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Foreword

Profound knowledge and skills in discrete mathematics are mandatory for a well ed-
ucated computer scientist. Therefore a corresponding curriculum typically requires
at least a basic course on this subject. This textbook, which is based on the lectures
given by the author at the University of Malta, is a perfect companion for every
student taking such a course.

When teaching a formal computer science topic one can either follow a so-called
descriptive or algorithmic approach. Traditionally most textbooks on discrete math-
ematics follow the descriptive approach meaning that the properties of mathematical
structures are listed first while the algorithms to compute corresponding results are
of secondary interest. This textbook follows the algorithmic approach which seems
to be better suited for computer science students: Mathematical structures are intro-
duced and defined using algorithms which are then characterized by their properties
in a second step.

The book covers the material that is essential knowledge for a computer science
student. Starting with propositional and first order logic it discusses sets, relations
and further discrete mathematical structures. It contains a chapter on type theory be-
fore introducing the natural numbers. In the final chapter it discusses how to reason
about programs and gives the basics of computability theory.

Besides a thorough formal presentation the book always gives a convincing mo-
tivation for studying the corresponding structures and explains the main ideas using
illustrations. A well chosen set of exercises rounds off each topic. After studying
the presented material a computer science student will be well prepared for further,
more specialized courses.

Liibeck, Germany Martin Leucker
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Preface

In computer science, as in other sciences, mathematics plays an important role. In
fact, computer science has more in common with mathematics than with the tradi-
tional sciences. Consider physics, for example. Clearly, mathematics is right at the
core of the subject, used to describe models which explain and predict the physical
world. Without mathematics, most of modern physics would have been impossi-
ble to develop, since a purely qualitative analysis does not allow one to reason and
deduce what logically follows from an observation or a hypothesised model. No
manner of qualitative reasoning would have enabled Newton to formulate his law
of gravity based on Kepler’s claims about planetary motion. Computer science also
exploits mathematical reasoning in a similar manner. Given a computer system, one
can apply mathematical reasoning to prove that it will always calculate your pay-
check correctly.

However, the link is even tighter than this. Computer science is a direct descen-
dant of mathematics, and computers are nothing but the physical embodiment of
mathematical systems developed long before the first modern computer was even
conceived, let alone built.

In this book, we will be exploring the foundational mathematics which is neces-
sary for the understanding of more advanced courses in computer science. Whether
you are designing a digital circuit, a computer program or a new programming lan-
guage, mathematics is needed to reason about the design—its correctness, robust-
ness and dependability.

There are two distinct approaches used to present mathematical concepts and
operators. In the first approach concepts and operators are defined in terms of prop-
erties which they satisfy. Based on these definitions, ways of computing the result of
applying these operators are then developed and proved to be correct. In contrast, in
computer science frequently one takes the opposite approach—one starts by defin-
ing ways of calculating the result of an operator, and then proves that the operator
one knows how to compute satisfies a number of properties. The two approaches are,
in the end, equivalent. However, given that this book is aimed at computer science
students, the latter approach is usually adopted.
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< Preface

Finally, most sections are accompanied by exercises which are usually necessary
as part of the learning process. Learning mathematics is surprisingly like learning
to ride a bicycle. You must try to write formal expressions and proofs before you
really understand the concepts you read about. Some of the concepts covered in
this book may initially appear to be difficult. However, as you progress through the
book and familiarise yourself with the concepts, you will hopefully start requiring
less effort to follow the definitions and proofs, and begin to enjoy the beauty of how
various concepts in mathematics can be built and reasoned about, based on just a
small number of basic concepts.

Buenos Aires, Argentina Gordon J. Pace
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