
Computing Boundary Element Method’s
Matrices on GPU

Samar Vafai1, Martin Schanz2 and Gundolf Haase3

1 Institute of Mathematics and Scientific Computing, University of Graz
2 Institute of Applied Mechanics, Graz University of Technology

3 Institute of Mathematics and Scientific Computing, University of Graz??

Abstract. Matrices resulting from the boundary element method are
dense and computationally expensive. To speed up the computational
time, the matrix computation is done on GPU. The parallel processing
capability of the Graphics Processing Unit (GPU) allows us to divide
complex computing tasks into several thousands of smaller tasks that can
be run concurrently. We achieved an acceleration of 23−43 in comparison
to a computation performed on the CPU, serially.

1 Introduction

Wave propagation is an important topic in engineering sciences, especially, in
the field of solid mechanics. Applications of wave phenomena can be found in
nearly in every field of engineering. In non-destructive testing, disturbances of
travelling waves are measured to identify cracks or inclusions in the material.
In the field of mining, blasting introduces intense stress waves to burst rocks or
parts of it. Seismic waves are used to study the interior construction of the earth.
Waves produced by earthquakes can cause tremendous destruction in buildings
or other man made constructions. Therefor, knowledge is necessary how waves
propagate in soil to prevent buildings or dams from destruction [1].

This short, certainly incomplete listing shows the importance of wave prop-
agation problems in engineering mechanics. To tackle such problems correctly
will lead to an improvement of constructions and higher quality of living by
protecting houses from tremors [1].

In this study, the wave propagation in the elastic material (elastodynamics)
is taken into account. This physical phenomena can be well described by the
Lamé-Navier equation. To solve this equation numerically, the boundary element
method is implemented. The resulting linear system of equations needs to be set
up and solved several times, for different frequencies. The large, dense matrices
appearing in this linear system of equations are computationally expensive.

To speed up the computational time, the matrix computation is done on
GPU. The parallel processing capability of the Graphics Processing Unit (GPU)
allows us to divide complex computing tasks into several thousands of smaller

?? The final publication is available at
http://link.springer.com/chapter/10.1007%2F978-3-642-29843-1 39

tasks that can be run concurrently. We achieved an acceleration of 23 − 43 in
comparison to a computation performed on the CPU, serially.

2 Problem Setting

In an elastic body Ω ⊂ IR3 with a Lipschitz boundary Γ = ΓD ∪ΓN and a fixed
final time T ∈ IR+ the following mixed initial boundary value problem has to be
solved:

−(µ+ λ)∇∇.u(x, t)− µ∆u(x, t) + ρ
∂2u

∂t2
(x, t) = 0 (x, t) ∈ Ω × (0, T) (1)

u(y, t) = gD(y, t) (y, t) ∈ ΓD × (0, T)

t(y, t) := τyu(y, t) = gN (y, t) (y, t) ∈ ΓN × (0, T)

u(x, 0) = ∂u
∂t (x, t) (x, t) ∈ Ω × (0)

The surface displacements u(x, t) and tractions t(x, t) are prescribed by some
given data gD(x, t) on ΓD and gN (x, t) on ΓN , respectively. The traction oper-
ator τx reads as

(τxu)(x, t) = (σ.n)(x, t) (2)

with the stress tensor σ(x, t) incorporating Hooke’s law and the outward normal
vector n(x) on the boundary Γ . The Lamé constants µ and λ are connected to
the modulus of elasticity E and Poisson’s ratio ν

µ =
E

2(1 + ν)
, λ =

νE

(1 + ν)(1− 2ν)
(3)

whose physical significance is more immediate [3].

3 Numerical Schemes

The boundary element method is implemented on equation (1). To do the space
discretization the collocation technique and for time discretization the Convolu-
tion Quadrature Method (CQM) are applied, and the following final discretized
equation is achieved:

V (sl)tl −K(sl)ul = Cul . (4)

The equation (4) consists of N elliptic problems for the complex ‘frequency‘
sl, l = 0, 1, ..., N − 1, where N is the total number of time steps.

The entries of the matrices V (sl) andK(sl) come from the following formulas:

V (sl) =

E∑
e=1

F∑
f=1

∫
Γe

Û∗
ij(x, y, sl)N

f
e (x) dΓe (x ∈ Γe) (5a)

K(sl) =

E∑
e=1

F∑
f=1

∫
Γe

T̂ ∗
ij(x, y, sl)N

f
e (x) dΓe (x ∈ Γe) (5b)

where E is the number of boundary elements (Γe) on the mesh and F is
the number of vertices belonging to each element. Here, the boundary elements
are triangles. The Û∗

ij(x, y, sl) and T̂ ∗
ij(x, y, sl) are the displacement and traction

fundamental solutions, respectively. The fundamental solutions in this case are
expressed as tensors. Nf

e (x) is the basis function defined on each element. y is the
collocation point. Γe is the boundary element where the integral is computed on.
C is a diagonal matrix corresponding to the singularity appears when formulating
the integral equations and all its entries are added to the diagonal elements of
the matrix K.

