
Efficiency Optimizations for Implementations of

Deadlock Immunity

Horatiu Jula, Silviu Andrica, and George Candea

School of Computer and Communication Science
École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Abstract. Deadlock immunity is a property by which programs, once afflicted
by a deadlock, develop resistance against future occurrences of that deadlock.
Our deadlock immunity system, called Dimmunix, provides transparent immu-
nization against deadlocks involving mutex locks.
In this paper, we focus on efficiently protecting systems against deadlocks re-
gardless of the rate of synchronization operations performed. We describe five
optimizations that reduce the runtime overhead imposed by Dimmunix on the
host system: (1) offline deadlock detection and signature extraction, which avoids
runtime tracking of lock-to-thread allocations; (2) selective program instrumenta-
tion, whereby only vulnerable synchronization statements are monitored; (3) in-
line matching of deadlock signatures, which avoids expensive call stack retrieval;
(4) false positive reduction, which avoids unnecessary thread serialization; and
(5) safe early resumption of threads, allowing suspended threads to resume their
execution more quickly than in the original Dimmunix. Our optimizations en-
able Dimmunix to achieve a reduction of 2.8x-5.2x in the runtime overhead it
introduces for real-world systems like Eclipse, Vuze, and MySQL JDBC.

1 Introduction

When threads do not coordinate correctly in their use of locks, a deadlock can occur—
a situation whereby a group of threads cannot make progress (i.e., they hang), because
each thread is waiting for another thread to release a lock. Although deadlocks involving
other types of synchronization mechanisms exist (e.g., deadlocks caused by condition
variables) deadlocks involving locks are prevalent [4, 2, 7].

Deadlocks are an important cause of system failures, as revealed by multiple sur-
veys [4, 2, 7], yet avoiding their introduction during development is challenging. Large
software systems are developed bymany programmers, which makes it hard to maintain
the coding discipline needed to avoid deadlocks. Exercising all possible execution paths
and thread interleavings during testing is infeasible in practice for large programs, and
even deadlock-free code is not guaranteed to execute free of deadlocks once deployed
in the field, due to dependencies on deadlock-prone third party libraries and plugins.

Debugging deadlocks is hard—merely seeing a deadlock happen does not mean
the bug is easy to fix. Deadlocks often require complex sequences of low-probability
events to manifest (e.g., timing or workload dependencies, presence or absence of debug
code, compiler optimization options), making them hard to reproduce and diagnose.
Sometimes deadlocks are too costly to fix, because a fix would entail drastic redesign.

candea
Typewritten Text
Appears in Proc. Intl. Conference on Runtime Verification (RV), San Francisco, CA, September 2011

candea
Typewritten Text

candea
Typewritten Text

candea
Typewritten Text

candea
Typewritten Text

Patches, too, are error-prone: many concurrency bug fixes either introduce new bugs or,
instead of fixing the underlying bug, merely decrease the probability of occurrence [4].

To address these problems, we developed a technique called deadlock immunity [3].
It helps applications defend against deadlocks by enabling them, once afflicted by a
given deadlock, to automatically develop resistance against future occurrences of that
deadlock. We implemented this technique in a system called Dimmunix, which has two
modules running simultaneously: (1) a detector that dynamically detects deadlocks and
extracts their signatures, and (2) an avoidance module that uses the signatures as anti-
bodies to avoid future occurrences of these deadlocks. A signature is an approximation
of the execution flow that led to a deadlock. To avoid a previously encountered dead-
lock, Dimmunix temporarily suspends the threads whose executions are about to match
the signature of that deadlock.

The challenge of efficiently scaling Dimmunix to synchronization-intensive systems
resides in its necessity to process every lock operation. A high synchronization rate
creates a large amount of work for Dimmunix, causing it to induce a high runtime
overhead. In this paper, we describe optimizations that are generally applicable to all
runtimes implementing deadlock immunity. These optimizations enable the runtimes to
protect systems against deadlocks regardless of the rate of synchronization operations.

We present five main optimizations for runtimes implementing deadlock immu-
nity: (1) offline deadlock detection, i.e., deadlocks are detected and their signatures ex-
tracted only when the program terminates, instead of performing these tasks whenever a
thread requests a lock; (2) selective program instrumentation, whereby only vulnerable
synchronization statements are monitored; (3) inline matching of deadlock signatures,
which avoids expensive call stack retrieval; (4) false positive reduction, which avoids
unnecessary thread serialization; and (5) safe early resumption of threads, allowing sus-
pended threads to resume their execution more quickly than in the original Dimmunix.

We implemented these optimizations in Dimmunix and achieved a reduction of
2.8x-5.2x in the runtime overhead Dimmunix introduces for real world systems like
Eclipse, Vuze, and MySQL JDBC.

In the rest of the paper we present background information about Dimmunix (§2),
then describe the optimizations (§3), and assess their effectiveness (§4). We then review
related work (§5) and conclude (§6).

2 Background

Deadlock immunity is a property by which programs, once afflicted by a deadlock, de-
velop resistance against future occurrences of that deadlock. Dimmunix [3] provides
immunization against deadlocks involving mutex locks, with no assistance from pro-
grammers or users. Dimmunix can be used by customers to defend themselves against
deadlocks while waiting for a fix, and by software vendors as a safety net. Its architec-
ture consists of two parts: (1) a module that detects deadlocks and adds their signatures
to a persistent deadlock history, and (2) an avoidance module that prevents occurrences
of previously encountered deadlocks, by avoiding execution flows matching signatures
from history: whenever the execution of a thread may lead to a previously encountered
deadlock, Dimmunix suspends that thread until the deadlock danger passes.

Dimmunix detects and avoids deadlocks by taking control of the programwhenever
a thread requests a lock, after it acquires that lock, and before it releases that lock. Dim-
munix uses these events to update the synchronization state of the program, represented
as a resource allocation graph (RAG) whose nodes are threads and locks. The RAG
edges are of three types: an edge from a thread t to a lock l denotes that t is waiting to
acquire l; an edge from l to t denotes that t is holding l; an edge from a thread t1 to a
thread t2 means that Dimmunix suspended t1 because of t2, in order to avoid a deadlock.
Edges are annotated with the call stack a thread had when the edge was created.

Dimmunix detects deadlocks by looking for cycles in the RAG every time a thread
requests a lock, and if a cycle is found, it saves the deadlock’s signature to a persistent
history, to prevent future occurrences of this deadlock. A signature characterizes the
deadlocking execution via the program positions of the nested synchronization state-
ments it involves. A program position represents a location in the source code or an
offset in the program binary; for Java programs, Dimmunix uses source code locations.
We call the nested synchronization statements involved in the deadlock “outer” and
“inner” lock statements. The outer lock statements correspond to the acquisitions of
the locks involved in the deadlock. The inner lock statements correspond to the places
where the threads deadlocked. Since these statements can be reached by a multitude
of program executions, of which only a few deadlock, Dimmunix additionally saves in
the deadlock signature the call stacks the deadlocked threads had when they acquired
the locks involved in the deadlock (called “outer call stacks”) and the call stacks the
deadlocked threads had at the time of the deadlock (called “inner call stacks”). Each
frame of an outer/inner call stack is a program position; the top frame points to a syn-
chronization statement. The top frame of an outer (inner) call stack points to an outer
(respectively inner) lock statement.

Imagine a deadlock involving threads t1 and t2 that have acquired locks l1 and l2,
respectively, and now wait to acquire the other lock. This deadlock appears in the RAG

as the cycle l1
CSout1−→ t1

CSin1−→ l2
CSout2−→ t2

CSin2−→ l1, and the signature of the deadlock consists of
the pairs of outer and inner call stacks, i.e., {(CSout1 ,CSin1),(CS

out
2 ,CSin2)}. The signature

is saved to a history file that persists across multiple executions of the program.

An instantiation of a signature S with outer call stacks CSout1 , ...,CSoutn is a situation
where threads t1, ..., tn hold (or are allowed to acquire) locks l1, ..., ln while having call
stacks CSout1 , ...,CSoutn . Each outer call stack CSouti is matched up to a predefined depth,
called matching depth, defined as the number of consecutive frames in CSouti to be
matched against a thread’s call stack, starting from the top frame.We formally represent
the instantiation as the set I = {(t1, l1,CS

out
1), ...,(tn, ln,CS

out
n)}.

Avoiding previously seen deadlocks consists of avoiding instantiations of signatures
from the deadlock history. Consider that thread t1 requests lock l1 while having call
stack CSout1 . To avoid instantiations of signature S, Dimmunix first “pretends” to allow
t1 to acquire l1, i.e., it does not allow t1 to proceed, but it updates the RAG as if it did.
Then, Dimmunix checks if instantiations of S are possible; if yes, Dimmunix suspends
t1 until no instantiations of S are possible. When Dimmunix suspends a thread, we say
that the thread “yields.”

Dimmunix automatically handles avoidance-induced deadlocks: when one occurs,
Dimmunix saves its signature (so it will avoid its reoccurrence, just like for a normal
deadlock) and resumes the suspended threads. More details appear in [3].

3 Optimizations

In this section, we present the optimizations we performed to Dimmunix to achieve
low runtime overhead for Java programs regardless of the synchronization operation
throughput. There are three improvements that we achieve: first, we reduce the number
of synchronization operations that are intercepted by Dimmunix. Second, we optimize
Dimmunix’s performance-critical computations. Third, we reduce the amount of time
Dimmunix suspends threads to avoid deadlocks.

For Dimmunix to intercept fewer synchronization operations, we needed to imple-
ment two optimizations: first, Dimmunix detects deadlocks and extracts their signatures
offline, when the program is forcefully terminated. To detect deadlocks, Dimmunix in-
vokes the JVM’s deadlock detection method. Previously, Dimmunix used online dead-
lock detection, i.e., the RAG was updated upon each synchronization operation and
the deadlock detection was performed periodically [3]; therefore, Dimmunix needed to
intercept every synchronization operation.

We implemented the offline signature extraction for deadlocks involving synchro-
nized blocks/methods. Upon a deadlock, Dimmunix automatically infers the outer call
stacks of a deadlock signature from the inner call stacks, which are available at the time
of the deadlock. Previously, Dimmunix retrieved and stored upon each lock acquisition
the call stack of the thread that requested the lock [3]. Section 3.1 presents details about
the inference of outer call stacks.

Second, Dimmunix instruments only the synchronized blocks/methods previously
involved in deadlocks. This optimization is effective because most of the mutex syn-
chronization statements (i.e., lock/unlock statements) are synchronized blocks/methods
(e.g., more than 96% in Vuze, ActiveMQ, Limewire, and JBoss, and 58.3% in Eclipse)
and only the ones previously involved in deadlocks are instrumented. Section 3.2 de-
scribes the selective program instrumentation.

We identified one performance-critical computation in Dimmunix: the matching of
deadlock signatures’ call stacks. Most of the computations are involved in checking
whether a previously encountered deadlock is about to reoccur. Previously, Dimmunix
used standard call stack retrieval methods (e.g., Java’s Thread.getStackTrace()method)
to obtain the call stack of a thread upon a lock acquisition and compared it to the call
stacks of the signatures in the history [3]. Dimmunix spent most of the execution time
in the call stack retrieval. We optimized it by inlining the call stack matching (§3.3).

Finally, we reduce the amount of time Dimmunix suspends threads to avoid dead-
locks (i.e., the thread serialization), by performing two optimizations: first, Dimmunix
automatically detects a posteriori if the decisions to suspend threads to avoid deadlocks
were false positives (FPs), and increases the signature matching accuracy whenever
a FP is encountered (§3.4). Increasing the matching depth for a signature reduces the
probability of matching the signature at runtime, which means that thread yields are less
frequent; therefore, the amount of thread serialization decreases. We already introduced

in [3] the FP detection mechanism; however, this paper is the first one explaining it in
depth. Second, Dimmunix resumes the threads suspended to avoid deadlocks as soon as
the program execution reaches a point from which the deadlock situation becomes un-
reachable, i.e., the inner lock statements involved in the deadlock become unreachable
(§3.5). Resuming threads earlier reduces the duration of the yields, which means less
thread serialization. Previously, Dimmunix resumed the suspended threads only when
at least one lock involved in an avoided signature instantiation was released [3].

3.1 Inferring the Outer Call Stacks of a Signature

To be able to selectively instrument only the synchronized blocks/methods previously
involved in deadlocks, Dimmunix needs to automatically infer the outer call stacks of
a deadlock signature from the inner call stacks, which are available at the time of the
deadlock. Otherwise, Dimmunix would have to retrieve and store the call stack of the
caller thread upon each lock acquisition.

To deterministically infer the outer call stack of a signature, we require usage of
properly nested synchronization statements, i.e., locks are released in the reverse order
of their acquisitions. For example, this is the case for Java’s synchronized blocks/methods,
but the technique is not limited to these only. Properly nested synchronization state-
ments enable us to deterministically obtain the outer call stacks of a signature from
inner call stacks by removing frames from the top of the latter, because the outer call
stacks are prefixes of the inner call stacks.

Inferring outer call stacks works as follows: first, Dimmunix finds the threads that
acquired the locks involved in a deadlock, as described in Algorithm 1. This requires
access to each thread’s lock stack, which contains the locks that thread acquired (and
still holds) and the requested one on top. For Java programs, these stacks are obtained
from the JVM. For each lock li involved in the deadlock, Dimmunix finds the program
position where lock li was acquired. It is not possible to infer this program position
based solely on the information provided by the CFG, because the CFG does not contain
lock identities. Therefore, Dimmunix needs to find the index k j of lock li in the lock
stack LSj of thread t j owning li (lines 1–4). Next, Dimmunix finds where thread t j
acquired li (i.e., its k j-th lock), by exploring backward the CFG the application and
popping call frames from the inner call stack, as shown in Algorithm 2 (lines 8–12).
Every time a lock (respectively unlock) statement is encountered, the counter knesting
storing the nesting level is incremented (respectively decremented); initially, knesting = 0

(lines 1–7). The outer lock statement is reached when knesting = kj, and the algorithm
returns the current call stack with the top frame replaced by the current lock statement
(lines 4–5). The algorithm is deterministic because exploring backward any execution
path leads to the same outer lock statement.

3.2 Selective Program Instrumentation

Dimmunix instruments only the synchronized blocks/methods previously involved in
deadlocks. To avoid previously encountered deadlocks, it is sufficient for Dimmunix to
instrument only these statements.

Input: Deadlocked threads t1, ..., tn with call stacksCSinner1 , ...,CSinnern , lock stacks
LS1, ...,LSn, and requested locks l1, ..., ln.

Output: Signature S= {(CSouter1 ,CSinner1), ...,(CSoutern ,CSinnern)}, where CSouteri are the
inferred outer call stacks.

foreach i ∈ [1,n] do1

Let t j be the thread holding li2

Find the index k j of li in LS j , corresponding to li’s acquisition3

foreach i ∈ [1,n] do4

CSouteri := getOuterCallStack(CSinneri ,ki,CS
inner
i .top,0)5

return {(CSouter1 ,CSinner1), ...,(CSoutern ,CSinnern)}6

Algorithm 1: getSignature: building the signature of a deadlock.

Input: Inner call stackCSinner; Lock stack index k; Current statement s, initially the
statement corresponding toCSinner’s top frame; Current nesting level knesting,
initially 0.

Data: Control flow graph (CFG) of the method containing s.
Output: Inferred outer call stackCSouter.
if there exists an unexplored predecessor s′ of s in the CFG then1

if s′ is lock acquisition then2

knesting := knesting+13

if knesting = k then4

return CSinner.pop().push(s′) // replace the top frame with s′5

if s′ is lock release then6

knesting := knesting−17

return getOuterCallStack(CSinner ,k,s′,knesting)8

else9

CSinner := CSinner.pop() // remove the top frame10

return getOuterCallStack(CSinner ,k,CSinner.top,knesting)11

Algorithm 2: getOuterCallStack(CSinner,k,s,knesting): recursively computes the outer
call stack corresponding to an inner call stack CSinner and a lock stack index k.

Dimmunix instruments the outer and inner lock statements involved in a dead-
lock (i.e., the program positions referenced by the top frames of the deadlock’s signa-
ture), and the corresponding unlock statements. Since synchronized blocks are properly
nested, the unlock statements corresponding to a lock statement sl are easily found by
exploring forward the CFG and keeping track of the nesting level. Matching lock and
unlock statements have the same nesting level.

The outer call stacks of a deadlock signature cannot be inferred deterministically
(in the general case) for explicit lock acquisition statements, like Java’s Reentrant-

Lock.lock() Therefore, Dimmunix needs to intercept each explicit lock acquisition and
store the call stack of the caller thread, in order to obtain the outer call stacks. How-
ever, since Java programs mostly use synchronized blocks/methods to acquire locks,
the amount of instrumentation is substantially reduced for Java programs.

Input: Outer call stackCS; Depth d. The call frame at depth d inCS is currently matched
by thread t’s execution.

Data: Counter matches[CS, t], initialized to CS.depth.
Output: True ifCS is matched up to its matching depth CS.depth, False otherwise.
if d > CS.depth then1

return False2

if d = CS.depth then3

matches[CS, t] := d−14

else5

if d = matches[CS, t] then6

matches[CS, t] := matches[CS, t]−17

return matches[CS, t] = 08

Algorithm 3: inlineMatch(CS, d, t): checks whether thread t’s execution, currently
matching the frame at depth d in call stack CS, matches CS up to its matching depth
CS.depth, i.e., matches the top CS.depth frames ofCS.

3.3 Inline Call Stack Matching

A straightforward way to match a signature S is to retrieve the current call stack of
a thread upon a lock request and compare it to the outer call stacks of S up to their
matching depth. If the outer call stacks end in lock statements that execute often, this
matching mechanism becomes a bottleneck, because retrieving call stacks is expensive
for platforms like the JVM. Inlining the call stack matching considerably reduces the
performance overhead incurred by Dimmunix, as we show in §4.

In inline matching, the outer call stacks of a signature are incrementally matched,
as the program executes; we present this mechanism in detail in Algorithm 3. For each
outer call stack CS of a signature in the deadlock history, Dimmunix automatically
instruments the program bytecode before the statements referenced by the frames in
CS with code that works as follows: before a thread t executes such a statement, the
matching code decrements the counter matches[CS, t] (lines 3–7). The counter rep-
resents the number of frames in CS that are yet unmatched by thread t, starting from
CS’s matching depth, i.e., CS.depth; the counter is initialized to CS.depth. The matching
depth CS.depth is initialized and updated by Dimmunix, as shown in §3.4. The match-
ing is successful only if the depth d of the currently matched frame in CS is equal to
matches[CS, t] (line 6). If d = CS.depth, the matching restarts, i.e., the counter is re-
set to d− 1 (lines 3–4). Thread t’s execution matches CS up to CS.depth if and only if
matches[CS, t] = 0 (line 9).

Inline matching means accepting non-contiguous matches, i.e., extraneous frames
in a thread’s call stack are allowed, as long as the frames referenced by a signature are
in the correct order. Dimmunix is oblivious to method calls outside an outer call stack,
because they are not instrumented for matching. Since this matching mechanism is less
accurate than the straightforward one, the number of false positives may increase; how-
ever, the inline matching may protect the application against deadlock manifestations
that are not yet captured by the signature.

3.4 Reducing the Number of False Positives

Approaches that try to predict the future with the purpose of avoiding bad outcomesmay
suffer from false positives (FP), i.e., wrongly predict that the bad outcome will occur.
In Dimmunix, FPs can arise when the outer call stacks of a signature are matched too
shallowly, or when the lock order depends on inputs, program state, etc.

When a FP occurs, Dimmunix serializes threads in order to avoid an apparent im-
pending deadlock that would actually not have occurred; this can have negative effects
on performance, due to a loss in parallelism. Dimmunix “needlessly” serializes a por-
tion of the program execution, causing the program to run slower.

Dimmunix reduces the number of FPs as follows: whenever a deadlock signature S
is avoided, Dimmunix checks if the avoidance of S’s instantiation was a FP. If it was,
then Dimmunix recalibrates the matching accuracy for S.

Detecting False Positives Dimmunix determines whether forcing a thread to yield in-
deed avoided a deadlock or not, by looking for lock inversions after the yield. A false
positive (FP) is a situation where the deadlock could not have happened, under any
thread interleaving, for the current program inputs, even if Dimmunix had not avoided
the deadlock. Since a yield represents the avoidance of a signature instantiation, Dim-
munix associates the notion of false positive with a signature instantiation. Dimmunix
classifies an instantiation I as a FP when no lock inversion occurred after avoiding I.

The following data structures are used for FP detection: in a signature instantiation
I= {(t1, l1,CS1), ...,(tn, ln,CSn)}, Dimmunix keeps for each lock li the set I.locksAcq[li]
of locks acquired while holding li; for each thread t and lock l, Dimmunix stores the set
instances[t, l] of signature instantiations involving t and l that Dimmunix avoided since
t acquired l last time. Dimmunix initializes with null each set I.locksAcq[li] when I is
constructed, and updates the set only when li is released. If a lock li is reacquired before
I is analyzed, Dimmunix does not change the set I.locksAcq[li], i.e., it freezes the set as
soon as li is released. We denote by I.sig the signature instantiated by I.

