Skip to main content

Discretized Kinetic Models for Abductive Reasoning in Systems Biology

  • Conference paper
Book cover Biomedical Engineering Systems and Technologies (BIOSTEC 2011)

Abstract

The study of systems biology through inductive logic programming (ILP) aims at improving the understanding of the physiological state of the cell by reasoning with rules and relations instead of ordinary differential equations. This paper presents a method for enabling the ILP framework to deal with quantitative information from some experimental data in systems biology. The method consist in both discretizing the evolution of concentrations of metabolites during experiments and transcribing enzymatic kinetics (for instance Michaelis-Menten kinetics) into logic rules. Kinetic rules are added to background knowledge, along with the topology of the metabolic pathway, whereas discretized concentrations are observations. Applying ILP allows for abduction and induction in such a system. A logical model of the glycolysis and pentose phosphate pathways of E. Coli is proposed to support our method description. Logical formulae on concentrations of some metabolites, which could not be measured during the dynamic state, are produced through logical abduction. Finally, as this results in a large number of hypotheses, they are ranked with an expectation maximization algorithm working on binary decision diagrams.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kitano, H.: Systems biology toward system-level understanding of biological systems. Science 295, 1662–1664 (2002)

    Article  Google Scholar 

  2. Baral, C., Chancellor, K., Tran, N., Tran, N., Joy, A., Berens, M.: A knowledge based approach for representing and reasoning about signaling networks. In: Proc. of the 12th Int. Conf. on Intelligent Systems for Molecular Biology, pp. 15–22 (2004)

    Google Scholar 

  3. Juvan, P., Demsar, J., Shaulsky, G., Zupan, B.: Genepath: from mutations to genetic networks and back. Nucleic Acids Res. 33 (2005)

    Google Scholar 

  4. King, R., Whelan, K., Jones, F., Reiser, P., Bryant, C., Muggleton, S., Kell, D., Olivier, S.: Functional genomic hypothesis generation and experimentation by a robot scientist. Nature 427, 247–252 (2004)

    Article  Google Scholar 

  5. King, R., Garrett, S., Coghill, G.: On the use of qualitative reasoning to simulate and identify metabolic pathways. Bioinformatics 21, 2017–2026 (2005)

    Article  Google Scholar 

  6. Tamaddoni-Nezhad, A., Chaleil, R., Kakas, A., Muggleton, S.: Application of abductive ILP to learning metabolic network inhibition from temporal data. Machine Learning 64, 209–230 (2006)

    Article  MATH  Google Scholar 

  7. Tiwari, A., Talcott, C., Knapp, M., Lincoln, P., Laderoute, K.: Analyzing Pathways Using SAT-Based Approaches. In: Anai, H., Horimoto, K., Kutsia, T. (eds.) Ab 2007. LNCS, vol. 4545, pp. 155–169. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  8. Doncescu, A., Yamamoto, Y., Inoue, K.: Biological systems analysis using Inductive Logic Programming. In: IEEE International Symp. on Bioinf. and Life Science Computing (2007)

    Google Scholar 

  9. Dworschak, S., Grell, S., Nikiforova, V., Schaub, T., Selbig, J.: Modeling biological networks by action languages via answer set programming. Constraints 13, 21–65 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fages, F., Soliman, S., France, I.R.: Model Revision from Temporal Logic Properties in Computational Systems Biology. In: De Raedt, L., Frasconi, P., Kersting, K., Muggleton, S.H. (eds.) Probabilistic Inductive Logic Programming. LNCS (LNAI), vol. 4911, pp. 287–304. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  11. Inoue, K., Sato, T., Ishihata, M., Kameya, Y., Nabeshima, H.: Evaluating abductive hypotheses using and EM algorithm on BDDs. In: Proc. of IJCAI 2009, pp. 815–820. AAAI Press (2009)

    Google Scholar 

  12. Gauvain, J.L., Lee, C.H.: Maximum a posteriori estimation for multivariate gaussian mixture observations of markov chains. IEEE Transactions on Speech and Audio Processing 2, 291–298 (1994)

    Article  Google Scholar 

  13. Ji, S., Krishnapuram, B., Carin, L.: Variational bayes for continuous hidden markov models and its application to active learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 28, 522–532 (2006)

    Article  Google Scholar 

  14. Kanehisa, M., Goto, S.: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000)

    Article  Google Scholar 

  15. Kanehisa, M., Araki, M., Goto, S., Hattori, M., Hirakawa, M., Itoh, M., Katayama, T., Kawashima, S., Okuda, S., Tokimatsu, T., Yamanishi, Y.: KEGG for linking genomes to life and the environment. Nucleic Acids Res. 36, 480–484 (2008)

    Article  Google Scholar 

  16. Nabeshima, H., Iwanuma, K., Inoue, K.: SOLAR: A consequence finding system for advanced reasoning. In: Proc. of the 11th International Conference TABLEAUX 2003. LNCS (LNAI), vol. 2786, pp. 257–263 (2003)

    Google Scholar 

  17. Ishihata, M., Kameya, Y., Sato, T., Minato, S.: Propositionalizing the EM algorith by BDDs. Technical report, TR08-0004, Dept. Comp. Sc., Tokyo Instute of Technology (2008)

    Google Scholar 

  18. Benhamou, F.: Interval Constraint Logic Programming. In: Podelski, A. (ed.) Constraint Programming: Basics and Trends. LNCS, vol. 910, pp. 1–21. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  19. Geurts, P.: Pattern Extraction for Time Series Classification. In: Siebes, A., De Raedt, L. (eds.) PKDD 2001. LNCS (LNAI), vol. 2168, pp. 115–127. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  20. Keogh, E., Lin, J., Fu, A.: HOT SAX: efficiently finding the most unusual time series subsequence. In: 5th IEEE International Conference on Data Mining (2005)

    Google Scholar 

  21. Rabiner, L.: A tutorial on hidden markov models and selected applications in speech recognition. Proc. of the IEEE 77, 257–286 (1989)

    Article  Google Scholar 

  22. Schwarz, G.: Estimating the dimension of a model. Annals of Statistics 6, 461–464 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  23. Cheeseman, P., Stutz, J.: Bayesian classification (autoclass): Theory and results. In: Advances in Knowledge Discovery and Data Mining, pp. 153–180. The MIT Press (1995)

    Google Scholar 

  24. Beal, M.: Variational Algorithms for Approximate Bayesian Inference. PhD thesis, Gatsby Comp. Neurosc. Unit, University College London (2003)

    Google Scholar 

  25. De Raedt, L.: Logical and Relational Learning. Springer, Heidelberg (2008)

    Book  MATH  Google Scholar 

  26. Kameya, Y., Synnaeve, G., Doncescu, A., Inoue, K., Sato, T.: A bayesian hybrid approach to unsupervised time series discretization. In: International Conference on Technologies and Applications of Artificial Intelligence, pp. 342–349 (2010)

    Google Scholar 

  27. Chassagnole, C., Rodrigues, J., Doncescu, A., Yang, L.T.: Differential evolutionary algorithms for in vivo dynamic analysis of glycolysis and pentose phosphate pathway in Escherichia Coli. A. Zomaya (2006)

    Google Scholar 

  28. Mooney, R.: Integrating abduction and induction in machine learning. In: Working Notes of the IJCAI 1997 Workshop on Abduction and Induction in AI, pp. 37–42 (1997)

    Google Scholar 

  29. Inoue, K.: Linear resolution for consequence finding. Artificial Intelligence 56, 301–353 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  30. Muggleton, S.: Inverse entailment and progol. New Generation Computing 13, 245–286 (1995)

    Article  Google Scholar 

  31. Inoue, K.: Induction as consequence finding. Machine Learning 55, 109–135 (2004)

    Article  MATH  Google Scholar 

  32. Peters-Wendisch, P., Schiel, B., Wendisch, V., Katsoulidis, E., et al.: Pyruvate carboxylase is a major bottleneck for glutamate and lysine production by corynebacterium glutamicum. Molecular Microbiol. Biotechnol. 3 (2001)

    Google Scholar 

  33. Ray, O., Whelan, K., King, R.: A nonmonotonic logical approach for modelling and revising metabolic networks. In: IEEE Complex, Intelligent and Software Intensive Systems (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Synnaeve, G. et al. (2013). Discretized Kinetic Models for Abductive Reasoning in Systems Biology. In: Fred, A., Filipe, J., Gamboa, H. (eds) Biomedical Engineering Systems and Technologies. BIOSTEC 2011. Communications in Computer and Information Science, vol 273. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29752-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29752-6_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29751-9

  • Online ISBN: 978-3-642-29752-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics