Skip to main content

Reconstructing Gapless Ancestral Metabolic Networks

  • Conference paper
Book cover Biomedical Engineering Systems and Technologies (BIOSTEC 2011)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 273))

Abstract

We present a method for inferring the structure of ancestral metabolic networks directly from the networks of observed species and their phylogenetic tree. In particular, we aim to minimize the number of mutations on the phylogenetic tree, whilst keeping the ancestral networks structurally feasible, or gapless. In gapless metabolic networks all reactions are reachable from external substrates such as nutrients.

To this end, we introduce the gapless minimum mutation problem: finding parsimonious phylogenies of gapless metabolic networks when the topology of the phylogenetic tree is given, but the content of ancestral nodes is unknown. This formulation can be extended also to infer reactions that are missing from the input metabolic networks due to errors in annotation transfer, for example.

The gapless minimum mutation problem is shown to be computationally hard to solve even approximatively. We then propose an efficient dynamic programming based heuristic that combines knowledge on both the metabolic network topology and phylogeny of species. Reconstruction of each ancestral network is guided by the heuristic to minimize the total phylogeny cost. We experiment by reconstructing phylogenies generated under a simple random model and derived from KEGG for a number of fungal species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alon, N., Moshkovitz, D., Safra, S.: Algorithmic construction of sets for k-restrictions. ACM Trans. Algorithms 2(2), 153–177 (2006)

    Article  MathSciNet  Google Scholar 

  2. Arvas, M., Kivioja, T., Mitchell, A., Saloheimo, M., Ussery, D., Penttilä, M., Oliver, S.: Comparison of protein coding gene contents of the fungal phyla Pezizomycotina and Saccharomycotina. BMC Genomics 8(1), 325 (2007)

    Article  Google Scholar 

  3. Borenstein, E., Kupiec, M., Feldman, M.W., Ruppin, E.: Large-scale reconstruction and phylogenetic analysis of metabolic environments. PNAS 105(38), 14482–14487 (2008)

    Article  Google Scholar 

  4. Bourque, G., Sankoff, D.: Improving gene network inference by comparing expression time-series across species, developmental stages or tissues. J. Bioinform. Comput. Biol. 2(4), 765–783 (2004)

    Article  Google Scholar 

  5. Caetano-Anollés, G., Yafremava, L., Gee, H., Caetano-Anollés, D., Kim, H., Mittenthal, J.: The origin and evolution of modern metabolism. The International Journal of Biochemistry & Cell Biology 41(2), 285–297 (2009)

    Article  Google Scholar 

  6. Clemente, J.C., Ikeo, K., Valiente, G., Gojobori, T.: Optimized ancestral state reconstruction using sankoff parsimony. BMC Bioinformatics 10(51) (2009)

    Google Scholar 

  7. Clemente, J., Satou, K., Valiente, G.: Phylogenetic reconstruction from non-genomic data. Bioinformatics 23(2), e110 (2007)

    Article  Google Scholar 

  8. Dandekar, T., Schuster, S., Snel, B., Huynen, M., Bork, P.: Pathway alignment: application to the comparative analysis of glycolytic enzymes. Biochem. J. 343(Pt 1), 115–124 (1999)

    Article  Google Scholar 

  9. Deacon, J.: Fungal biology. Wiley-Blackwell (2006)

    Google Scholar 

  10. Fitch, W.M.: Toward defining the course of evolution: minimum change for a specific tree topology. Syst. Zool. 20, 406–416 (1971)

    Article  Google Scholar 

  11. Fitzpatrick, D., Logue, M., Stajich, J., Butler, G.: A fungal phylogeny based on 42 complete genomes derived from supertree and combined gene analysis. BMC Evolutionary Biology 6(1), 99 (2006)

    Article  Google Scholar 

  12. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman (1979)

    Google Scholar 

  13. Gusfield, D.: Algorithms on Strings, Trees, and Sequences. Cambridge University Press (1997)

    Google Scholar 

  14. Handorf, T., Christian, N., Ebenhöh, O., Kahn, D.: An environmental perspective on metabolism. Journal of Theoretical Biology 252(3), 530–537 (2008)

    Article  Google Scholar 

  15. Jamshidi, N., Palsson, B.O.: Investigating the metabolic capabilities of Mycobacterium tuberculosis H37Rv using the in silico strain iNJ661 and proposing alternative drug targets. BMC Systems Biology 1(26) (2007)

    Google Scholar 

  16. Kanehisa, M., Araki, M., Goto, S., Hattori, M., Hirakawa, M., Itoh, M., Katayama, T., Kawashima, S., Okuda, S., Tokimatsu, T., Yamanishi, Y.: Kegg for linking genomes to life and the environment. Nucleic Acids Res. 36, D480–D484 (2008)

    Article  Google Scholar 

  17. Lacroix, V., Cottret, L., Thebault, P., Sagot, M.F.: An introduction to metabolic networks and their structural analysis. IEEE Transactions on Computational Biology and Bioinformatics 5(4), 594–617 (2008)

    Article  Google Scholar 

  18. Mano, A., Tuller, T., Bj, O., Pinter, R.Y.: Comparative classification of species and the study of pathway evolution based on the alignment of metabolic pathways. BMC Bioinformatics 11(suppl. 1), S38 (2010)

    Article  Google Scholar 

  19. Mithani, A., Preston, G., Hein, J.: A bayesian approach to the evolution of metabolic networks on a phylogeny. PLoS Computational Biology 6(8) (2010)

    Google Scholar 

  20. Mithani, A., Preston, G.M., Hein, J.: A stochastic model for the evolution of metabolic networks with neighbor dependence. Bioinformatics 25(12), 1528–1535 (2009)

    Article  Google Scholar 

  21. Palsson, B.: Systems biology: properties of reconstructed networks. Cambridge University Press, Cambridge (2006)

    Book  Google Scholar 

  22. Pitkänen, E., Rantanen, A., Rousu, J., Ukkonen, E.: Finding Feasible Pathways in Metabolic Networks. In: Bozanis, P., Houstis, E.N. (eds.) PCI 2005. LNCS, vol. 3746, pp. 123–133. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  23. Pitkänen, E., Rantanen, A., Rousu, J., Ukkonen, E.: A computational method for reconstructing gapless metabolic networks. In: Proceedings of the 2nd International Conference on Bioinformatics Research and Development (BIRD 2008). CCIS, vol. 13. Springer, Heidelberg (2008)

    Google Scholar 

  24. Pitkänen, E., Rousu, J., Ukkonen, E.: Computational methods for metabolic reconstruction. Current Opinion in Biotechnology 21(1), 70–77 (2010)

    Article  Google Scholar 

  25. Raman, K., Chandra, N.: Flux balance analysis of biological systems: applications and challenges. Briefings in Bioinformatics 10(4), 435–449 (2009)

    Article  Google Scholar 

  26. Rantanen, A., Rousu, J., Jouhten, P., Zamboni, N., Maaheimo, H., Ukkonen, E.: An analytic and systematic framework for estimating metabolic flux ratios from 13 C tracer experiments. BMC Bioinformatics 9(1), 266 (2008)

    Article  Google Scholar 

  27. Raz, R., Safra, S.: A sub-constant error-probability low-degree test, and a sub-constant error-probability PCP characterization of NP. In: Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of Computing, pp. 475–484 (1997)

    Google Scholar 

  28. Sankoff, D.: Minimal mutation trees of sequences. SIAM J. Appl. 28, 35–42 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  29. Sharan, R., Ideker, T.: Modeling cellular machinery through biological network comparison. Nature Biotechnology 24, 427–433 (2006)

    Article  Google Scholar 

  30. Sigurdsson, M.I., Jamshidi, N., Jonsson, J.J., Palsson, B.O.: Genome-scale network analysis of imprinted human metabolic genes. Epigenetics 4(1), 43–46 (2009)

    Article  Google Scholar 

  31. Tohsato, Y., Matsuda, H., Hashimoto, A.: A multiple alignment algorithm for metabolic pathway analysis using enzyme hierarchy. In: Proceedings of the Eighth International Conference on Intelligent Systems for Molecular Biology, pp. 376–383 (2000)

    Google Scholar 

  32. Tuller, T., Birin, H., Gophna, U., Kupiec, M., Ruppin, E.: Reconstructing ancestral gene content by coevolution. Genome Res. 20(1), 122–132 (2010)

    Article  Google Scholar 

  33. Wagner, A.: Evolutionary constraints permeate large metabolic networks. BMC Evolutionary Biology 9(1), 231 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pitkänen, E., Arvas, M., Rousu, J. (2013). Reconstructing Gapless Ancestral Metabolic Networks. In: Fred, A., Filipe, J., Gamboa, H. (eds) Biomedical Engineering Systems and Technologies. BIOSTEC 2011. Communications in Computer and Information Science, vol 273. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29752-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29752-6_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29751-9

  • Online ISBN: 978-3-642-29752-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics