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Abstract. Many large datasets associated with modern predictive data mining
applications are quite complex and heterogeneous, possibly involving multiple
relations, or exhibiting a dyadic nature with associated side-information. For ex-
ample, one may be interested in predicting the preferences of a large set of cus-
tomers for a variety of products, given various properties of both customers and
products, as well as past purchase history, a social network on the customers, and
a conceptual hierarchy on the products. This article provides an overview of re-
cent innovative approaches to predictive modeling for such types of data, and also
provides some concrete application scenarios to highlight the issues involved. The
common philosophy in all the approaches described is to pursue a simultaneous
problem decomposition and modeling strategy that can exploit heterogeneity in
behavior, use the wide variety of information available and also yield relatively
more interpretable solutions as compared to global ”one-shot” approaches. Since
both the problem domains and approaches considered are quite new, we also high-
light the potential for further investigations on several occasions throughout this
article.

1 Introduction

Classical methods for predictive modeling (regression, classification, imputation, etc.)
typically assume that the available data is in the form of a single “flat” file that provides,
for each record or entity, a list of the values for the independent and (when available)
dependent variables associated with it. However many modern data driven applications
involve much more complex data structures such as multi-modal tensors, sets of inter-
linked relational tables, networks of objects where both nodes and links have proper-
ties and relationships, as well as other dependencies/constraints such as hierarchical or
spatial orderings [17]. Drastic problems, including entry duplication and skewing of
counts, that can occur when such data forms are forced into a single “flat” format are
well known [23, 17]. Therefore, researchers have increasingly concentrated on ways to
directly analyze datasets in their natural format, including notable efforts on tensor [49,
29, 30] and multi-relational [19] data mining.

This article focuses on predictive modeling of dyadic (bi-modal) data that consist of
measurements on dyads, which are pairs of entities from two different sets (modes). The
measurements can be represented as the entries of a matrix, whose rows and columns are
the two sets of entities. Moreover, independent variables (attributes or covariates) are



associated with the entities along the two modes. For concreteness, consider a movie
recommendation system to predict user ratings for movies, for which there are addi-
tional covariates associated with each user (age, gender, etc) and each movie (genre,
release year etc), in addition to ratings data. Attributes may also be associated with a
user-movie pair, e.g., whether a user’s favorite actor is in the movie. Such data struc-
tures, which we shall refer to as “Dyadic data with Covariates” or DyaC, can be con-
ceptually visualized as in Fig. 1(a). From the figure, it is clear that the data involves
multiple tables and cannot be naturally represented as a single flat file.
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Fig. 1. (a) Conceptual representation of a “Dyadic data with Covariates” (DyaC) dataset on user-
movie ratings. (b) Example of multiple relations with some shared modes [8].

The characteristic problem to be solved with such data is one of estimating the affin-
ity (e.g. rating) between the modes (e.g. users and movies) given the values of a small
number of such affinities. Indeed, recommender systems, which are a special case of
this setting, have proved to be very successful at identifying affinities between users
and items. Identifying personalized content of interest can greatly enrich the user expe-
rience and help institutions offering the recommendations to effectively target different
kinds of users by predicting the propensity of users towards a set of items. Market-
ing data also lends itself perfectly for an affinity estimation problem wherein effective
marketing strategies can be formulated based on the predicted affinities. Additionally,
there are useful applications in estimating affinities as clickthrough rates for online ads
associated with users, search queries, or web pages.

Many current approaches for affinity estimation have concentrated only on a small
number of known affinities to infer the missing ones [41]. However, there are often
available, many auxiliary sources of information associated with the entities that can
aid the estimation of affinities between them. For example, in a movie recommendation
engine, the attributes associated with a user might consist of demographic information
such as age, gender, geo-location etc. that are often collected as profile information
at the time of user registration. Similarly, movie attributes consist of readily available



features such as genre, release date, running time, MPAA rating etc. The attributes asso-
ciated with entities can have a strong bearing on the affinity relationships. For example,
it may be common for adolescent males to enjoy movies about comic book characters.
In this case, it could be very helpful to have the age and gender information of the user
when attempting to predict the affinity of that user for such a movie. Another important
source of auxiliary information about entities is a neighborhood structure such as a so-
cial network represented by a user-user directed graph. The linkage structure can have
an impact on a user’s affinities, since preferences are often influenced by preferences of
one’s friends.

Another problem associated with the methods relying only on past affinities is their
inability to intelligently cater to affinity estimation for new entities with no prior his-
tory of affinities. This is referred to as a cold-start problem. The best one can do with
these methods is to utilize a global average model, which however, fails to capture sub-
tle correlations that might exist between a few existing and the new entities. Accurate
prediction of affinities for new entities is very crucial for many applications. In the rec-
ommender system example, predicting affinities for a new product before its launch
could help companies to use more targeted marketing techniques, and could help users
recently introduced to the system to quickly find products that they will find useful.

A third aspect of large affinity datasets is that they typically exhibit substantial het-
erogeneity. Here heterogeneity implies that the relationship between the independent
and dependent attributes varies substantially in different parts of the problem space. In
such scenarios, it is more appropriate to develop multiple predictive models, one for
each relatively homogeneous part of this space, rather than building a single global
model. A multi-model approach has several advantages in terms of accuracy, inter-
pretability, reliability and computation [37]. It also provides alternate, more effective
ways of active learning and incremental learning as well [16]. However such approaches
also raise additional issues such as how to best determine the nature and scope of each
model as well as the total number of models developed. The issue of hard vs. soft
decomposition of the problem space is also intimately related to interpretability and
actionability of the overall solution, leading to non-trivial tradeoffs.

