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Abstract. The longest simple path problem on graphs arises in a variety of con-
text, e.g., information retrieval, VLSI design, robot patrolling. Given an undi-
rected weighted graph G = (V,E), the problem consists of finding the longest
simple path (i.e., no vertex occurs more than once) on G. We propose in this pa-
per an exact and a tabu search algorithm for solving this problem. We show that
our techniques give competitive results on different kinds of graphs, compared
with recent genetic algorithms.

1 Introduction

In this paper we address the problem of finding the longest simple path on a given
arbitrary undirected weighted graph. Given an undirected weighted graph G = (V,E),
each edge e ∈ E is associated with a non negative weight w(e). We denote P the set
of simple paths in G (i.e., no vertex occurs more than once). The length (or cost) of a
path p ∈P is defined to be the sum of weights of all edges of p: w(p)=∑e∈p w(e). The
longest simple path problem (LPP) consists of finding a path p ∈P such that w(p)
is maximal. Clearly, LPP is NP-hard because the problem of deciding whether or not
there exists a Hamilton cycle in a given graph which is NP-complete can be reduced to
this problem [4]. We consider in this paper only simple paths. Henceforth, we use the
word “path” instead of “simple path” for short.

Motivation and Related works Wong et al. in [17] mentioned LPP on graphs in the con-
text of information retrieval on peer-to-peer networks where the weights are associated
with vertices. They also proposed a genetic algorithm for solving this problem. LPP
has also been addressed in [13] for evaluating the worst-case packet delay of Switched
Ethernet. The given Switched Ethernet is transformed into a delay computation model
represented by a directed graph. On this particular directed acyclic graph, the longest
path can be computed using dynamic programming. LPP also appears in the domain of



high-performance printed circuit board design in which one needs to find the longest
path between two specified vertices on a rectangle grid routing [16]. In that paper, au-
thors proposed a mixed integer linear programming model for solving LPP in a specific
graph. In [11], the authors described LPP in the context of multi-robot patrolling and
[10] proposed a genetic algorithm for solving LPP.

In [7], approximating algorithms for LPP (unweighted graph) were considered. The
authors showed that no polynomial-time algorithm can find a constant factor approxi-
mation for the longest path problem unless P=NP. In [5], a heuristic algorithm is pro-
posed for LPP, based on the strongly connected components of the graph.

LPP can also be reduced to the simple shortest path problem (SSPP), by using the
same graph, but with edges weight negated. Notice that shortest path algorithms are not
appropriate as the cycles of the graph have a negative weight. One should restrict the
search to simple paths. The efficient polynomial algorithms for the shortest path prob-
lem [1] are thus not applicable for SSPP. The SSPP is often coupled with resource con-
straints (SSPPRC), such as in vehicle routing. This problem is however usually relaxed
by allowing non simple paths, when used in a column generation context. Other meth-
ods, such as Lagrangean relaxation, are effective only when the costs are non-negative.
An exact method for SSPPRC is however proposed in [3], extending the classical label
correcting algorithm.

Constraint programming (CP) has never been directly used for solving LPP. Filter-
ing techniques have been developed for the shortest path problem. In [14, 2], filtering
techniques are presented in the context of graph variables. The cost-based filtering tech-
niques do not handle negative cycles.

We consider LPP on arbitrary graphs and propose two constraint-based techniques
for solving it: an exact algorithm based on constraint programming technique and a
constraint-based local search algorithm. We compare these two techniques with the
generic algorithm proposed in [10] on different classes of graphs: graphs extracted from
real maps in the simulation package for multi-robot patrolling [11, 12] and ramdom
planar graphs. Experimental results show the efficiency of the proposed approaches.

Outline The paper is organized as follows. Sections 2 and 3 respectively describe the
proposed exact and tabu search algorithms for solving LPP. Experimental results are
given in Section 4. Finally, Section 5 concludes the paper and draws some directions
for future work.

2 The exact algorithm

2.1 CP model for solving longest path between two specified vertices

We first propose a CP model for finding the longest (simple) path from a source vertex
s to a destination vertex t on a given graph.

