 0.1. The first three are implicit finite element mini apps and
phdMesh is an explicit finite element mini app. HPCCG is a conjugate gradi-
ent benchmark code for a 3D chimney domain that can run on an arbitrary
number of processors. This code generates a 27-point finite difference matrix
with a user-prescribed sub-block size on each processor. miniFE mimics the fi-
nite element generation assembly and solution for an unstructured grid problem.
pHPCCG is related to HPCCG, but has features for arbitrary scalar and inte-
ger data types, as well as different sparse matrix data structures. PhdMesh is
a full-featured, parallel, heterogeneous, dynamic, unstructured mesh library for
evaluating the performance of operations like dynamic load balancing, geometric
proximity search or parallel synchronization for element-by-element operations.

In general, we chose problem sizes that would allow each application to run
long enough so that we can take at least 5 different checkpoints. Additionally,
at this preliminary stage we were not overly concerned with scaling to large
numbers of MPI processes. Primarily, we wish to observe the compressibility
of checkpoints from singleton MPI tasks. For the three implicit finite element
mini apps, we chose a problem size of 100x100x100. Both HPCCG and pHPCCG
were run with openMPI with 3 processes while miniFE was run with 2 processes.
phdMesh was run without MPI support on a problem size of 5x6x5.

1 Mini apps are small, self-contained programs that embody essential performance
characteristics of key applications.



306 D. Ibtesham et al.

3.2 The Checkpoint Library

The Berkeley Lab Checkpoint/Restart library (BLCR) [11], a system-level in-
frastructure for checkpoint/restart, is perhaps the most widely available check-
point/restart library available and is deployed on several HPC systems. For
our experiments, we obtain checkpoints using BLCR. Furthermore, we use the
OpenMPI [9] framework which has the capability to leverage BLCR for fault
tolerance.

3.3 The Compression Algorithms

For this study, we focused on the popular compression algorithms investigated
in Morse’s comparison of compression tools [13]. We settled on the following
subset, which performed well in preliminary tests2:

– zip: ZIP is an implementation of Deflate [4], a lossless data compression al-
gorithm that uses the LZ77 [28] compression algorithm and Huffman coding.
It is highly optimized in terms of both speed and compression efficiency. The
ZIP algorithm treats all types of data as a continuous stream of bytes. Within
this stream, duplicate strings are matched and replaced with pointers fol-
lowed by replacing symbols with new, weighted symbols based on frequency
of use.
We vary zip’s parameter that toggles the tradeoff between compression factor
and compression latency. This integer parameter ranges from zero to nine,
where zero means fastest compression speed and nine means best compres-
sion factor. In our charts we use the label zip(x), where x is the value of
this parameter.

– 7zip[1]: 7zip is based on the Lempel-Ziv-Markov chain algorithm(LZMA) [21].
This algorithm uses a dictionary compression scheme similar to LZ77 and has
a very high compression ratio.

– bzip2:BZIP2 is an implementation of the Burrows-Wheeler transform [8],
which utilizes a technique called block-sorting to permute the sequence of bytes
to an order that is easier to compress. The algorithm converts frequently-
recurring character sequences into strings of identical letters and then applies
move to front transform and Huffman coding.
We vary bzip2’s compression performance by varying the block size for
the Burrows-Wheeler transform. The respective integer parameter ranges
in value from zero to nine a smaller value specifies a smaller block size. In
our charts, we use the label bzip2(x), where x is the value of this parameter.

– pbzip2[8]: pbzip2 is a parallel implementation of bzip2. pbzip2 is multi-
threaded and, therefore, can leverage multiple processing cores to improve
compression latency. The input file to be compressed is partitioned into
multiple files that can be compressed concurrently.

2 We do not present results for several other algorithms, for example gzip, that did
not perform well.
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We vary two pbzip2 parameters. The first parameter is the same block size
parameter as in bzip2. The second parameter defines the file block size into
which the original input file is partitioned. This is labeled as pbzip2(x, y),
where x is the value of the first parameter and y is the value of the second
parameter.

– rzip: Rzip uses a very large buffer to take advantage of redundancies that
span very long distances. It finds and encodes large chunk of duplicate data
and then use bzip2 as a backend to compress the encoding.
We vary rzip’s parameter, which toggles the tradeoff between compression
factor and compression latency. As was the case for zip, this integer parame-
ter ranges from zero to nine, where one means fastest compression speed and
nine means best compression factor. In our charts we use the label rzip(x),
where x is the value of this parameter.