The vast majority of the substantial recent literature on recommender systems (many
motivated by Netflix!), including collaborative filtering and matrix factorization meth-
ods [26, 48, 41] simply ignore the covariate information if present, and concentrate
solely on the ratings matrix. This is also true of co-clustering or stochastic blockmodel
based approaches [22, 38] that group elements along both modes, and then model the
responses to be homogeneous within each (user, movie) group in the cartesian-product
space. A few works do incorporate “side-information” provided by covariates indirectly,
typically through a kernel, or as a regularizer to matrix factorization [1, 33, 9], but they
do not exploit heterogeneity. On the other hand, while the use of multiple predictive
models to deal with heterogeneity is encountered in a wide range of disciplines, from
statistics to econometrics to control and marketing [37, 39, 32, 21, 24, 40, 35], these ap-
proaches typically apply only to single flat-file data representations.

In KDD’07, two related approaches were introduced: SCOAL (Simultaneous Co-
clustering and Learning) [12] and PDLF (Predictive Discrete Latent Factor Model-
ing) [5], the first work being nominated for and the second one receiving the Best Re-



search Paper Award. Both papers proposed ways to address DyaC data using localized
models that could exploit data heterogeneity, and these approaches have been subse-
quently refined and expanded. Considering the user-movie recommendation problem
again for concreteness, both SCOAL and PDLF will iteratively partition the user-movie
matrix into a grid of blocks (co-clusters) of related users and movies, while simulta-
neously learning a predictive model on each formative co-cluster. The predictors di-
rectly use covariate information as opposed to the indirect usage of “side-information”
through a soft similarity constraint [1, 33, 9]. The organic emergence of predictive mod-
els together with the co-clusters that determine their domains, improves interpretability
as well as accuracy in modeling several heterogeneous, DyaC datasets, as this mecha-
nism is able to exploit both local neighborhood information and the available attributes
effectively [12, 5]. We call the strategies taken by these two methods Simultaneous De-
composition and Prediction (SDaP) approaches.

This article first motivates the need for addressing DyaC data through real-world
application scenarios outlined in Sec 2. Then it provides a summary of the key ideas
behind the SCOAL and PDLF approaches (Sec 3), and sets the context for a novel
approach based on a generative (probabilistic) model of DyaC data, which is presented
in Sec 4 in its simplest form. More advanced formulations and future work are suggested
in the concluding section.

2 Illustrative Applications

In this subsection, we briefly describe three areas that can greatly benefit from SDaP.
For all three examples, we show why DyaC based approaches are suitable and also
highlight certain unresolved challenges that motivate further work.

Ecology. The analysis of population dynamics and their interaction with the en-
vironment is a central problem in the field of ecology. A typical data setup for this
problem consists of population count data for different species across varying environ-
mental conditions. The objective then is to predict the population counts for species
of interest in certain locations/environments at current or future times. Typical datasets
of this nature are highly heterogeneous with differing population patterns across dif-
ferent species, environments and seasons, and is also extremely sparse with unavailable
counts for many species and environments. For example, the recently compiled and NSF
funded eBird Reference Dataset [36] (avianknowledge.net, ebird.org) contains over 27
million observations of birds count for over 4000 species collected from more than
250,000 locations. Each location is annotated with over 50 covariates such as habi-
tat, climatic conditions, elevation etc. Bird species are described by about 25 attributes
such as preferred habitat, global population size, breeding information etc. The data is
collected by human observers over different times (sampling events which are further
associated with 15 covariates) adding a time dimension to the dataset as well, which
makes the DyaC even more rich and complex.

Current approaches typically model each species separately using poisson regres-
sion over the independent environmental variables [11, 43], and thus flatten the data.
Generalization ability is inadequate [11]. We note that the problem domain is inher-
ently dyadic in nature, with the species and the environments forming the two modes



of variation, each with associated covariates. Considering time adds a third mode with
strong seasonality properties. Current methods fail to leverage the dyadic or tensor na-
ture of the data: each species is treated independently of others and their attributes are
ignored. Learning multiple models using SDaP can greatly improve the performance by
efficiently capturing the data heterogeneity as well as relations among sites and among
species. Equally important, it can significantly enhance interpretability and actionablity
as closely related subsets of species (in terms of the influence of environment on their
count) and associated locations will automatically emerge from the model. This do-
main also imposes (soft) spatial constraints and partial orderings via factors such as
geographical location, altitude etc. A hierarchy defined on the birds (ebird.org) adds
a different type of soft constraint on a different mode! Such constraints can also be
exploited to influence the decomposition process, for example via an efficient markov
random field (MRF) based latent dyadic model.

Customer Product Preference Analysis. The problem of analyzing customer pur-
chase or preference behavior involves multi-modal, inter-connected relational data and
forms a suitable and broad application domain for SDaP. Consider the publicly available
ERIM household panel dataset that has been widely studied in the marketing research
community [27, 28, 44]. This dataset has purchase information over a period of 3 years
and covers 6 product categories (ketchup, tuna, sugar, tissue, margarine and peanut
butter) with a total of 121 products. Each household is annotated with demographic
information including income, number of residents, male head employed, female head
employed, etc. Products are described by attributes such as market share, price and ad-
vertising information. Details of each shopping visit of each household over the 3 year
period are recorded, adding a third time dimension to the dataset.