When a thread t is about to release a lock l, Dimmunix analyzes every signature
instantiation I = {(t1, l1,CS1), ..., (tn, ln,CSn)} from the instances[t, l] set to determine
whether it was a false positive (FP), as illustrated in Algorithm 4. When all the sets
I.locksAcq[li] are non-null, it means that all the locks li have been released, and Dim-
munix analyzes I (line 4). Dimmunix classifies I as a FP if and only if there is no lock
inversion in I, i.e., l1 /∈ I.locksAcq[l2], ..., or ln /∈ I.locksAcq[l1] (lines 5–6).

Classifying an instantiation I as an FP if no lock inversion occurred is sound, under
the assumption that the thread scheduling does not affect lock identities and expressions
controlling the inner lock statements (e.g., through data races).

Calibrating the SignatureMatching Accuracy A signature S captures all the possible
manifestations of a deadlock bug if and only if all the possible signatures of the same
deadlock match S up to the matching depths of its outer call stacks. Choosing too large
matching depths can cause Dimmunix to miss manifestations of the deadlock, while
choosing too shallow ones can lead to mispredicting a runtime call flow as being headed
for deadlock (i.e., a FP).

Input: Thread t releasing l; Set instances[t, l]; Sets I.locksAcq[li] for each instantiation
I = {(t1, l1,CS1), ...,(tn, ln,CSn)} in instances[t, l].

Output: Number of FPs numFPs[S] corresponding to each signature S.
// before releasing l, check if the instantiations avoided by t before l’s acquisition were FPs1

foreach I = {(t1, l1,CS1), ...,(tn, ln,CSn)} ∈ instances[t, l] do2

// if all the locks involved in I were released3

if ∀i ∈ [1,n] : I.locksAcq[li] 6= null then4

if ∃i ∈ [1,n] s.t. li /∈ I.locksAcq[l(i+1)%n] then5

numFPs[I.sig] := numFPs[I.sig]+16

unlock(l)7

Algorithm 4: detectFPs(t, l): checks if the signature instantiations that t avoided last
time it requested l were FPs.

We now describe how Dimmunix calibrates the matching depths at runtime to re-
duce FPs while maintaining effectiveness. When a signature S is created, the matching
depths of its outer call stacks are set to 1. Hence, S initially captures all the possible
manifestations of the deadlock bug. Every time a FP is encountered when avoiding an
instantiation of S, the matching depths of S’s outer call stacks are incremented.

A scenario where dynamically increasing the matching precision helps is one when
an application uses synchronization wrappers, and the lock acquisitions always execute
at the same program position. Keeping the matching depth at 1 serializes all the critical
sections, which is not desirable. Increasing the matching depth dynamically when FPs
are encountered solves this problem.

When the matching depth becomes too large, a signature may not capture all the
possible manifestations of the deadlock bug, because there may exist other signatures
of the same deadlock bug ending in call stack suffixes that no longer match S. To prevent
this situation, Dimmunix merges signatures.

Dimmunix merges the signature S′ of a new manifestation of a deadlock bug with
the existing signature S of the same deadlock as follows: first, it finds the common suffix
of maximum length of the outer call stacks of S and S′. Then, Dimmunix decrements
the matching depths for S’s outer call stacks to this length, and freezes them. Finally,
Dimmunix discards signature S′, to keep the deadlock history at a minimal size. If the
deadlock reoccurs, with another signature S′′, Dimmunix merges S and S′′, and so on.
This way, Dimmunix finds the deepest matching depth for S, while preserving the ability
to avoid all the possible manifestations of the deadlock bug.

From our experience, the number of signatures corresponding to a deadlock bug is
low, the maximum being two. If a deadlock bug has few signatures, it takes few oc-
currences of the deadlock to converge to an optimal matching precision. However, if
a deadlock bug has many manifestations with different outer call stack suffixes, Dim-
munix will most likely need to encounter only a couple of them to fully protect the
application against the deadlock bug, because with each newly discovered signature the
calibration algorithm decreases the matching depth of the original signature.

Input: Signature S, with outer lock statements sout1 , ...,soutn and inner lock statements
sin1 , ...,s

in
n .

Data: Control flow graph (CFG).
Output: The set of escape branches.
escape := /01

foreach i ∈ [1,n] do2

foreach branch statement s ∈ CFG s.t. souti s do3

Let B be the set of branches of s4

if ∃b ∈ B s.t. b sini then5

escape := escape∪{b′ ∈ B | ¬b′ sini }6

return escape7

Algorithm 5: findEscapeBranches(S): finds the escape branches for a signature S.

3.5 Reducing the Yielding Time

To reduce the duration of a yield, Dimmunix exploits the branches that escape the dead-
lock, i.e., branches that lead the program away from acquiring the inner lock that trig-
gers the deadlock.When such a branch is taken, Dimmunix stops the avoidance process
by canceling the active yields and preventing future ones, until the lock whose acquisi-
tion triggered the avoidance is released.

Given the outer and inner call stacks of a deadlock signature, Dimmunix stati-
cally detects in the CFG of the application bytecode the “escape branches” that bypass
the deadlock; we illustrate this mechanism in detail in Figure 5. To determine these
branches, Dimmunix first finds the “critical branches” that need to be taken in order
to reach the inner lock statements from the outer lock statements (lines 3–5). If a con-
ditional statement has one or more critical branches (line 5), the remaining branches
(if any) are escape branches (line 6). We use the notation x y to denote the fact that
statement y is reachable from statement x in the CFG.

Dimmunix inserts code to stop the avoidance process at the escape branches and
right after the inner lock statement, if that statement is not in a loop. Since the deadlock
situation cannot be reached from these positions, the yielding threads can be safely
resumed. If a deadlock occurs due to stopping the avoidance, that deadlock will have
different inner lock statements, and therefore it is a new deadlock bug. A new signature
is constructed for this deadlock.

4 Evaluation

The goal of this section is to assess the performance improvements that result from
employing the five optimizations described above.

First, we evaluate the benefits brought by the optimizations in synchronization-
intensive scenarios on three real-world applications: Eclipse IDE, Vuze BitTorrent client,
and MySQL JDBC. We found that Eclipse and Vuze are synchronization-intensive at
startup: they perform 78,536 and respectively 28,872 synchronization operations per
second. For MySQL JDBC, we used the JDBCBench benchmark, which performs
100,855 synchronization operations per second.

The measurements for the three applications are end-to-end: for Eclipse and Vuze,
we compute the runtime overheads introduced by various Dimmunix configurations
by comparing the time it takes for the application to start and immediately shut down
when Dimmunix is running to the time it takes without Dimmunix; for MySQL JDBC,
we compare the number of transactions performed when Dimmunix is running to the
number of transactions when Dimmunix is not running.

Our experiments exploreDimmunix’s behavior in worst-case scenarios, even though
they are unlikely to manifest during steady state operation. In the original article [3] we
focus instead on realistic steady state scenarios. A worst-case scenario is one with a
high rate of synchronization operations and with deadlock signatures that cover fre-
quently executed nested synchronization statements. For our experiments, we manually
generate 20 such signatures for deadlocks involving two threads. By default, Dimmunix
is configured to use selective instrumentation, FP detection and matching depth calibra-
tion, inline call stack matching, and an initial matching depth of 5.

To measure the benefit of selective instrumentation, we compare the overhead intro-
duced by Dimmunix with and without selective instrumentation. Figure 1a shows that
this optimization reduces the overhead caused by Dimmunix by a factor of 1.3x–1.9x.

 0

 10

 20

 30

 40

 50

 60

 70

 80

Eclipse Vuze MySQL JDBC

O
v
e
rh

e
a
d
 [

%
]

Selective Program Instrumentation
Full Program Instrumentation

(a) Selective program instrumentation.

 0

 10

 20

 30

 40

 50

 60

 70

 80

Eclipse Vuze MySQL JDBC

O
v
e
rh

e
a
d
 [

%
]

Inline Call Stack Matching
Heavy Call Stack Matching

(b) Inline call stack matching.
Fig. 1: Benefit of selective instrumentation and inline call stack matching.

To measure the benefit of the inline call stack matching, we compare the use of
Java’s getStackTrace()method for call stack matching against the default configuration.
As Figure 1b shows, this optimization reduces the runtime overhead by up to 2x.

To measure the usefulness of a high signature matching accuracy, we change the
initial matching depth to 1 in the default configuration. As Figure 2a shows, increasing
the matching depth from 1 to 5 reduces the overhead by a factor of up to 2.6x.

We evaluate the benefit of enabling selective instrumentation and inline call stack
matching together, by comparing the runtime overhead introduced by Dimmunix when
both optimizations are missing against the default configuration. Figure 2b shows that
the effects of the two optimizations compound: together, they reduce Dimmunix’s over-
head by a factor of 2.8x–5.2x. The performance improvement is higher compared to
the sum of the improvements brought by the individual optimizations. The explanation
is that using heavy call stack matching for all the synchronization statements is worse
than using it for only several synchronization statements.

Although the signatures we generated end in program positions where most syn-
chronization operations execute, they are not instantiated often because the applica-
tions’ threads seldom synchronize as described in our signatures. Therefore, the benefit
of automatically detecting FPs and increasing the matching accuracy, and exploiting the

 0

 20

 40

 60

 80

 100

Eclipse Vuze MySQL JDBC

O
v
e

rh
e

a
d

 [
%

]
Matching Depth = 5
Matching Depth = 1

(a) High matching accuracy.

 0

 20

 40

 60

 80

 100

 120

 140

 160

Eclipse Vuze MySQL JDBC

O
v
e

rh
e

a
d

 [
%

]

All Optimizations
No Optimizations

(b) All optimizations.
Fig. 2: Benefit of high matching accuracy and enabling all the optimizations at once.

escape branches is marginal. We evaluate the effectiveness of these two optimizations
on a separate microbenchmark in which signatures are instantiated often.

To dissect Dimmunix’s performance behavior and understand how it varies with
various parameters, we wrote a synchronization-intensivemicrobenchmark that creates
Nt threads that synchronize on locks from a total of Nl shared locks. A thread acquires
a lock by executing one of Np lock acquisition statements, then executes δin statements,
then releases the lock, then executes δout statements, then acquires another lock. The δin

and δout delays are implemented as busy loops that execute incrementation statements,
to simulate computation. The threads call multiple functions within the microbench-
mark so as to build up different call stacks; which function is called is chosen randomly,
generating a uniformly distributed selection of call stacks.

We also wrote a tool that generates synthetic deadlock history files containing H

signatures of size 2 (the usual number of threads involved in a deadlock [4]). The H

signatures cover H lock acquisition statements. If H = Np, then all the lock acquisition
statements in the microbenchmark are instrumented. Each signature has two identical
call stacks that consist of combinations of the microbenchmark’s methods—not signa-
tures of real deadlocks, but avoided as if they were.

Figure 3a shows that the selective program instrumentation is effective for up to 64
signatures. The overhead of Dimmunix with selective instrumentation is 0–6.1% com-
pared to 5.2–16.4% for full instrumentation. With an empty history, there is no over-
head if Dimmunix uses selective instrumentation, while with full instrumentation, the
overhead is already 5.2%, comparable to selective instrumentation with 64 signatures,
because with full instrumentation Dimmunix performs signature matching at program
positions where it is not needed. For more signatures, the overhead increases rapidly.

Figure 3b shows that inline call stack matching considerably reduces performance
overhead: if Dimmunix uses the JVM’s call stack retrieval, the overhead is 26–27%; if
the call stack matching is inlined, the overhead goes down to 4–5%.

Tomeasure the effect of detecting false positives and calibrating the signature match-
ing precision, we first show the effect of false positives (FPs) on performance. A FP
causes a thread to needlessly yield, decreasing the rate of synchronization operations.
Since our microbenchmark has no real deadlocks, all yields are unnecessary. We com-
pute the overhead caused by FPs by comparing the rate of synchronization operations

 0

 50

 100

 150

 200

 250

 300

 350

 400

0 2 4 8 16 32 64 128 256

T
h

o
u

s
a

n
d

s
 L

o
c
k
 O

p
s
 /

 S
e

c
o

n
d

Number of Signatures in History

Nt=500 threads, Nl=10,000 locks, δin=1,000 instr
 δout=50,000 instr, Np=256, match depth=5, suffix depth=10

Baseline
Selective Program Instrumentation

Full Program Instrumentation

(a) Selective instrumentation.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 2 4 8 16 32 64 128 256 512 1024

T
h

o
u

s
a

n
d

s
 L

o
c
k
 O

p
s
 /

 S
e

c
o

n
d

Number of Threads

Nl=10,000 locks, δin=1,000 instr, δout=50,000 instr
 H=10 sigs, match depth=5, suffix depth=10, Np=20

Baseline
Heavy Call Stack Matching
Inline Call Stack Matching

(b) Inline call stack matching.
Fig. 3: Results for selective instrumentation and inline call stack matching.

performed when Dimmunix detects that a deadlock will manifest, but takes no avoid-
ance actions, to the same rate when Dimmunix suspends threads to avoid deadlocks.

Figure 4a shows the results: as the matching depth increases, the overhead induced
by FPs decreases. For a matching depth of 1, the overhead due to FP yields is 121%.
For a matching depth of 4, the overhead due to FP yields drops by 14x, to 8.56%.

 0

 50

 100

 150

 200

1 2 3 4 5 6 7 8 9 10

O
v
e

rh
e

a
d

 [
%

]

Matching Stack Depth

Nt=500 threads, Nl=10,000 locks, δin=50,000 instr
 δout=1,000 instr, H=10 sigs, suffix depth=10, Np=20

False Positive Yields
Dimmunix’s Computations

(a) Overhead due to false positives.

 0

 20

 40

 60

 80

 100

1 2 3 4 5 6 7 8 9 10

O
v
e

rh
e

a
d

 [
%

]

Initial Matching Stack Depth

Nt=500 threads, Nl=10,000 locks, δin=50,000 instr
 δout=1,000 instr, H=10 sigs, suffix depth=10, Np = 20

False Positive Yields
Dimmunix’s Computations

(b) Matching depth calibration.
Fig. 4: Detecting false positives and calibrating the signature matching precision.

 50

 100

 200

 600

 1000

0 10 50 100

T
h

o
u

s
a

n
d

s
 L

o
c
k
 O

p
s
 /

 S
e

c
o

n
d

δescape [Thousands of Instructions]

Nt=500 threads, Nl=10,000 locks, δin=1,000 instr, δout=1,000 instr
 H=10 sigs, match depth=1, suffix depth=10, Np=20

Baseline
Not Exploiting Escape Branches

Exploiting Escape Branches

Fig. 5: Exploiting escape branches.

Figure 4b shows the benefit of in-
creasing the matching accuracy as FPs
are encountered. Compared to the config-
uration used for Figure 4a, here Dimmu-
nix is configured to dynamically calibrate
the matching depths. If we compare the
two figures, the benefit of dynamically
increasing the matching accuracy is ev-
ident: the overhead becomes acceptable
even for an initial matching depth of 1
(i.e., 5.7%).

Figure 5 shows the benefit of exploiting escape branches to reduce yielding time.
The benefit is substantial if (a) the number of instructions on the escape paths that
bypass the deadlock (δescape) is substantially larger than the number of instructions in

the critical section preceding the escape branches, i.e., δin; (b) signatures are instantiated
very often, i.e., the matching depth is low and δout is small; and (c) there are no FPs,
even for shallow matching depths. We disable the matching depth calibration, in order
to simulate the scenario in which there are no FPs. For δescape = 0, there is no benefit in
exploiting escape branches. For δescape = 10,000 (respectively 50,000 and 100,000), the
overhead is 77% (respectively 67% and 50%) when escape branches are not exploited,
compared to 63% (respectively 40% and 32%) when exploiting escape branches.

5 Related Work

There is a spectrum of runtime techniques for avoiding or preventing deadlocks, i.e.,
techniques that (1) statically detect potential deadlocks and avoid them at runtime; (2)
dynamically prevent deadlocks; (3) transparently recover from deadlocks; and (4) tech-
niques that provide deadlock immunity.

Approaches like [1] and Gadara [8] detect potential deadlocks statically and avoid
them at runtime. In [1], authors propose to use new locks, while Gadara uses Petri nets.
If the static analysis has false positives, these approaches make the applications avoid
false deadlock bugs. This is not the case for Dimmunix, because it avoids only previ-
ously detected at runtime. Unlike the two approaches, Dimmunix requires no source
code. Unlike Dimmunix, Gadara needs source code annotations from the developers to
filter out the false positives, yet this is difficult.

A dynamic deadlock prevention technique is [10], which modifies the JVM to seri-
alize threads’ accesses to sets of locks acquired in a nested fashion. There are a couple
of shortcomings of this approach: First, the lock acquired at a particular program loca-
tion can change during the same execution; if it changes often (e.g., it may correspond
to an array element), then [10] is not effective. Every time new locks are used, [10]
has to update the lock sets. Whenever the lock sets are not up to date, the program is
vulnerable to deadlocks. Second, the lock sets are not reusable in future runs: in each
run, [10] will have to restart the learning process from scratch. Dimmunix eliminates
these shortcomings by abstracting the locks involved in a deadlock to call stacks.

Sammati [6] dynamically detects deadlocks and transparently recovers the applica-
tions from deadlocks by executing critical sections in isolation from other threads. If
a deadlock happens during the execution of a critical section, the updates performed
within the scope of that section up to the deadlock are discarded, in effect rolling back
the critical section. Since Sammati is essentially a TM customized for deadlock recov-
ery, the TM challenges (e.g., large critical sections, I/O) apply to Sammati as well.

Deadlock immunity approaches include [5, 9]. These approaches dynamically de-
tect deadlocks, then avoid future occurrences of the same deadlocks. If a deadlock in-
volving threads t1 and t2 and locks l1 and l2 occurs, the two approaches save the program
positions p1 and p2 (where l1 and l2 were acquired) into the signature of the deadlock;
[9] saves, in addition, the positions p′1 and p′2 where t1 and t2 deadlocked. In future runs,
[5, 9] prevent the deadlock from reoccurring by acquiring a “gate lock” every time the
lock statement at p1 or p2 is about to execute. If the lock at p′1 (or p

′
2) can be soundly

inferred at runtime from p1 (respectively p2), [9] swaps the lock acquisitions at p1
and p′1 (respectively p2 and p′2), instead of acquiring a gate lock. The latter avoidance

mechanism is difficult in the general case, because predicting which lock objects will
be used is undecidable. Therefore, speculatively acquiring the lock at p′1 (or p′2) does
not guarantee that the deadlock will be avoided.

Dimmunix shares ideas with [5, 9], but uses a more accurate avoidance mechanism.
Like in these approaches, Dimmunix’s deadlock avoidance mechanism relies on tem-
porarily suspending threads. Dimmunix has fewer false positives, compared to these
techniques, thus alleviating the problem of lost parallelism. Finally, the efficiency of
Dimmunix’s critical-path computations is comparable to acquiring a gate lock.

6 Conclusion

In this paper, we presented the optimizations we brought to Dimmunix, a system that
enables applications to defend themselves against deadlocks.

We reduce the overhead introduced by Dimmunix’s deadlock detection by perform-
ing it offline, when the program terminates. We optimize the deadlock avoidance by
(1) performing selective program instrumentation to confine monitoring to only lock
statements previously involved in deadlocks, (2) inlining the matching of signatures,
(3) reducing the number of false positives, and (4) aborting deadlock avoidance when
the deadlock situation becomes unreachable.

We implemented these optimizations for the Dimmunix prototype targeting Java ap-
plications. Our evaluation shows that these optimizations significantly reduce the over-
head Dimmunix incurs on Java applications.

References

[1] Boronat, P., Cholvi, V.: A transformation to provide deadlock-free programs. In: Intl. Conf.
on Computational Science (2003)

[2] Fonseca, P., Li, C., Singhal, V., Rodrigues, R.: A study of the internal and external effects
of concurrency bugs. In: Intl. Conf. on Dependable Systems and Networks (2010)

[3] Jula, H., Tralamazza, D., Zamfir, C., Candea, G.: Deadlock immunity: Enabling systems to
defend against deadlocks. In: Symp. on Operating Sys. Design and Implem. (2008)

[4] Lu, S., Park, S., Seo, E., Zhou, Y.: Learning from mistakes – a comprehensive study on
real world concurrency bug characteristics. In: Intl. Conf. on Architectural Support for Pro-
gramming Languages and Operating Systems (2008)

[5] Nir-Buchbinder, Y., Tzoref, R., Ur, S.: Deadlocks: From exhibiting to healing. In: Workshop
on Runtime Verification (2008)

[6] Pyla, H.K., Varadarajan, S.: Avoiding deadlock avoidance. In: Proceedings of the 19th inter-
national conference on Parallel Architectures and Compilation Techniques (PACT) (2010)

[7] Song, X., Chen, H., Zang, B.: Why software hangs and what can be done with it. In: Intl.
Conf. on Dependable Systems and Networks (2010)

[8] Wang, Y., Kelly, T., Kudlur, M., Lafortune, S., Mahlke, S.A.: Gadara: Dynamic deadlock
avoidance for multithreaded programs. In: Symp. on Operating Sys. Design and Implem.
(2008)

[9] Zeng, F.: Pattern-driven deadlock avoidance. In: Workshop on Parallel and Distributed Sys-
tems: Testing, Analysis, and Debugging (PADTAD) (2009)

[10] Zeng, F., Martin, R.P.: Ghost locks: Deadlock prevention for Java. In: Mid-Atlantic Student
Workshop on Programming Languages and Systems (2004)