The integrals appear in equations (5a, 5b) must be solved numerically. All
regular integrals are performed with Gaussian quadrature formulas. The strong
singular integrals are performed with the method from [2] and the weak singular
ones with polar coordinate transformation.

For simplicity of presentation, we restrict ourselves in the numerical example
to the case of regular integrations. The implementation of the singular integrals
will be similar with respect to GPU acceleration. We also restrict ourselves to
the 79 number of Gauss points per element for presentation purposes.

After implementing the Gauss quadrature method on equations (5a, 5b), we
will have the following formulas:

V (sl) =

E∑
e=1

F∑
f=1

G∑
g=1

Û∗
ij(xg, y, sl)N

f
e (xg)Wg|Gram| (6a)

K(sl) =

E∑
e=1

F∑
f=1

G∑
g=1

T̂ ∗
ij(xg, y, sl)N

f
e (xg)Wg|Gram| (6b)

here G, xg, Wg and |Gram| are the total number of Gauss points in each
element, the Gauss point, the quadrature weight and the Gram determinant,
respectively.

4 Parallel Computing Approach

In the large scale problems, where the same computations must be done several
times and at the same time these computations are computationally expensive,
the parallel computing can play a role to overcome these bottlenecks.

Parallel computing is a form of computation in which many calculations are
carried out simultaneously, operating on the principle that large problems can
often be divided into smaller ones, which are then solved concurrently (”in par-
allel”). Among different possible parallel computing approaches, here GPGPU
programming is adopted.

For the purpose of GPU programming, the CUDA hardware and software
architecture is implemented. The graphical card in this case is NVIDIA GeForce
GTX 480.

4.1 Parallel Algorithm

To compute the matrices V (sl) and K(sl), appearing in the equations (6a, 6b),
on GPU, the 2D grid is taken into account. In this case, the thread block is also
defined in 2D. If, as an example, the number of threads in each thread block is
chosen as 64, 8 in each direction x and y, the number of thread blocks in the
x-direction will be equal to the number of elements (on the geometrical mesh)
divided by 8. The same is true for the number of thread blocks in the y-direction
which is derived by splitting the number of collocation points into 8 equal parts.
The grid configuration for this case is depicted in figure 1.

Fig. 1. The grid of thread blocks: it shows how the grid configuration looks like in the
given parallel algorithm.

All these computations
∑G
g=1 Û

∗
ij(xg, y, sl)N

f
e (xg)Wg|Gram| and∑G

g=1 T̂
∗
ij(xg, y, sl)N

f
e (xg)Wg|Gram| appeared in equations (6a, 6b) are done on

each thread. In other words, all the computations corresponding to the pair
combination of one element and one collocation point are performed on one
thread. In addition, the same collocation point is used for all the thread blocks
on the same row and to get access to the corresponding collocation point the

blockIdx.y indexing is used. The blocks on the same columns deals with the
computations of the same element but different collocation points.

At the end, 3 number of 3× 3 matrices are computed on each thread corre-
sponding to each vertex of the same element (on the mesh). Then, these results
must be stored in the correct place in the given matrices V (sl) and K(sl). To
do that, the values computed on each thread corresponding to the same node on
the geometrical mesh are summed up and stored in the position corresponding
to that node in the given matrix on the global memory. The global memory has
enough storage space, so the V (sl) and K(sl) matrices are stored there.

Since all the threads in the same thread blocks need to read the local coor-
dinates of the Gauss points and the quadrature weight values repeatedly in a
loop over the Gauss points and with respect to the fact that having access to
the data stored on the shared memory is much more faster than the data on the
global memory, to gain benefit out of it, all these values are stored in the shared
memory .

To clarify what was explained earlier, part of the code is put here:

int main ()
{

. . .
//2D b l o c k −− 64 threads in each b l o c k
dim3 dimBlock (8 , 8) ;
//num 1 : number o f e lements
//number o f b l o c k s in the x−d i r e c t i o n
const int num block x = c e i l (num 1 / 8) ;
//num: number o f c o l l o c a t i o n po in t s
//number o f b l o c k s in the y−d i r e c t i o n
const int num block y = c e i l (num/ 8) ;
dim3 dimGrid (num block x , num block y) ; //2D Grid

//on the dev i c e (GPU)
matrix element<<<dimGrid , dimBlock >>>(. . .) ;

cudaThreadSynchronize () ;
. . .
return (0) ;
}

g l o b a l void matr ix e lement (. . .)
{

#d e f i n e L 79

cuDoubleComplex U [9] ;
double r e s u l t , gram y ;
cuDoubleComplex r e su l t comp l ex ;
int elementId , c o l l o c a t i o n I d ;

cuDoubleComplex sum [9] ;
.
// s t o r i n g the Gauss po in t s on the shared memory :

s h a r e d double x [L ∗ 2] ;
for (int i =0; i<(L∗2) ; i++)

x [i] = ∗(x d+i) ;

s h a r e d double quad weight [L] ;
for (int i =0; i<L ; i++)

quad weight [i] = ∗(quad weight d+i) ;

for (int i =0; i <3; i++)
{
for (int j =0; j <3; j++)
{
sum [i ∗3+ j] = make cuDoubleComplex (0 . 0 , 0 . 0) ;
U[i ∗3+ j] = make cuDoubleComplex (0 . 0 , 0 . 0) ;
.
}