SCOAL has been applied to ERIM for predicting the number of units of specified
products purchased by households, given household and product covariate information.
For this problem, SCOAL substantially improves accuracy over alternative predictive
techniques [12, 14], including sophisticated Hierarchical Bayesian approaches on a flat-
tened data representation, thereby pointing to the utility of the dyadic viewpoint. In
addition, SCOAL also provides interpretable and actionable results by indicating what
factors influence purchases in different household-product groups [13]. However, the
current approach needs further extension to cater well to additional related information
that is available, including attributes of the shops and of the city of residence. Moreover,
the increasing popularity of customer interaction and feedback channels, including so-
cial networks and ratings sites, is bound to lead to additional acquired data that add new
dimensions to the customer purchase behavior modeling problem, which also need to
be leveraged.

Click-Through-Rate Prediction. A key goal of content providers and search en-
gines such as Yahoo! and Google is to get as high a click-through-rate (CTR) as possible
by serving users the content and ads they are most likely to click on. The massive scale
of the ads targeting problem and its obvious business relevance has started attracting
attention from the data mining community [3, 2]. A typical data setup for the problem
is as follows: Ads are categorized into a hierarchical taxonomy. Each category in the
taxonomy is a specific topic of interest, e.g., loans, travel, parenting and children. The
categories are annotated by attributes such as descriptive keywords, historic CTR rates



and volume. Users are also described by features such as demographics, geographical
location and metrics computed based on previous browsing behavior. For some (ad cat-
egory, user) pairs, the target CTR value is known or easily estimated, and these form
the training data. Given a user, the objective is then to select the categories to be served
based on the highest predicted CTRs, among other criteria.

Once again we have DyaC data, with users and ad categories representing two sets
of entities. Also, such data is very large (typically several hundred million users per
week and several thousand categories), very sparse and noisy, with little activity in some
low traffic categories. Moreover, the data is very heterogeneous, with widely varying
patterns of user behavior across different user and category groups.

Initial results on applying SCOAL and PDLF approaches to an internal Yahoo!
dataset showed substantial promise in terms of both accuracy and speed as compared
to traditional predictive models. Yet, they are wanting in several important aspects: (a)
they don’t have an effective mechanism for exploiting the taxonomy available on the
category mode, (b) user behavior is not static but even differs by the day, hence distinct
(though related) models for each day, or for weekdays vs. weekends, are desired; and
(c) the cold-start problem of determining what ads to serve to new users and predicting
user propensity towards a new category, needs to be robustly addressed. Mechanisms
for incorporating constraints among entities, for multitask learning and for cold-start
can however be added to the generative approach presented in Section 4 to address
these challenges. Finally, the ad targeting problem is essentially dynamic. Ad views
and clicks are recorded and CTR values are updated in near real time. So SDaP needs
to have a scalable, incremental version that is capable of effectively modeling streaming
data.

Other application domains that can benefit from SDaP include (i) microarray data
annotated with regulatory network information, gene/condition metadata, colocation
of names in medical abstracts, etc., (ii) cross-language information retrieval, and (iii)
scene analysis of a large number of images, each containing a variety of objects with
geometric and co-locational constraints. It is also suitable for a large class of problems
that can be represented as directed graphs where both nodes and edges have associated
attributes. Email data (4 mode tensor with sender, recepient, time and content/topic;
attributes of the people are also provided), and 3-mode web data with source, destination
and anchor text, etc, fall in this category, and corresponding large datasets - Enron email
and the substantial TREC WT10g Web Corpus - are already available.

3 Latent Factor Modeling of Dyadic Data with Covariates

In this section, we consider the two aforementioned SDaP approaches [12, 5] in a bit
more detail.

Simultaneous Co-clustering and Learning (SCOAL). In complex classification
and regression problem domains, a single predictive model is often inadequate to rep-
resent the inherent heterogeneity in the problem space. The traditional “divide and con-
quer” solution that partitions the input space a priori and then learns models in each
“homogeneous” segment is inherently sub-optimal since the partitioning is done inde-
pendent of the modeling. The key idea behind SCOAL is to partition the entities along



each mode, thus leading to blocks or co-clusters representing the cartesian-product of
such partitions across different modes. If a mode has innate ordering, e.g. time, then
the partitions need to be contiguous along that axis [14]. For example, a 3-D block in
a user x movie x time tensor would be formed by subset of users, rating a subset of
movies over a contiguous time period. For each block, a predictive model that relates
the independent variables to the response variable in the co-cluster, is learnt. Note that
within a block, the responses themselves do not need to be similar, as distinct from the
blocks formed in partitional co-clustering [34, 7]. A key property of SCOAL is that the
fitting of the “local” predictive models in each block is done simultaneously with block
formation. The overall goal is to obtain a partitioning such that each co-cluster can be
well characterized by a single predictive model.

Specifically, SCOAL aims at finding a co-cluster assignment and corresponding set
of co-cluster specific models that minimize a global objective function, e.g. the predic-
tion error summed over all the the known entries in the data matrix. For instance, with
linear regression models, the objective function is a suitably regularized sum squared
error. A simple iterative algorithm that alternately updates the co-cluster models and
the row and column cluster assignments can be applied to obtain a local minimum of
the objective function. A variety of regression models can be used for the predictive
learning. For example, the data can be modeled by a collection of neural network mod-
els or regression models with the L1 norm (Lasso [25]). The mathematics also carries
through for all generalized linear models (GLMs), thus covering binary (classification)
and count responses as well. It also generalizes to tensor data, and for any noise term
belonging to the exponential family. Recent advances in the SCOAL approach include
a dynamic programming solution to segment ordered modes, an incremental way to in-
crease the number of models, active learning methods that exploit the multiple-model
nature, and novel ways of determining the most reliable predictions that also exploit the
presence of multiple local models [16, 15, 14].