Variables For modeling a path p from a vertex s to a vertex t on the given graph
G = (V,E), we use an array of variables x in which x(v) represents the successor of v on
the path from s to t. The domain of x(v) denoted by D(x(v)) is defined to be the set of

2



adjacent vertices of v in G plus a specific value⊥: D(x(v)) = {u∈V | (u,v)∈E}∪{⊥}.
If v is not in the path, then x(v) = ⊥. We use an array y in which y(v) represents the
length (i.e., the number of edges) of the subpath of p from s to v (v is in p). If v is not
in p then y(v) is undefined.

Constraints The constraints that x,y must satisfy in order to form a path from s to t are
the following:

– C1: x(v) = u⇒ x(u) 6=⊥,∀v ∈V \{t},∀u ∈ D(v)\{t,⊥}
– C2: ∑v∈V (x(v) = u)≤ 1,∀u ∈V \{s, t}
– C3: ∑v∈V (x(v) = t) = 1
– C4: x(v) 6= s,∀v ∈V
– C5: x(s) 6=⊥
– C6: x(t) =⊥
– C7: x(v) 6=⊥⇒ y(x(v)) = y(v)+1,∀v ∈V
– C8: y(s) = 0

Constraint C1 ensures the continuation of the path until the destination t. It says that
a successor v of a vertex u must have its successor if v is not the destination. Constraint
C2 specifies that each vertex u of G cannot be the successor of more than one vertex.
Constraints C3 and C4 say that the destination vertex must be the successor of some
vertex and the source vertex cannot be the successor of any vertices. Constraint C5 says
that the source vertex must have a successor and constraint C6 imposes, by convention,
⊥ the successor of the destination. Constraints C7, C8 eliminate the sub-tour from the
path.

The objective function (i.e., the cost of the path) to be maximized is:

f (x,y) = ∑
v∈V\{t}

w(v,x(v))

where w(u,⊥) = w(⊥,u) = 0,∀u ∈V by convention.
The implementation of the CP algorithm in COMET is given in Figure 1. Lines 2-7

initialize the domain D[u] for each vertex u. Variable null_value (line 2) represents
the ⊥ value encoded by 0. Line 8 creates a CP solver cp. Decision variables x and y

are initialized in lines 9-10. The objective function to be maximized is stated in line 12.
Constraint C1 is stated in lines 14-15. Lines 16-17 state the constraint C2. Lines 18-19,
20-21 respectively state constraints C3, C4, C5 and C6. Constraint C7 is stated in lines
22-23 and line 24 states the constraint C8.

The search is given in lines 26-40. The assignment strategy is described as follows.
If the variable x[v] is assigned (or instantiated) by the value u at the given moment and
u is not the destination vertex t then the next variable to be instantiated will be x[u].
Variable z keeps the vertex to be instantiated which is initialized by the source vertex
s in line 26. This strategy ensures the partial assignment is always a partial path from
the source vertex s to some vertex of the given graph. If z is the destination, then the
remaining uninstantiated variables will be assigned to ⊥ (lines 29-31). If the variable
x[z] is bound to ⊥, the search backtracks (lines 33-34). Otherwise, we try all vertices
u of the domain of x[z] in the decreasing order of the weights of edges connecting z

and the vertex u for assigning to x[z] (line 36-37). The next variable to be assigned
will be x[u] (see line 38).
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1 float search(int s, int t){
2 null_value = 0;
3 set{int} D[1..n]();
4 forall(u in 1..n){
5 forall(v in adj[u]) D[u].insert(v);
6 D[u].insert(null_value);
7 }
8 Solver<CP> cp();
9 var<CP>{int} x[u in 1..n](cp,D[u]);

