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Abstract. Deploying multiple Virtual Machines (VMs) running various
types of workloads on current many-core cloud computing infrastructures
raises an important issue: The Virtual Machine Monitor (VMM) has to
efficiently multiplex VM accesses to the hardware. We argue that altering
the scheduling concept can optimize the system’s overall performance.

Currently, the Xen VMM achieves near native performance multiplex-
ing VMs with homogeneous workloads. Yet having a mixture of VMs with
different types of workloads running concurrently, it leads to poor I/O
performance. Taking into account the complexity of the design and im-
plementation of a universal scheduler, let alone the probability of being
fruitless, we focus on a system with multiple scheduling policies that co-
exist and service VMs according to their workload characteristics. Thus,
VMs can benefit from various schedulers, either existing or new, that are
optimal for each specific case.

In this paper, we design a framework that provides three basic coex-
isting scheduling policies and implement it in the Xen paravirtualized
environment. Evaluating our prototype we experience 2.3 times faster
I/O service and link saturation, while the CPU-intensive VMs achieve
more than 80% of current performance.

1 Introduction

Currently, cloud computing infrastructures feature powerful VM containers, that
host numerous VMs running applications that range from CPU– / memory–
intensive to streaming I/O, random I/O, real-time, low-latency and so on. VM
containers are obliged to multiplex these workloads and maintain the desirable
Quality of Service (QoS), while VMs compete for a time-slice. However, running
VMs with contradicting workloads within the same VM container leads to sub-
optimal resource utilization and, as a result, to degraded system performance.
For instance, the Xen VMM [1], under a moderate degree of overcommitment (4
vCPUs per core), favors CPU–intensive VMs, while network I/O throughput is
capped to 40%.

In this work, we argue that by altering the scheduling concept on a busy VM
container, we optimize the system’s overall performance. We propose a frame-
work that provides multiple coexisting scheduling policies tailored to the work-
loads’ needs. Specifically, we realize the following scenario: the driver domain
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is decoupled from the physical CPU sets that the VMs are executed and does
not get preempted. Additionally, VMs are deployed on CPU groups according
to their workloads, providing isolation and effective resource utilization despite
their competing demands.

We implement this framework in the Xen paravirtualized environment. Based
on an 8-core platform, our approach achieves 2.3 times faster I/O service, while
sustaining no less than 80% of the default overall CPU-performance.

2 Background

To comprehend how scheduling is related to I/O performance, in this section we
refer shortly to the system components that participate in an I/O operation.

Hypervisor. The Xen VMM is a lightweight hypervisor that allows multiple
VM instances to co-exist in a single platform using ParaVirtualization (PV). In
the PV concept, OS kernels are aware of the underlying virtualization platform.
Additionally, I/O is handled by the driver domain, a privileged domain having
direct access to the hardware.

Breaking down the I/O path. Assuming for instance that a VM application
transmits data to the network, the following actions will occur: i) Descending
the whole network stack (TCP/IP, Ethernet) the netfront driver (residing in the
VM) acquires a socket buffer with the appropriate headers containing the data.
ii) The netfront pushes a request on the ring (preallocated shared memory) and
notifies the netback driver (residing in driver domain) with an event (a virtual
IRQ) that there is a pending send request that it must service. iii) The netback
pushes a response to the ring and en-queues the request to the actual driver. iv)
The native device driver, who is authorized to access the hardware, eventually
transmits the packet to the network.

In PV, multiple components, residing in different domains, take part in an
I/O operation (frontend: VM, backend–native driver: driver domain). The whole
transaction stalls until pending tasks (events) are serviced; therefore the targeted
vCPU has to be running. This is where the scheduler interferes.

The Credit Scheduler. Currently, Xen’s default scheduler is the Credit sched-
uler and is based on the following algorithm: (a) Every physical core has a local
run-queue of vCPUs eligible to run. (b) The scheduler picks the head of the
run-queue to execute for a time-slice of 30ms at maximum. (c) The vCPU is
able to block and yield the processor before its time-slice expires. (d) Every
10ms accounting occurs which debits credits to the running domain. (e) New
allocation of credits occurs when all domains have their own consumed. (f) A
vCPU is inserted to the run-queue after all vCPUs with greater or equal priori-
ty. (g) vCPUs can be in one of 4 different priorities (ascending): IDLE, OVER,
UNDER, BOOST. A vCPU is in the OVER state when it has all its credits
consumed. BOOST is the state when one vCPU gets woken up. (h) When a
run-queue is empty or full with OVER / IDLE vCPUs, Credit migrates neigh-
boring UNDER / BOOST vCPUs to the specific physical core (load-balancing).
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Credit’s Shortcomings: As a general purpose scheduler, Credit as expected falls
shorts in some cases. If a VM yields the processor before accounting occurs, no
credits are debited [7]. This gives the running VM an advantage over others
that run for a bit longer. BOOST vCPUs are favored unless they have their
credits consumed. As a result, in the case of fast I/O, CPU-bound domains get
neglected. Finally CPU-bound domains exhaust their time-slice and I/O-bound
domains get stalled even if data is available to transmit or receive.

3 Motivation

3.1 Related Work

Recent advances in virtualization technology have minimized overheads associ-
ated with CPU sharing when every vCPU is assigned to a physical core. As a
result, CPU–bound applications achieve near-native performance when deployed
in VM environments. However, I/O is a completely different story: intermediate
virtualization layers impose significant overheads when multiple VMs share net-
work or storage devices [6]. Numerous studies present significant optimizations
on the network I/O stack using software [5,8] or hardware approaches [3].

These studies attack the HPC case, where no CPU over-commitment occurs.
However, in service-oriented setups, vCPUs that belong to a vast number of
VMs and run different types of workloads, need to be multiplexed. In such a
case, scheduling plays an important role.

Ongaro et al. [7] examine the Xen’s Credit Scheduler and expose its vulner-
abilities from an I/O performance perspective. The authors evaluate two basic
existing features of Credit and propose run-queue sorting according to the credits
each VM has consumed. Contrary to our approach, based on multiple, co-existing
scheduling policies, the authors in [7] optimize an existing, unified scheduler to
favor I/O VMs.

Cucinotta [2] in the IRMOS1 project proposes an real-time scheduler to fa-
vor interactive services. Such a scheduler could be one of which coexist in our
concept.

Finally, Hu et al. [4] propose a dynamic partitioning scheme using VM mon-
itoring. Based on run–time I/O analysis, a VM is temporarily migrated to an
isolated core set, optimized for I/O. The authors evaluate their framework using
one I/O–intensive VM running concurrently with several CPU–intensive ones.
Their findings suggest that more insight should be obtained on the implications
of co-existing CPU– and I/O– intensive workloads. Based on this approach, we
build an SMP-aware, static CPU partitioning framework taking advantage of
contemporary hardware. As opposed to [4], we choose to bypass the run-time
profiling mechanism, which introduces overhead and its accuracy cannot be guar-
anteed.

Specifically, we use a monitoring tool to examine the bottlenecks that arise
when multiple I/O–intensive VMs co-exist with multiple CPU–intensive ones.

1 More information is available at: http://www.irmosproject.eu



410 D. Aragiorgis, A. Nanos, and N. Koziris

We then deploy VMs to CPU-sets (pools) with their own scheduler algorithm,
based on their workload characteristics. In order to put pressure on the I/O
infrastructure, we perform our experiments in a modern multi-core platform,
using multi-GigaBit network adapters. Additionally, we increase the degree of
overcommitment to apply for a real-world scenario. Overall, we evaluate the
benefits of coexisting scheduling policies in a busy VM container with VMs run-
ning various types of workloads. Our goal is to fully saturate existing hardware
resources and get the most out of the system’s performance.

3.2 Default Setup

In this section we show that, in a busy VM container, running mixed types of
workloads leads to poor I/O performance and under-utilization of resources.

We measure the network I/O and CPU throughput, as a function of the
number of VMs. In the default setup, we run the vanilla Xen VMM, using its
default scheduler (Credit) and assign one vCPU to the driver domain and to
each of the VMs. We choose to keep the default CPU affinity (any). All VMs
share a single GigaBit NIC (bridged setup).

To this end, we examine two separated cases:
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(b) CPU and I/O VMs (concurrently)

Fig. 1. Overall Performance of the Xen Default Case

Exclusive CPU– or I/O–intensive VMs. Figure 1(a) shows that the overall
CPU operations per second are increasing until the number of vCPUs becomes
equal to the number of physical CPUs. This is expected as the Credit scheduler
provides fair time-sharing for CPU intensive VMs. Additionally, we observe that
the link gets saturated but presents minor performance degradation in the max-
imum degree of overcommitment as a result of bridging all network interfaces
together while the driver domain is being scheduled in and out repeatedly.

Concurrent CPU– and I/O–intensive VMs. Figure 1(b) points out that when
CPU and I/O VMs run concurrently we experience a significant negative effect
on the link utilization (less than 40%).