Predictive Discrete Latent Factor Modeling (PDLF). While SCOAL learns mul-
tiple, independent local models, the Predictive Discrete Latent Factor (PDLF) model
simultaneously incorporates the effect of the covariates via a global model, as well as
any local structure that may be present in the data through a block (co-cluster) spe-
cific constant. Similar to SCOAL, the dyadic data matrix is partitioned into a grid of
co-clusters, each one representing a local region. The mean of the response variable is
modeled as a sum of a function of the covariates (representing global structure) and a
co-cluster specific constant (representing local structure). The co-cluster specific con-
stant can also be thought of as part of the noise model, teased out of the global model
residues. The authors also formulate scalable, generalized EM based algorithms to es-
timate the parameters of hard or soft versions of the proposed model.

SCOAL and PDLF show benefit in complementary situations; SCOAL works well
in domains with very high heterogeneity where sufficient data is available to learn mul-
tiple models, while PDLF shows better value in situations where the training data is
limited and several outliers are present. Also note that the standard approach in the
statistics community for such problems would be to develop a semi-parametric hier-
archical model, which at first blush is structurally similar to PDLF [21]. However, as
discussed in great detail by [5, 2], the assumption made in PDLF that block membership



can be completely specified in terms of row and column memberships, is a key feature
that makes it much more scalable. The corresponding factorization of the joint space
also leads to vastly simpler and efficient inference. Similarly, the smoothing effect of a
soft partitioning within the block-structure is found to be more effective than the widely
used stastical approach of using a hierarchical random effects model.

Agarwal and Chen [2] recently generalized the PDLF as well as the Probabilistic
Matrix Factorization [41] approach to regression based latent factor models (RLFM),
which provides a unified framework to smoothly handle both cold-start and warm-start
scenarios. RLFM is a two stage hierarchical model with regression based priors used to
regularize the latent factors. A scalable Monte Carlo EM approach or an Iterated Con-
ditional Mode technique can be used for model fitting. RLFM has shown substantially
better results than competing techniques in a challenging content recommendation ap-
plication that arises in the context of Yahoo! Front Page.

4 Latent Dirichlet Attribute Aware Bayesian Affinity Estimation
(LD-BAE)

Several Bayesian formulations have been proposed in the context of affinity estima-
tion problems. Mixed Membership stochastic Blockmodels (MMBs) [20] is one such
method that utilizes affinity values to group the two entity sets via a soft co-clustering.
A weighted average of the pertinent co-cluster means is then used to estimate missing
affinities. The model is shown to be quite efficient in scaling to large datasets, however
it fails to utilize any available side information. Other efforts include fully Bayesian
frameworks for PMF( [31], [42]) with differing inference techniques - ranging from
Variational approximations to sampling based MCMC methods. However, the stress
again is only on utilizing the available affinities. Recently, Bayesian models based on
topic models for document clustering [18] have been utilized for estimating affinities
between users and News articles [4]. Two sided generalizations of topic models have
also been utilized for co-clustering and matrix approximation problems ( [46], [45])
without taking into account auxiliary sources of information.

This section introduces a Side Information Aware Bayesian Affinity Estimation ap-
proach that is related to Latent Dirichlet Allocation [18], as explained shortly, and is
hence called the Latent Dirichlet Attribute Aware Bayesian Affinity Estimation (LD-
BAE) model. For simplicity, we consider the available side information to be only a set
of attributes (covariates) associated with each entity. Additional sources of side infor-
mation such as network structures over entities, evolution over time or knowledge that
known ratings are not given at random, can be accommodated by extending this basic
framework [47].

Notation. Before describing the LD-BAE framework, a quick word on the notation.
We use capital script letters for sets, {·} denote a collection of variables for unnamed
sets and † represents transpose of a matrix. Let E1 = {e1m}, [m]M

1 and E2 = {e2n}, [n]N
1

represent the sets of entities between which affinities need to be estimated. Y = {ymn}

is a set of M × N affinities between pairs of entities of the form (e1m, e2n), e1m ∈ E1 and
e2n ∈ E2. The subset Yobs ⊆ Y is a set of observed affinities while Yunobs = Y\Yobs

denotes a set of missing affinities. A weight wmn is associated with each affinity ymn
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Fig. 2. Graphical model for Latent Dirichlet Attribute Aware Bayesian Affinity Estimation

(affinity between a pair of entities e1m and e2n) such that wmn = 1 if ymn ∈ Yobs and
wmn = 0 if ymn ∈ Yunobs. The set of all M×N weights is denoted byW. The set of entity
attributes associated with E1 and E2 are respectively described by the sets X1 = {x1m}

and X2 = {x2n}. The notation xmn = [x†1mx†2n]† is used to denote the attributes associated
with the entity pair (e1m, e2n).

Figure 2 shows the graphical model for LD-BAE - a mixture model of KL clusters
obtained as a cross-product of clustering the two sets of entities into K and L clus-
ters respectively. First, the mixing coefficients π1(π2) are sampled (only once) from
the corresponding Dirichlet distributions parameterized by Dir(α1) and Dir(α2) for en-
tity set E1 and (E2) respectively. Hence, all the entities in a particular set share the
same mixing coefficients, thereby inducing statistical dependency between them. Then
each entity e1m ∈ E1 is assigned to one of K clusters by sampling cluster assignments
z1m ∈ {1, . . . ,K} from a discrete distribution Disc(π1m). Similarly, the entities e2n ∈ E2,
are clustered into L clusters by sampling cluster assignments z2n ∈ {1, . . . , L} from a
discrete distribution Disc(π2n). Z1 and Z2 respectively denote the sets of cluster as-
signments for the two entity sets. It is easy to see that by sharing mixing coefficients
across entities in a set, the model is an attribute sensitive two sided generalization of the
Latent Dirichlet Allocation (LDA) [18] model.