10 var<CP>{int} y[1..n](cp,0..n-1);
11 maximize<cp> % OBJECTIVE FUNCTION
12 sum(v in 1..n)(w[v,x[v]])
13 subject to{ % CONSTRAINTS
14 forall(v in 1..n, u in adj[v]: v != t && u != t)
15 cp.post((x[v] == u) <= (x[u] != null_value));
16 forall(u in 1..n: u != s && u != t)
17 cp.post(sum(v in 1..n)(x[v] == u) <= 1);
18 cp.post(sum(v in 1..n)(x[v] == t) == 1);
19 forall(v in 1..n) cp.post((x[v] != s);
20 cp.post(x[s] != null_value);
21 cp.post(x[t] == null_value);
22 forall(v in 1..n: v != t)
23 cp.post((x[v] != null_value) ~> (y[x[v]] == y[v] + 1));
24 cp.post(y[s] == 0);
25 }using{ % SEARCH
26 Integer z(s);
27 while(!bound(x)){
28 int v = z;
29 if(v == t)
30 forall(u in x.rng(): !x[u].bound())
31 label(x[u],null_value);
32 else
33 if(x[v].getSize()==1 && x[v].getValue()==null_value)
34 cp.fail();
35 else
36 tryall<cp>(u in 1..n: x[v].memberOf(u)) by (-w[v,u]){
37 label(x[v],u);
38 z := u;
39 }
40 }
41 }
42 return sum(v in 1..n)(w[v,x[v]]);
43 }

Fig. 1. CP model for finding the longest simple path between two vertices in the given graph

Alternative model using global constraint The proposed model could be simplified
by using the global constraint alldifferent [6]. The domain of x(v) is D(x(v)) = {u ∈V |
(u,v) ∈ E}∪{v}. When v is not in the path, then x(v) = v (the value ⊥ is not used) and
x(t) = s by convention. The constraints are the following:

– C9: x(v) = u⇒ x(u) 6= u,∀v,u ∈V \{t} : v 6= u
– C10: alldifferent(x)
– C11: x(s) 6= s
– C12: x(t) = s
– C13: x(v) 6= v⇒ y(x(v)) = y(v)+1,∀v ∈V \{t}
– C14: y(s) = 0

The alldifferent global constraint C10 ensures that each vertex v in the solution (x(v) 6=
v) is the successor of only one vertex. Although this model is simpler and uses a global
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constraint, our experiments (presented in Section 4) show that the first model is much
more efficient on large instances.

2.2 The exact algorithm

The solution to LPP can be found by iteratively calling the method search(s,t) in
Figure 1 for all the pairs of source and destination 〈s, t〉 belonging to the same con-
nected component of the graph, and taking the maximum resulting value.

In many cases, especially in the context of multi-robot patrolling [11], the given
graph is sparse and contains many bridges (an edge of a graph is called bridge if the re-
moval of this edge from the graph increases the number of connected components of the
graph). In these cases, the given graph could be preprocessed by computing its bridges,
and its bridge-blocks (the connected components of the graph without its bridges). In-
tuitively, the longest path will be a sequence of paths within different bridge-blocks. It
is thus possible to only call the method search(s,t) for pairs 〈s, t〉 belonging to the
same bridge-block, and combine these results to obtain the solution.

Before describing our algorithm, we give some definitions and notations. Given a
graph H, we denote VH and EH respectively the set of vertices and edges of H. Given
a set of vertices S ⊆ V , we denote G(S) the subgraph induced by S in which VG(S) = S
and (u,v) ∈ EG(S) ⇔ (u,v) ∈ E,∀u,v ∈ S. In a rooted tree T , T (v) denotes the set of
descendant vertices of v in T , including v.

Without loss of generality, we assume that the graph G is connected. The compu-
tation of bridges and bridge-blocks can be realized with a variant of the O(|V |+ |E|)
depth-first search algorithm DFS(r) of [15]. The variant algorithm we developed re-
quires to fix a root vertex r of VG and produces the following results:

– The set B(G) of bridges of G;
– A spanning tree T of G, rooted at r, in which f (v) is the father of a vertex v (by

convention f (r) = r); the spanning tree will be composed of k spanning subtrees
(one per each bridge-block), connected by the bridges;

– The set {S1, . . . ,Sk}, where Si is the set of vertices of bridge-blocks of G;
– The set R of roots of the different subtrees T (Si)

R = {ri|ri is the root of T (Si),1≤ i≤ k};
– Exit(ri), the set of exit vertices of T (Si), which are vertices in Si connected to (the

root of) some other bridge-blocks in T plus the vertex ri
Exit(ri) = {v ∈ Si|∃r j ∈ R : f (r j) = v}∪{ri};

– ChRoot(v), the children vertices of v in T that are outside the bridge-blocks of v;
by definition of bridge blocks, such children are necessarily members of R
ChRoot(v) = {ri ∈ R| f (ri) = v}

– NextRoot(ri) is the set of root vertices of bridge-blocks connected to Si
NextRoot(ri) = ∪v∈SiChRoot(v)

Figure 2 illustrates the result of DFS(1); we give some of the results: S1 = {1,2,3,4,5},
S2 = {6,7,8,9,36}, S3 = {17}, S4 = {18,19,20,21}, S5 = {37}, S6 = {12,13,14,15,16},
S7 = {11}, S8 = {10}. R= {1,6,17,18,37,12,11,10}, NextRoot(1)= {6,10}, NextRoot(6)
= {11,12,17,37}, NextRoot(17) = {18}. The other NextRoot values are /0.
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B(G)= {(6,5),(10,4),(11,7),(12,9),(17,8),(18,17),(37,8)}. ChRoot(1)= {}, ChRoot(5)=
{6}, ChRoot(8) = {17,37}, etc. Exit(1) = {1,4,5}, Exit(6) = {6,7,8,9}, etc. We now
denote:

– L(ri): the cost of the longest path in G(T (ri)).
– d(u,v): the weight of the longest path between u and v in G(Si), with u,v ∈ Si. By

convention, d(u,u) = 0.
– H(ri): the cost of the longest path in G(T (ri)) starting from ri.
– h(v): the cost of the longest path in G(T (v)) starting from v, but without edge in

G(Si), with v ∈ Si.
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b. The rooted spanning tree T (solid arcs are in T , bold edges are bridges)

Fig. 2. Illustrating bridges-blocks

These last two quantities can be computed recursively as follows:

h(v) = maxri∈ChRoot(v)H(ri)+w(v,ri)
H(ri) = maxv∈Sid(ri,v)+h(v)

We have h(v) = 0 when ChRoot(v) = /0.
Using the above values, we can now compute L(ri), the cost of the longest path in

G(T (ri)), with ri ∈ R. We have L(ri) = max{L0(ri),L1(ri),L2(ri)}, where L0(ri) (resp.
L1(ri), L2(ri)) is the cost of the longest path in G(T (ri)) containing no (resp. exactly
one, at least 2) vertex of Si. In the computation of L1(ri), we should consider the path
with exactly one vertex in Si. Each of these (non empty) paths contains a vertex v ∈ Si
with a child outside Si (i.e., ChRoot(v) 6= /0). When v has a unique child outside Si,
we should only consider the longest path starting from this child vertex, and extend it
with the bridge relating v to this vertex. When v has at least two children outside Si,
we should take the two longest paths starting from these children and relate these paths
with the two corresponding bridges. These values can then be computed as follows:

– L0(ri) = maxr j∈NextRoot(ri)L(r j)
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– L1(ri) = maxv∈Si l1(v) where

l1(v)=


0 if ChRoot(v) = /0
H(r j)+w(r j,v) if ChRoot(v) = {r j}
maxrk<r j∈ChRoot(v)H(rk)+w(rk,v)+w(v,r j)+H(r j) otherwise

– L2(ri) = maxu6=v∈Sih(u)+d(u,v)+h(v)

Exploiting lower bounds of the longest path From the above equations, we can de-
duce that the longest path of the graph either joins two non-exit vertices of the same
bridge-block, or the longest path contains bridges and contains at least one exit vertex
of every visited bridge-block. This yields a lower bound f ∗ of the optimal solution.
Then, for each pair u,v of non-exit vertices in the same bridge-block, we apply the CP
search method search(u,v, f ∗) to find the longest path between u and v, using f ∗ as
lower bound. The search(u,v, f ∗) method is identical to search(u,v) except that it also
posts the constraint that the objective function is bounded by f ∗.

The algorithm is composed of the sequential calls to the recursive methods Compute-
FirstStep(r) and ComputeSecondStep(r), depicted in Algorithms 1 and 2, where r is the
root vertex of the spanning tree T . Algorithm 1 computes the longest path on G con-
taining some exit vertices and bridges. The variable f ∗ stores the cost of this path. The
algorithm 2 completes the search by considering pairs of vertices without exit vertices,
using f ∗ as lower bound. The search is performed only if the cost W of the bridge-block
G(Si) is greater than f ∗ (see lines 3–4) because the cost of the any longest path on Si is
always less then or equals to W . The data structure L(ri), d(u,v), H(ri), h(v) and f ∗ are
global. At the end of the computation, f ∗ will be the cost of the optimal solution. The
algorithm can easily be extended to also return the optimal path.

Two other optimizations have also been considered. The first one is to efficiently
compute an upper bound of the cost of the longest path from u to v, using a flow-based
linear programming model, in order to avoid an exact computation of the longest path
between these two vertices when the upper bound is lower or equal to f ∗ ( f ∗ is the
current lower bound of the solution). The second optimization uses the longest path P
between two vertices u and v to compute lower bounds for the longest paths between
pairs of vertices appearing in P. None of these optimizations significantly improved
the algorithms on the considered benchmarks. They were thus not integrated in the
algorithm.

3 The tabu search algorithm

We propose in this section a tabu search algorithm for solving LPP using the constraint-
based local search framework LS(Graph) [8, 9]. In the local search approach, we
maintain a dynamic path on the given graph, i.e., path that can be changed over time.
At each step, we change the current path for generating another path with respect to
some criteria until the termination condition is reached. In other words, we first define,
for each path, a set of neighboring paths. Then, we start the search with some initial
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Algorithm 1: ComputeFirstStep(ri)
1 foreach r j ∈ NextRoot(ri) do
2 ComputeFirstStep(r j);

3 foreach u ∈ Exit(ri),v ∈ Si : u 6= v do
4 d(u,v)← search(u,v); d(v,u)← d(u,v);

5 foreach v ∈ Si do
6 h(v)← maxr j∈ChRoot(v)H(r j)+w(v,r j);

7 H(ri)← maxv∈Si d(ri,v)+h(v); L0 = maxr j∈NextRoot(ri)L(r j);
8 L1← 0;
9 foreach v ∈ Si : ChRoot(v) 6= /0 do

10 if ChRoot(v) = {r j} then l1← H(r j)+w(r j,v);
11 else
12 l1← maxrk<r j∈ChRoot(v)H(rk)+w(rk,v)+w(v,r j)+H(r j);

13 L1← max{L1, l1};
14 L2← maxu 6=v∈Si h(u)+d(u,v)+h(v);
15 L(ri)← max{L0,L1,L2};
16 f ∗← max{ f ∗,L(ri)};

Algorithm 2: ComputeSecondStep(ri)
1 foreach r j ∈ NextRoot(ri) do
2 ComputeSecondStep(r j);

3 W ← cost of G(Si);
4 if W > f ∗ then
5 foreach u ∈ Si \Exit(ri),v ∈ Si \Exit(ri) : u 6= v do
6 d(u,v)← search(u,v, f ∗); f ∗← max{ f ∗,d(u,v)};

path, and we iteratively replace the current path by an appropriate neighboring path of
its neighborhood. The action of replacing a current path by a neighboring path is called
a local move.

3.1 The modeling

We apply the modeling approach in [9] in which a specific object encapsulating a rooted
spanning tree variable of the given graph and a source vertex variable will be used for
representing a path variable and its neighborhood. More precisely, we maintain a object
VarPath(G, tr,s) where G is the given graph, tr a rooted spanning tree variable (of G)
and s is source vertex variable. The graph G is fixed while tr and s are variables that
can be changed over time. At any moment, s is a vertex of G, tr is a rooted spanning
tree and VarPath(G, tr,s) induces a unique path in tr from s to the root of tr. We also
use VarPath(G, tr,s) to denote this path. Given a path p = VarPath(G, tr,s), the neigh-
borhood of p is generated by changing tr or s. There are four kinds of neighborhoods
detailed in [9]:
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Fig. 3. Illustrating ER-neighborhood and CS-neighborhood