3.4 The Tests

Each test consists of a mini app, a parameterized compression algorithm3, and
five successive checkpoints. For HPCCG the checkpoint interval was 5 seconds,
for miniFE and pHPCCG it was 3 seconds and for phdMesh the 5 checkpoints
were taken randomly. There was no particular logic in varying the checkpoint
interval except for making sure to have the checkpoints spread uniformly across
the execution time of the application. The BLCR library is used to collect the
mini app checkpoints, and then we use the selected algorithms to perform check-
point compressions. While checkpoints were being compressed, the system was
not doing any additional work.

For testing, we used a 64-bit four core Intel Xeon processor with a clock
speed of 2.33 GHz and 2 GB of memory running a Linux 2.6.32 kernel. Our
software stack consists of OpenMPI-1.4.1 configured with BLCR version 0.8.2.
The compression tools used were ZIP 3.0 by Info-ZIP, rzip version 2.1, bzip2
1.0.5, PBZIP2 1.0.5 and p7zip.

3.5 Compression Results

For each application, the average uncompressed checkpoint size ranged from 311
MB to 393 MB. Our first set of results, presented in Figure 1, demonstrate
how effective the various algorithms are at compressing checkpoint data. With
the exception of the Rzip(-0), all the algorithms achieve a very high compres-
sion factor of about 70% or higher, where compression factor is computed as:
1− compressed size

uncompressed size . This means, then that the primary distinguishing factor be-
comes the compression speed, that is, how quickly the algorithms can compress
the checkpoint data.

Figure 2 shows how long the algorithms take to compress the checkpoints.
In general, and not surprisingly, the parallel implementation of bzip2, pbzip2,
generally outperforms all the other algorithms.

3 For each algorithm, a different set of parameter values constitute a different test.
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Fig. 1. Checkpoint compression ratios for the various algorithms and applications

4 Discussion

In the previous section, we presented the empirical results of our checkpoint
compression. We conclude this paper with a discussion of the implications of
these results. We also discuss known limitations and shortcomings of this work
that we plan to address as we continue this project.

This work seeks to answer the question, “Should checkpoint compression be
considered as a potentially feasible optimization for large scale scientific appli-
cations?” Based on our preliminary experiments, we believe the answer to this
question is “Yes.” Based on Equation 1, if the product of checkpoint commit
speed (or throughput) is less than the product of compression factor and com-
pression speed, checkpoint compression will provide a time (and space) perfor-
mance benefit. Figure 3 shows this product as derived from the data in Section 3.
Even with many optimizations and high performance parallel file systems that
stripe large writes simultaneously across many disks and file servers, it is diffi-
cult to achieve disk commit bandwidths on the order of ones of Gigabits/second.
Figure 3 shows that we with basic compression tools like pbzip, a file system
must achieve per process bandwidth on the order of 14 Gigabits/second and as
much as 56 Gigabits/second to compete with checkpoint compression strategy.
Furthermore, we can explore additional strategies, like using multicore CPUs or
even GPUs, to accelerate compression performance.

4.1 Current Limitations

While the results of this preliminary study are promising, we observe several
shortcomings that we plan to address. These shortcomings include:

– Testing on larger applications: while the Mantevo mini applications
are meant to demonstrate the performance characteristics of their larger
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Fig. 2. Checkpoint compression times for the various algorithms and applications

Fig. 3. Checkpoint Compression Viability: Unless, checkpoint commit rate exceeds the
compression speed × compression factor product (y-axis), checkpoint compression is a
good solution

counterparts, we plan to evaluate the effectiveness of checkpoint compres-
sion for these larger applications.

– Testing at larger scales: Our current tests are limited to very small scale
applications. We plan to extend this study to applications running at much
larger scales, on the order of tens or even hundreds of thousands of tasks.
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Qualitatively, we expect similar results since compression effectiveness is
primarily a function of the compression performance for individual process
checkpoints.

– Checkpoint intervals: For these tests, in order to keep run times man-
agable, we used a relatively small checkpoint intervals. We plan to evaluate
whether compression effectiveness changes as applications execute for longer
times. We have no reason to expect significant qualitative differences.
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