The attributes x1m associated with the entity e1m are drawn from one of K possi-
ble exponential family distributions of the form pψ1 (x1m|θ1z1m )1, such that the parameter
θ1z1m of the family, is chosen according the entity cluster assignment z1m. Likewise, at-
tributes x2n for an entity e2n are generated from one of L possible exponential family
distributions pψ2 (x2n|θ2z2n ). The cluster assignments z1m and z2n over the two entities
together determine a co-cluster (z1m, z2n), which then selects an exponential family dis-

1 We use the canonical form of exponential family distributions: pψ(x|θ) = p0(x) exp(〈x, θ〉 −
ψ(θ))



tribution, pψY (ymn|β
†
z1m z2n

xmn) (out of KL such distributions), to generate the affinity ymn

associated with the entity pair (e1m, e2n). The parameters βz1m z2n
of the distribution are

specific to the co-cluster (z1m, z2n). In summary, the generative process for the attributes
and the affinities between each pair of entities is as follows:

1. Sample mixing coefficients: π1 ∼ Dir(α1)
2. Sample mixing coefficients: π2 ∼ Dir(α2)
3. For each entity e1m ∈ E1

(a) Sample cluster assignment: z1m ∼ Disc(π1)
(b) Sample entity attributes: x1m ∼ pψ1 (x1m|θ1z1m )

4. For each entity e2n ∈ E2

(a) Sample cluster assignment: z2n ∼ Disc(π2)
(b) Sample entity attributes: x2n ∼ pψ2 (x2n|θ2z2n )

5. For each pair of entities (e1m, e2n) such that e1m ∈ E1, e2n ∈ E2

(a) Sample affinity: ymn ∼ pψY (ymn|β
†
z1m z2n

xmn)

The overall joint distribution over all observable and latent variables is then given
by:

p(Y,X1,X2,Z1,Z2,π1,π2|α1,α2,Θ1,Θ2, β) = p(π1|α1)p(π2|α2)∏
m

p(z1m|π1)pψ1 (x1m|θ1z1m )

 ∏
n

p(z2n|π2)pψ2 (x2n|θ2z2n )


∏

m,n

pψY (ymn|β
†
z1m z2n

xmn)


Marginalizing out the latent variables, the probability of observing the known affinities
and the attributes is:

p(Yobs,X1,X2|α1,α2,Θ1,Θ2, β) =

∫
Yunobs

∫
π1

∫
π2

(p(π1|α1)) (p(π2|α2))

∑
Z1

∑
Z2

∏
m

p(z1m|π1)pψ1 (x1m|θ1z1m )

 ∏
n

p(z2n|π2)pψ2 (x2n|θ2z2n )

∏
m,n

pψY (ymn|β
†
z1m z2n

xmn)

 dYunobsdπ1dπ2

Note that even marginalization of only the mixing coefficients π1 and π2 induces de-
pendencies between the clustering assignmentsZ1 andZ2.

Inference and Learning As a result of the induced dependencies, direct maximization
of the observed log-likelihood is intractable using an EM algorithm. One instead needs
to resort to Gibbs sampling or related approaches, or use variational methods. In this
subsection we take the latter route by constructing tractable lower bounds using a fully
factorized mean field approximation to the true posterior distribution over the latent
variables. The optimal factorized distribution over the latent variables (Yunobs,Z1,Z2,π1,π2)
that corresponds to the tightest lower bound on the observed likelihood is then given by:



q∗(Yunobs,Z1,Z2,π1,π2) (1)

= q∗(π1|γ1)q∗(π2|γ2)


∏
m,n

ymn∈Yunobs

q∗(ymn|φmn)


∏

m

q∗(z1m|r1m)

 ∏
n

q∗(z2n|r2n)


Note that, since the mixing coefficients are shared across entities from the same set,

we only have two variational factors corresponding to the mixing coefficients π1 and π2.
qψY (ymn|φmn) is an exponential family distribution with natural parameter φmn, q(π1|γ1)
and q(π2|γ2) are K and L dimensional Dirichlet distributions with parameters γ1 and γ2
respectively while the cluster assignments z1m and z2n follow discrete distributions over
K and L clusters with parameters r1m and r2n respectively. The variational parameters
(γ1, γ2, φmn, r1m, r2n) are then given by (see Appendix for derivation, and [47] for further
detail on the variational derivation):

φmn =

K∑
k=1

L∑
l=1

r1mkr2nl

(
β†klxmn

)
(2)

γ1k =

M∑
m=1

r1mk + α1k (3)

γ2l =

N∑
n=1

r2nl + α2l (4)

log r1mk ∝ log pψ1 (x1m|θ1k) + Ψ (γ1k) +

N∑
n=1

L∑
l=1

r2nl

(
wmn log pψY (ymn|β

†

klxmn) + (1 − wmn)Eq

[
log pψY (ymn|β

†

klxmn)
])

(5)

log r2nl ∝ log pψ2 (x2n|θ2l) + Ψ (γ2l) +

M∑
m=1

K∑
k=1

r1mk

(
wmn log pψY (ymn|β

†

klxmn) + (1 − wmn)Eq

[
log pψY (ymn|β

†

klxmn)
])

(6)