– ER-neighborhood based on edges replacement of tr. Figure 3A illustrates this neigh-
borhood in which the edge (7,11) of the current tree (in Figure 3Aa) is replaced by
the edge (8,10), the resulting tree is given in Figure 3Ab. The current path induced
from the current tree (in Figure 3a) is 〈s,3,4,6,7,11,12, t〉 and the neighboring path
induced from the neighboring tree (in Figure 3b) is 〈s,3,4,6,7,8,10,12, t〉.

– CS-neighborhood based on changing the source vertex s. Figure 3B illustrates this
neighborhood in which the current source vertex is replaced by the new source ver-
tex 9. The current path induced from the current tree (in Figure 3Ba) is 〈s,3,4,6,7,-
11,12, t〉 and the neighboring path (in Figure 3Bb) is 〈9,10,12, t〉.

– CD-neighborhood based on changing the root of tr. Figure 4A illustrates this neigh-
borhood in which the root of tr is replaced by the new root 5. The current path in-
duced from the current tree (in Figure 4Aa) is 〈s,3,4,6,7,11,12, t〉 and the neigh-
boring path (in Figure 4Ab) is 〈s,3,4,6,5〉.

– The fourth neighborhood exploited in this tabu search is the general neighborhood
N2 (see [9] for details). The main idea of this neighborhood is the following. Given
a rooted spanning tree tr which induces the path p, the neighborhood N2(tr) is the
set of rooted spanning tree tr′ which induce the path p′ and the path p′ can be cre-
ated by replacing a subpath of p by a new path having exactly 2 edges. Figure 4B
illustrates this neighborhood in which the current rooted spanning tree tr induces
the current path p = 〈s,3,4,6,7,11,12, t〉 and on right hand side is a neighboring
rooted spanning tree which induces the path p′ = 〈s,3,4,8,11,12, t〉 where p′ is
created by replacing the subpath 〈4,6,7,11〉 of p by the new path 〈4,8,11〉 having
2 edges. In practice, the local move in this neighborhood is performed as follows.
Given a current rooted spanning tree tr which induces the current path p, the neigh-
boring path p′ is obtained by replacing a subpath of p by a new path 〈v,x,u〉 with
x /∈ p, u,v∈ p and (v,x),(x,u)∈ E, the spanning tree tr′ is generated randomly such
that it induces the path p′.

The three first neighborhoods feature the diversification of the tabu search where
the neighboring solutions are quite different from the current solution, while the fourth
neighborhood allows the search to explore solutions close to the current solution.
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Fig. 4. Illustrating CD-neighborhood and fourth neighborhood

Our tabu search uses short-term memory to escape local minima and to avoid re-
visiting solutions. The tabu lists store attributes of the local moves instead of the whole
solutions. The check whether a solution p is tabu is replaced by the check whether the
attributes of the local move from the current solution to p is tabu. The first tabu list con-
sists of two lists for storing two edges (an edge to be removed and an edge to be added)
of the local move in the first neighborhood. The second tabu list stores the new selected
source of the local move in the CS-neighborhood and the third tabu list stores the new
selected root of the local move in the CD-neighborhood. The fourth tabu list stores the
new introduced vertex (e.g., vertex 8 in Figure 4Bb) in the fourth neighborhood.

The tabu search algorithm depicted in Algorithm 3 explores the four neighborhoods
described above together with a restart schema. Variable s (line 1) represents the cur-
rent solution. Function f is the cost function of the paths. S∗ (line 1) stores the best
solution found so far and the restart-best solution s∗ stores the best solution found from
each restart. The restart is performed (lines 3–4) when the restart-best solution is not
improved for a given maxStable continuous iterations. Variable nic counts the number
of continuous iterations in which the restart-best solution is not improved. nic increases
by one when the current solution is not better than s∗ (see lines 14–15). Otherwise, it is
set by one (lines 12-13). The initial solution is generated (line 1) using the schema for
generating a set of paths of the initial population in the genetic algorithm of [10]. Lines
10–11 update the best solution (if any).