4 Co-existing Scheduling Polices

In this section we describe the implementation of our framework. We take the
first step towards distinctive pools, running multiple schedulers, tailored to the
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needs of VMs’ workloads and evaluate our approach of coexisting scheduling
policies in the Xen virtualization platform.

In the following experiments we emulate streaming network traffic (e.g.
stream/ftp server) and CPU/Memory-bound applications for I/O– and CPU–
intensive VMs respectively using generic tools (dd, netcat and bzip2). We mea-
sure the execution time of every action and calculate the aggregate I/O and
CPU throughput. To explore the platform’s capabilities we run the same exper-
iments on native Linux and evaluate the utilization of resources. Our results are
normalized to the maximum throughput achieved in the native case.

Testbed. Our testbed consists of an 8-core Intel Xeon X5365 @ 3.00 GHz
platform as the VM container, running Xen 4.1-unstable with linux-2.6.32.24
pvops kernel , connected back–to–back with a 4-core AMD Phenom @ 2.3 GHz
via 4 Intel 82571EB GigaBit Ethernet controllers.

4.1 Monitoring Tool
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Fig. 2. Monitoring tool: msecs lost per MB
transmitted: (a) default setup; (b) 2 pools setup

To investigate the apparent sub-
optimal performance discussed in
Section 3.2, we build a monitor-
ing tool on top of Xen’s event
channel mechanism that measures
the time lost between event han-
dling (Section 2). Figure 2 plots
the delay between domU event
notification and dom0 event han-
dling (dark area) and vice-versa
(light area). The former includes
the outgoing traffic, and the lat-

ter the acknowledges of driver domain and the incoming traffic (e.g. TCP ACK
packets). We observe a big difference between both directions; this is debited to
the fact that the driver domain gets more often awaken due to I/O operations of
other domains, so it is able to batch work. Most important the overall time spent
is increasing proportionally to the degree of over-commitment. This is an artifact
of vCPU scheduling: the CPU-bound vCPUs exhaust their time-slice and I/O
VMs get stalled even if data is available to receive or transmit. Moreover I/O
VMs, including driver domain who is responsible for the I/O multiplexing get
scheduled in and out, eventually leading to poor I/O performance.

4.2 The Driver Domain Pool

To eliminate the effect discussed in Section 4.1, we decouple the driver domain from
all VMs.We build a primitive scheduler that bounds every newly created vCPU to
an available physical core; this vCPU does not sleep and as a result does not suffer
from unwanted context switch. Taking advantage of the pool concept of Xen, we
launch this no-op scheduler on a separate pool running the driver domain. VMs
are deployed on different pool and suffer the Credit scheduler policy.
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Fig. 3. Overall Performance using Pools: default; 2 pools; 3 pools

Taking a look back at Figure 2, we observe that the latency between domU and
dom0 (dark area) is eliminated. That is because dom0 never gets preempted and
achieves maximum responsiveness. Moreover the time lost in the other direction
(light area) is apparently reduced; more data rate is available and I/O domains
can batch more work.

Figure 3 plots the overall performance (normalized to the maximum observed),
as a function of concurrent CPU and I/O VMs. The first bar (dark area) plots
the default setup (Section 3.2), whereas the second one (light area) plots the ap-
proach discussed in this Section. Figure 3(b) shows that even though the degree
of over-commitment is maximum (4 vCPUs per physical core) our framework
achieves link saturation. On the other hand, CPU performance drops propor-
tionally to the degree of over-commitment (Figure 3(a)).

The effect on CPU VMs is attributed to the driver domain’s ability to process
I/O transactions in a more a effective way; more data rate is available and I/O
VMs get notified more frequently; according to Credit’s algorithm I/O VMs get
boosted and eventually steal time-slices from the CPU VMs.
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Fig. 4. Overall Performance vs. Physical
Resources Distribution to VM pool

Trying to eliminate the negative ef-
fect to the CPU–intensive VMs, we
experiment with physical resources
distribution. Specifically we evalu-
ate the system’s overall performance
when allocating a different number
of physical CPUs to the aforemen-
tioned second pool (Fig. 4). We ob-
serve that with one CPU, the GigaBit
link is under-utilized, whereas with
two CPUs link saturation is achieved.
On the other hand, cutting down resources to the CPU-intensive VMs does not
have a negligible effect; in fact it can shrink up to 20%.
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4.3 Decoupling vCPUs Based on Workload Characteristics

Taking all this into consideration we obtain a platform with 3 pools: pool0 with
only one CPU dedicated to the driver domain with the no-op scheduler; pool1
with 2 CPUs servicing I/O intensive VMs (running potentially an I/O–optimized
scheduler); and pool2 for the CPU-intensive VMs that suffer the existing Credit
scheduling policy. Running concurrently a large number of VMs with two types
of workloads we experience GigaBit saturation and 62% CPU utilization, as
opposed to 38% and 78% respectively in the default case (Fig. 3, third bar).