The optimal lower bound on the observed log-likelihood with respect to the varia-
tional distribution in (1) is then given by:

log p(Yobs,X1,X2|α1,α2,Θ1,Θ2, β)
≥ H[q∗] +Eq∗ [log p(Yobs,X1,X2,Z1,Z2,π1,π2|α1,α2,Θ1,Θ2, β)]

This bound can be maximized with respect to the free model parameters to get their
improved estimates. Taking partial derivatives of the bound with respect to the model
parameters and setting them to zero, we obtain the following updates (see Appendix for
details):



Algorithm 1 Learn LD-BAE
Input: Yobs,X1,X2,K, L
Output: α1,α2,Θ1,Θ2, β

[m]M
1 , [n]N

1 , [k]K
1 , [l]

L
1

Step 0: Initialize α1,α2,Θ1,Θ2, β

Until Convergence
Step 1: E-Step

Step 1a: Initialize r1mk, r2nl

Until Convergence
Step 1b: Update φmn using equation (2)
Step 1c: Update γ1k using equation (3)
Step 1d: Update γ2l using equation (4)
Step 1e: Update r1mk using equation (5)
Step 1f: Update r2nl using equation (6)

Step 2: M-Step
Step 2a: Update θ1k using equation (7)
Step 2b: Update θ2l using equation (8)
Step 2c: Update βkl using equation (9)
Step 2d: Update α1 using equation (10)
Step 2e: Update α2 using equation (11)

θ1k = ∇ψ−1
1

∑M
m=1 r1mk x1m∑M

m=1 r1mk

 (7)

θ2l = ∇ψ−1
2

∑N
n=1 r2nlx2n∑N

n=1 r2nl

 (8)

βkl = arg max
β∈RD

M∑
m=1

N∑
n=1

r1mkr2nl

[〈
(wmnymn + (1 − wmn)∇ψY(φmn)) ,β†xmn

〉
− ψY

(
β†xmn

)]
(9)

α1 = arg max
α1∈R

K
++

log
Γ(

∑K
k=1 α1k)∏K

k=1 Γ(α1k)
+

K∑
k=1

α1k +

M∑
m=1

r1mk − 1

 Ψ (γ1k) − Ψ

 K∑
k′=1

γ1k′


(10)

α2 = arg max
α2∈R

L
++

log
Γ(

∑L
l=1 α2l)∏L

l=1 Γ(α2l)
+

L∑
l=1

α2l +

N∑
n=1

r2nl − 1

 Ψ (γ2l) − Ψ

 L∑
l′=1

γ2l′

 (11)

The updates for the parameters of the Dirichlet distributions α1 and α2, can be effi-
ciently performed using the Newton-Raphson’s method. An EM algorithm for learning
the model parameters of LD-AA-BAE is given in algorithm 1.



5 Concluding Remarks and Future Work

The side information aware Bayesian affinity estimation approach introduced in this ar-
ticle is a promising framework that efficiently incorporates attribute information within
dyadic data. The approach can be readily generalized to where there are more than
two modes, or sets of interacting items. Moreover, the graphical model can be further
elaborated on to accommodate other types of side information including temporal in-
formation, and/or neighborhood structures. The use of exponential family distributions
for modeling entity attributes as well as the affinity relationships renders great flexi-
bility for modeling diverse data types in numerous domains. The approach can also be
extended to non-parametric models by replacing the Dirichlet distribution priors with
the corresponding process prior, which is useful when the desired number of clusters is
not known. But clearly there is much work to be done on this line of models, in terms
of both algorithmic development and applications.

A common feature of affinity datasets is sparsity - often only a very small percentage
of the affinities are known. In the derivation provided in this paper, one carries around
the unobserved affinities as well, which adds to computational demands and does not
benefit from sparsity. In several settings however, one can simply ignore these values
and just build a model based on the observed values, since conditioning on the unob-
served affinity values does not effect any of the posterior distributions. This observation
can be exploited to develop more efficient versions of LD-BAE.
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6 APPENDIX A: Variational Inference using Mean Field
Approximation (MFA)

A maximum likelihood approach to parameter estimation generally involves maximiza-
tion of the observed log-likelihood log p(X|Θ) with respect to the free model parame-
ters, i.e.,

Θ∗ML = arg max
Θ

log p(X|Θ) (A1)

= arg max
Θ

log
∫
Z

p(X,Z|Θ)dZ (A2)

whereX andZ are sets of observed and hidden variables respectively. In the presence of
hidden variables, the maximum likelihood estimate is often done using the Expectation-
Maximization (EM) algorithm [6]. The following lemma forms the basis of the EM
algorithm [50].



Lemma 1. Let X denote a set of all the observed variables and Z a set of the hid-
den variables in a Bayesian network. Then, the observed log-likelihood can be lower
bounded as follows

log p(X,Z|Θ) ≥ F (Q,Θ)

where

F (Q,Θ) = −

∫
Z

Q(Z) log Q(Z)dZ +

∫
Z

Q(Z) log p(X,Z|Θ)dZ (A3)

for some distribution Q and the free model parameters Θ.

Proof. The proof follows from the Jensen’s inequality and the concavity of the log
function.

log p(X|Θ) = log
∫
Z

Q(Z)
Q(Z)

p(X,Z|Θ)dZ

≥

∫
Z

Q(Z) log
p(X,Z|Θ)

Q(Z)
dZ

= −

∫
Z

Q(Z) log Q(Z)dZ +

∫
Z

Q(Z) log p(X,Z|Θ)dZ

= F (Q,Θ)

Starting from an initial estimate of the parameters, Θ0, the EM algorithm alternates
between maximizing the lower bound F with respect to Q (E-step) and Θ (M-step),
respectively, holding the other fixed. The following lemma shows that maximization
the lower bound with respect to the distribution Q in the E-step makes the bound exact,
so that the M-step is guranteed to increase the observed log-likelihood with respect to
the parameters.