The core of the tabu search is the local move. Lines 6–7 explore four kinds of
neighborhood (τ1,τ2,τ3,τ4 are four corresponding tabu lists). For each neighborhood,
it chooses a first improving neighbor in order to avoid computation overhead. The tabu
search then selects the best one among the four selected neighbors (line 8). Line 9 stores
attributes of the local move taken into the corresponding tabu list.

The procedure of selecting a first improving neighbor is described in Algorithm 4.
All accepted neighbors, i.e., neighbor that is not tabu or is better than the best solution
found so far S∗, are scanned (lines 2–3). If all the accepted neighbors are not better
than the current solution, then the algorithm selects the best one. Otherwise, the first

10



neighbor that is better than the current solution is selected and the algorithm terminates
(lines 6–7). The tabu search is implemented using the LS(Graph) framework [9].

Algorithm 3: TabuSearch
1 s← generateInitialSolution(); S∗← s; s∗← s; nic← 1;
2 while getTime() < timeLimit do
3 if nic < maxStable then
4 s← generateInitialSolution(); s∗← s; nic← 1;
5 else
6 foreach i ∈ 1..4 do
7 si← selectFirstImprovingNeighbor(Ni,s,S∗,τi);

8 s← argMax4
i=1 f (si);

9 τ is the tabu list corresponding to s; τ ← τ :: s;
10 if f (s)> f (S∗) then
11 S∗← s;

12 if f (s)> f (s∗) then
13 s∗← s; nic← 1;
14 else
15 nic← nic+1;

16 return S∗;

4 Experiments

We compare our exact and tabu search algorithms with the genetic algorithms (GA) of
[10]. In that paper, four versions GANP, GAIP, GABPP, and GAMM of the genetic algo-
rithm were tested on only one sparse graph. We re-implemented all these four versions
in the COMET programming language. The best version will be used for comparing with
our exact and tabu search algorithms.

Instances We experiments the algorithms on three classes of instances. The first in-
stances are taken from the Multi-Robot patrolling simulation package [12]. These graphs
were extracted from real maps with a specialized image processing package. They are
sparse graphs and most of them are tree-like graphs. The second class instances are ran-
dom planar graphs in which each graph has many small-size bridge-blocks (the number
of vertices of each bridge-block is 10). The third class of instances are random pla-
nar graphs where each graph has only one bridge-block. All the instances are available
(becool.info.ucl.ac.be).

Settings The length of the tabu list is set to 50 and the maxStable is set to 50. The tabu
search and the genetic algorithms GA are executed 20 times for each instance. The time

11



Algorithm 4: selectFirstImprovingNeighbor(N,s,S∗,τ)
Input: N is a neighborhood, s is the current solution, S∗ is the best solution found so far,

and τ is the corresponding tabu list of N
Output: A first improving neighbor (if any) or the best non-tabu neighbor if no improving

neighbor exists
1 eval←−∞;
2 foreach si ∈ N(s) do
3 if ¬isTabu(si,τ) ∨ f (si)> f (S∗) then
4 if f (si)> eval then
5 eval← f (si); s← si;
6 if f (si)> f (s) then
7 break;

8 return s;

limit for each execution is 30 minutes. In the genetic algorithm, the maximal number3

of solutions maintained in each population is set to 200 and the percentage of the best
solution which are saved for the next generation is set to 5%. The experiments were
performed on XEN virtual machines with 1 core of a CPU Intel Core2 Quad Q6600
@2.40GHz and 1GB of RAM.

Results The results are presented in Table 1. Columns 2-3 are the number of vertices
and edges of the given graph. Column 4 presents the optimal objective values which
are found by exact algorithms. Columns 5-7 respectively show the execution times of
our exact algorithms without exploiting lower bounds, exploiting lower bounds and of
our alternative model using the alldifferent constraint (with lower bound exploited).
Columns 8-11 respectively present the average, the minimal, the maximal of the ob-
jective values of the best solution found, and the average of time for finding the best
solution in 20 executions of our tabu search algorithm for each instance. The same in-
formation of the genetic algorithm is presented in columns 12-15. All the times are
reported in seconds.