Table 1. VM Misplacement effect to
individual Performance

Misplaced VM All other
CPU -17% -1.3%
I/O +4% -0.4%

In addition to that, we point out that
there is no overall benefit if a VM finds it-
self in the ”wrong” pool, albeit a slight im-
provement of this VM’s I/O performance
is experienced (Table 1). This is an arti-
fact of Credit’s fairness discussed in pre-
vious sections (Section 4.2 and 3.2).

5 Discussion

5.1 Credit Vulnerabilities to I/O Service

The design so far has decoupled I/O– and CPU–intensive VMs achieving iso-
lation and independence, yet a near optimal utilization of resources. But is the
Credit scheduler ideal for multiplexing only I/O VMs? We argue that slight
changes can benefit I/O service.
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Time-slice allocation: Having
achieved isolation between different
workloads we now focus on I/O pool
(pool1 ). We deploy this pool on the
second CPU-package and reduce the
time-slice from 30ms to 3ms (account-
ing occurs every 1ms). We observe
that I/O throughput outperforms the
previous case, despite the decreasing
packet-size (Fig. 5). Such a case, dif-
fers from the streaming I/O workload scenario (e.g. stream/ftp server) discussed
so far (Section 4), and can apply to a random I/O workload (such as busy web
server).

Anticipatory Concept: Moreover we propose the introduction of an anticipato-
ry concept to the existing scheduling algorithm; for the implementation multi-
hierarchical priority sets are to be used, while the scheduler, depending the
previous priority of the vCPU, adjust it when gets woken up, sleeps, or gets
credits debited. Thus, the vCPU will sustain the boost state a bit longer and
take advantage the probability of transmitting or receiving data in the near
future.
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5.2 Exotic Scenarios

In this section we argue that in the case of multiple GigaBit NICs, a uni–core
driver domain is insufficient. As in Section 5.1, we focus on pool1 (I/O). This
time we compare the link utilization of 1-4 x Gbps, when the driver domain is
deployed on 1,2,3 or 4 physical cores (Fig. 6).
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Fig. 6. Multiple GigaBit NICs

To exploit the SMP characteris-
tics of our multi-core platform, we
assign each NIC’s interrupt handler
to a physical core, by setting the
smp affinity of the corresponding
irq. Thus the NIC’s driver does not
suffer from interrupt processing con-
tention. However, we observe that af-
ter 2Gbps the links do not get sat-
urated. Preliminary findings suggest
that this unexpected behavior is due

to Xen’s network path. Nevertheless, this approach is applicable to cases where
the driver domain or other stub-domains have demanding responsibilities such
as multiplexing accesses to shared devices.

5.3 Dynamic Instead of Static

After having proved that the coexisting scheduling policies can benefit I/O per-
formance and resources utilization we have to examine how such a scenario can
be automated or adaptive. How to implement the VM classification and the re-
sources partitioning? Upon this we consider the following design dilemma; the
profiling tool should reside in the driver domain or in the Hypervisor? The former
is aware of the I/O characteristics of each VM while the latter can keep track of
their time-slice utilization. Either way such a mechanism should be lightweight
and its actions should respond to the average load of the VM and not to random
spikes.

6 Conclusions

In this paper we examine the impact of VMM scheduling in a service orient-
ed VM container and argue that co-existing scheduling policies can benefit the
overall resource utilization when numerous VMs run contradicting types of work-
loads. VMs are grouped into sets based on their workload characteristics, suf-
fering scheduling policies tailored to the need of each group. We implement our
approach in the Xen virtualization platform. In a moderate overcommitment
scenario (4 vCPUs/ physical core), our framework is able to achieve link satura-
tion compared to less than 40% link utilization, while CPU-intensive workloads
sustain 80% of the default case.

Our future agenda consists of exploring exotic scenarios using different types
of devices shared across VMs (multi-queue and VM-enabled multi-Gbps NICs,
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hardware accelerators etc.), as well as experiment with scheduler algorithms
designed for specific cases (e.g. low latency applications, random I/O, disk I/O
etc. ). Finally our immediate plans are to implement the anticipatory concept
and the profiling mechanism discussed in the previous section.
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