Lemma 2. Let F (Q,Θ) denote a lower bound on the observed log-likelihood of the
form in (A3), then

Q∗ = p(Z|X,Θ) = arg max
Q
F (Q,Θ)

and F (Q∗,Θ) = log p(X|Θ).

Proof. The lower bound on the observed log-likelihood is

F (Q,Θ) = −

∫
Z

Q(Z) log Q(Z)dZ +

∫
Z

Q(Z) log p(X,Z|Θ)dZ

= −

∫
Z

Q(Z) log
Q(Z)

p(Z|X,Θ)
dZ +

∫
Z

Q(Z) log
p(X,Z|Θ)
p(Z|X,Θ)

dZ

= log p(X|Θ) − KL(Q ‖ p(Z|X,Θ))

Maximum is attained when the KL-divergence KL(Q ‖ p(Z|X,Θ)) is zero, which is
uniquely achieved for Q∗ = p(Z|X,Θ) at which point the bound becomes an equality
for log p(X|Θ).



However, in many cases, computation of the true posterior distribution, p(Z|X,Θ) is
intractable. To overcome this problem, the distribution Q is restricted to a certain family
of distributions. The optimal distribution within this restricted class is then obtained by
minimizing the KL-divergence to the true posterior distribution. The approximating
distribution is known as a variational distribution [50].

There are a number of ways in which the family of possible distributions can be re-
stricted. One way of restricting the approximating distributions is to use a parameteric
distribution Q(Z|Φ) determined by a set of parametersΦ, known as variational param-
eters. In the E-step, the lower bound then becomes a function of variational parameters,
and standard non-linear optimization methods can be employed to obtain the optimal
values of these parameters. Yet another way to restrict the family of approximationg
distributions is to assume a certain conditional independence structure over the hidden
variables Z. For example, one can assume a family of fully factorized distributions of
the following form

Q =
∏

i

qi(zi) (A4)

This fully factorized assumption is often known as a mean field approximation in statis-
tical mechanics. The following lemma derieves the expression for optimal variational
distribution subject to a full factorization assumption.

Lemma 3. Let Q = {Q} be a family of factorized distributions of the form in (A4). Then
the optimal factorized distribution corresponding to the tightest lower bound is given
by,

Q∗ =
∏

i

q∗i (zi) = arg max
Q∈Q

F (Q,Θ) such that q∗i (zi) ∝ exp
(
E−i[log p(X,Z|Θ)]

)
where E−i[log p(X,Z|Θ)] denotes a conditional expectation conditioned on zi.

Proof. Using lemma 2, the optimal distribution Q ∈ Q is given by

Q∗ = arg min
Q∈Q

KL(Q ‖ p(Z|X,Θ))

where the KL-divergence can be expressed as

KL(Q ‖ p(Z|X,Θ)) =
∑

i

∫
zi

qi(zi) log qi(zi)dzi −

∫
zi

qi(zi)


∫
Z−i

log p(Z|X,Θ)
∏
j,i

q j(z j)dZ−i

 dzi

=
∑
j,i

∫
z j

q j(z j) log q j(z j)dz j +

∫
zi

qi(zi) log
qi(zi)

exp
(
E−i[log p(X,Z|Θ)

)
]
dzi

The second term in the above expression is a KL-divergence. Keeping {q j,i(z j)} fixed,
the optimum with respect to qi(zi) is attained when KL-divergence is zero, i.e. q∗i (zi) ∝
exp

(
E−i[log p(X,Z|Θ)]

)
.

The above lemma shows that the optimal variational distribution subject to the factor-
ization constraint is given by a set of consistency conditions over different factors of the
hidden variables. These coupled equations are known as mean field equations and can
be satisfied iteratively. Convergence is guaranteed because the bound F is convex with
respect to each of the factors [10].



7 APPENDIX B: Mean Field Approximation (MFA) for Bayesian
Affinity Estimation

This appendix illustrates the derivation of a MFA based expectation maximization algo-
rithm for parameter estimation of a Latent Dirichlet Attribute Aware Bayesian Affinity
Estimation framework (LD-AA-BAE). The techniques introduced in this appendix are
also used for derieving updates for rest of the models in the paper and the same analysis
can be easily extended. For the purpose of exposition, we however, concentrate only on
the LD-AA-BAE model.

The joint distribution over all observable and latent variables for the LD-AA-BAE
model is given by:

p(Y,X1,X2,Z1,Z2,π1,π2|α1,α2,Θ1,Θ2, β) =

p(π1|α1)p(π2|α2)

∏
m

p(z1m|π1)pψ1 (x1m|θ1z1m )

 ∏
n

p(z2n|π2)pψ2 (x2n|θ2z2n )


∏

m,n

pψY (ymn|β
†
z1m z2n

xmn)


(B1)

The approximate variational distribution Q over the hidden variables is

Q(Yunobs,Z1,Z2,π1,π2) = q(π1|γ1)q(π2|γ2)


∏
m,n

ymn∈Yunobs

q(ymn|φmn)


∏

m

q(z1m|r1m)

 ∏
n

q(z2n|r2n)


(B2)