All exact algorithms find the optimal solutions in the two first classes of instances.
The use of lower bounds is especially effective in the second class of instances, with a
speedup around 3. Notice the spectacular speedup on the instance Grelha-4 in the first
class of instances. We observe that exploiting lower bound yields significant improve-
ment (see comparison between columns 5 and 6). Moreover, the alternative model using
the alldifferent global constraint does not improve the performance. It is even much less
efficient on the second class of instances. The global constraint might give more pruning
than the first CP model but the pruning is time-consuming.

On the first class of instances, the tabu search and genetic algorithm find optimal so-
lutions in all executions but they cannot prove the optimality. In average, our tabu search

3 In some small instances, the total number of distinct paths of the given graph cannot reach
200.
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algorithm finds optimal solutions faster than the genetic algorithm for 11 of the 17 in-
stances. Our exact algorithm finds optimal solutions and proves their optimality very
fast (in less than 5 seconds) except the instances Grelha4, MIT_Infinite_Corridor30,
and gates_first_floor. The reason is that in these three instances, the bridge-blocks are
large. Thus, the number of pairs source-destination over which the CP algorithm (see
Figure 1) performs is high. This makes the computation time of the exact algorithm
relatively high on these instances.

On the second class of instances (random planar graphs with different bridge-blocks),
our tabu search algorithm is always better than the genetic algorithm. The tabu search
and genetic algorithms do not find optimal solutions while our exact algorithm is able
to find and prove such optimal solutions. More over, in all instances except the last one
(graph with 1000 vertices and 2177 edges), the execution time of the exact algorithm is
better than the average execution time of the tabu search and of the genetic algorithms.

The results of the third class of instances (random planar graphs with a single
bridge-block) are presented at the bottom of Table 1. These instances are not adapted to
the exact algorithm as bridge-blocks cannot be exploited. The exact algorithms cannot
terminate within 30 minutes. The tabu search gives much better results than the ge-
netic algorithm. On all the instances, the worst solution found by the tabu search in 20
executions is always better than the best solution found by the genetic algorithm. The
genetic algorithm converges early and did not escape the low-quality local optimum.
The average execution time of our tabu search algorithm is better than the average exe-
cution time of the genetic algorithm in all instances except the first one (graph with 100
vertices and 285 edges).

In summary, our exact algorithm is able to find optimal solutions on large graphs
composed of many bridge-blocks whereas local search algorithms cannot find the opti-
mal solution. The exact algorithm is not applicable on large graphs with a single bridge-
block. Our tabu search algorithm is shown to be better than the state of the art genetic
algorithm [10].

5 Conclusion

In this paper, we proposed an exact algorithm, based on Constraint Programming (CP),
and a tabu search algorithm, using constraint-based local search (CBLS), for solving the
longest simple path problem (LPP), an NP-hard problem. The exact algorithm exploits
the bridge-blocks of the graph. The local search algorithm is constructed on top of our
LS(Graph) CBLS framework [9].

Experimental results showed that the exact algorithm is relevant for small graphs as
well as for large graphs with different bridge-blocks. Exploiting the lower bounds im-
proves the algorithm. Our tabu search algorithm finds optimal solutions only on small
instances, but without proof of optimality. The tabu search algorithm is particularly
well adapted on large instances with a small number of bridge-blocks, where our exact
algorithm is not adapted. Except on some specific small instances, our tabu search al-
gorithm is always better than the state of the art genetic algorithm [10], both in quality
of solutions than in time efficiency.
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As future work, we would like to develop specific search strategies for our exact
algorithm in order to improve its efficiency on graphs with few bridge-blocks. We will
study how to handle bridge-blocks dynamically. The bridge-blocks will not only be
computed on the initial graph, but will also be computed incrementally on the graph
induced by the domain of the variables. We also intend to develop hybrid techniques
combining CP, integer programming and local search.
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