}

//Loop over a l l Gauss po in t s in each element
for (int l =0; l<L ; l++)
{
//Eva luate the shape func t i on :
evaluateShapeFun (r e s u l t , x , l) ;

//Mu l t i p l y i n g the we igh t f unc t i on wi th the shape
// func t i on :
r e s u l t = r e s u l t ∗quad weight [l] ∗ (0 . 5) ;

//Gram determinant −−− i s the mapping func t i on
// from the r e f e r ence element to the r e a l e lement :
Gram determinant (gram y , . . .) ;

//Mu l t i p l y i n g the r e s u l t wi th the gram determinant :
r e s u l t ∗= gram y ;

// change the r e s u l t from doub le to cuDoubleComplex :
r e su l t comp l ex = make cuDoubleComplex (r e s u l t , 0 . 0) ;

// S ing l e l a y e r fundamental s o l u t i o n
//Tensor wi th 9 e lements in 3D−−U
//x : Gauss po in t
evaluateFundSol SLP (U, . . . , x , l) ;

// Mu l t i p l i c a t i o n o f a l l the e lements t a k ing par t i n t o
// the computat ions . sum i s the matrix e lement
// corresponding to each node and c o l l o c a t i o n po in t :
for (int i =0; i <3; i++)
{
for (int j=i ; j <3; j++)

sum [i ∗3+ j] += cuCmul (U[i ∗3+ j] , r e su l t comp l ex) ;
}

sum [3] = sum [1] ;
sum [6] = sum [2] ;
sum [7] = sum [5] ;

s ync th r ead s () ;
.
}

//A i s the f i n a l square matrix on g l o b a l memory .
//Plug the va lue o f sum in to the A matrix .
//The va lue o f the same node/ v e r t e x on d i f f e r e n t th reads
//summed up t o g e t h e r and i n s e r t i n t o the corresponding
//matrix e lement :
e lementId = (threadIdx . x+1)+(blockDim . x∗ blockIdx . x) ;
e lementId = c o n n e c t i v i t y m a t r i x d [(elementId −1)∗3] ;
c o l l o c a t i o n I d = (threadIdx . y+1)+(blockDim . y∗ blockIdx . y) ;
e lementId = (elementId −1)∗3;
c o l l o c a t i o n I d = (c o l l o c a t i o n I d −1)∗3;
c o l l o c a t i o n I d = (c o l l o c a t i o n I d ∗3∗(∗N))+ elementId ;
for (int i =0; i <3; i++)
{
for (int j =0; j <3; j++)

A[c o l l o c a t i o n I d +(3∗(∗N)∗ j)+ i] += sum [i +(3∗ j)] ;
}
sync th r ead s () ;

.
} ;

5 Numerical Examples

Equation (1) is solved for the special case where a steel rod, which is fixed from
one end and free from the other side, is excited by pressure P in its longitudinal
direction. The code is run for 10 number of time steps and ∆t = 0.01 on both
CPU and GPU, separately and the elapsed time for each case corresponding to
different number of mesh elements is measured. These values are tabulated in
table 1.

Table 1. Elapsed time (seconds)-Number of time steps= 10, ∆t = 0.01

Number of elements CPU GPU

12 0 0.00231
112 0.22 0.00512
822 7.66 0.275237
3288 103.97 4.46914

6 Conclusion

As it can be seen in table 1, the computations done on GPU are 23− 43 times
faster than the CPU ones. We tried to increase this ratio number of arithmetic

memory transfer ,
by performing all the computations corresponding to one element and one col-
location point on one thread and putting all those data used repeatedly by all
threads of the same thread blocks in the shared memory.

In this case, the number of threads in each thread block is chosen to be 64,
but it is going to be increased to 128 and 256, respectively.

We expect to improve the acceleration of the code further, by using the
registers and other fast access memory (shared memory) in more efficient way
and at the same time looking for the best distribution of the computations among
the available threads and thread blocks. We are going to see whether all these
changes can improve the acceleration any further more.

References

1. Schanz, M.: Wave Propagation in Viscoelastic and Poroelastic Continua: A Bound-
ary Element Approach, volume 2 of Lecture Notes in Applied Mechanics (2001)

2. Guiggiani, M., Gigante, A.: A general algorithm for multidimensional cauchy prin-
cipal value integrals in the boundary element method. J. of Appl. Mech. 57 (1990)
906–915.

3. Schanz, M.: On a Reformulated Convolution Quadrature Based Boundary Element
Method. Computer Modeling in Engineering and Sciences. 58 (2010) 109–128.

4. NVIDIA Programming Guide Documents