The updates for factors corresponding to the optimal variational distribution is obtained
using lemma 3.
E-step Update for q∗(ymn|φmn): Collecting terms containing the affinities ymn in the
conditional expectation of the complete log-likelihood, we obtain

q∗(ymn) ∝ p0(ymn) exp

 K,L∑
K,L=1

r1mkr2nl〈ymn,β
†

klxmn〉


which shows that variational distribution for the missing affinities is an exponential
family distribution having the same form as the one assumed for the affinities with the
natural parameter given by:

φmn =

K,L∑
k,l=1

r1mkr2nl

(
β†klxmn

)
(B3)

E-step Updates for q∗(π1|γ1) and q∗(π2|γ2): Conditional expectation with respect to the
mixing coefficients π1 yields,

q∗(π1) ∝ exp

 K∑
k=1

α1k +

M∑
m=1

r1mk

 log π1k


=

K∏
k=1

(π1k)(α1k+
∑M

m=1 r1mk)



Easy to see that, the optimal variational distribution q∗(π1|γ1) is a Dirichlet distribution
over a K-simplex with parameters given by:

γ1k = α1k +

M∑
m=1

r1mk (B4)

Similarly, q∗(π2|γ2) is a Dirichlet distribution over a L-simplex with parameters:

γ2l = α2l +

N∑
n=1

r2nl (B5)

E-step Updates for q(z1m|r1m) and q(z2n|r2n): Conditional expectation with respect to
discrete cluster assignment variable z1mk for the cluster k results in the following update:

q∗(z1mk = 1) = r1mk ∝ exp

log pψ1 (x1m|θ1k) + Ψ (γ1k) − Ψ

 K∑
k′=1

γ1k′

 +

N∑
n=1

L∑
l=1

r2nl

(
wmn log pψY (ymn|β

†

klxmn) + (1 − wmn)Eq

[
log pψY (ymn|β

†

klxmn)
]) (B6)

The first term is the log-likelihood of the entity attributes, the second term is the expec-
tation of log π1k with respect to the variational Dirichlet distribution while the last term
involves the log-likelihood of all the affinities associated with the entity e1m. The known
log-likelihood is used if the affinity is observed (wmn = 0), while the log-likelihood for
the missing affinities is replaced by the corresponding expecations under the variational
distribution q∗(ymn|φmn). Analogously, the update equation for the cluster assignment
variable q∗(z2nl = 1) is given by:

q∗(z2nl = 1) = r2nl ∝ exp

log pψ2 (x2n|θ2l) + Ψ (γ2l) − Ψ

 L∑
l′=1

γ2l′

 +

M∑
m=1

K∑
k=1

r1mk

(
wmn log pψY (ymn|β

†

klxmn) + (1 − wmn)Eq

[
log pψY (ymn|β

†

klxmn)
]) (B7)

M-step Updates for θ1k and θ2l: Taking expectation of the complete log-likelihood with
respect to the variational distribution, we obtain the following expression for the lower
bound F as a function of the entity attributes parameters:

F (Θ1,Θ2) =

M∑
m=1

K∑
k=1

r1mk log pψ1 (x1m|θ1k) +

N∑
n=1

L∑
l=1

r2nl log pψ2 (x2n|θ2l)

Taking partial derivatives with respect to θ1k and θ2l, we obtain the following updates:

θ1k = ∇ψ−1
1

∑M
m=1 r1mk x1m∑M

m=1 r1mk

 (B8)

θ2l = ∇ψ−1
2

∑N
n=1 r2nlx2n∑N

n=1 r2nl

 (B9)



M-step Updates for βkl: Collecting terms containing the GLM coefficients in the lower
bound, we obtain:

F (βkl) =

M∑
m=1

N∑
n=1

r1mkr2nl

[〈
(wmnymn + (1 − wmn)∇ψY(φmn)) ,β†xmn

〉
− ψY

(
β†xmn

)]
As earlier, the missing affinities are replaced by corresponding expected values under
the variational exponential family distribution. The lower bound can be maximized us-
ing a gradient ascent method. The expressions for the gradient and the gradient-ascent
updates are obtained as follows:

∇F (βkl) =

M∑
m=1

N∑
n=1

r1mkr2nl

[
(wmnymn + (1 − wmn)∇ψY(φmn)) − ∇ψY

(
β†xmn

)]
xmn

(B10)
βt+1

kl = βt
kl + η∇F (βkl) (B11)

where η is the step-size for the update.
M-step Updates for α1 and α2: The expression for the lower bound as a function of the
Dirichlet parameters α1 is:

F (α1) = log
Γ(

∑K
k=1 α1k)∏K

k=1 Γ(α1k)
+

K∑
k=1

α1k +

M∑
m=1

r1mk − 1

 Ψ (γ1k) − Ψ

 K∑
k′=1

γ1k′


Taking derivative with respect to α1k yield:

∂F

∂α1k
= Ψ

 K∑
k′=1

α1k

 − Ψ (α1k) + Ψ

 K∑
k′=1

γ1k

 − Ψ (γ1k)

Note that the update for α1k depends on {α1k′ , [k′]K
1 , k

′ , k}, so a closed form solution
cannot be obtained. Following [18], Newton-Raphson’s method can then be used to
update the parameters. The Hessian H is given by

H(k, k) =
∂2F

∂α2
1k

= Ψ ′
 K∑

k′=1

α1k

 − Ψ ′(α1k)

H(k, k′) =
∂2F

∂α1k∂α1k′
= Ψ ′

 K∑
k′=1

α1k

 (k′ , k)

The update can then be obtained as follows:

αt+1
1 = αt

1 + ηH−1∇(α1) (B12)

The step-size η can be adapted to satisfy the positivity constraint for the Dirichlet pa-
rameters. A Similar method is followed for update of α2.


