Skip to main content

Formal Concept Discovery in Semantic Web Data

  • Conference paper
Formal Concept Analysis (ICFCA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7278))

Included in the following conference series:

Abstract

Semantic Web efforts aim to bring the WWW to a state in which all its content can be interpreted by machines; the ultimate goal being a machine-processable Web of Knowledge. We strongly believe that adding a mechanism to extract and compute concepts from the Semantic Web will help to achieve this vision. However, there are a number of open questions that need to be answered first. In this paper we will establish partial answers to the following questions: 1) Is it feasible to obtain data from the Web (instantaneously) and compute formal concepts without a considerable overhead; 2) have data sets, found on the Web, distinct properties and, if so, how do these properties affect the performance of concept discovery algorithms; and 3) do state-of-the-art concept discovery algorithms scale wrt. the number of data objects found on the Web?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American 284(5), 34–43 (2001)

    Article  Google Scholar 

  2. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations, 1st edn. Springer-Verlag New York, Inc. (1997)

    Google Scholar 

  3. Priss, U.: Formal concept analysis in information science. Annual Review of Information Science and Technology 40(1), 521–543 (2006)

    Article  Google Scholar 

  4. Lassila, O., Swick, R.R.: Resource description framework (RDF) model and syntax, version 1, WD-rdf-syntax-971002 (1997)

    Google Scholar 

  5. Kuznetsov, S.O., Obiedkov, S.A.: Comparing performance of algorithms for generating concept lattices. Journal of Experimental & Theoretical Artificial Intelligence 14(2-3), 189–216 (2002)

    Article  MATH  Google Scholar 

  6. Strok, F., Neznanov, A.: Comparing and analyzing the computational complexity of FCA algorithms. In: Proceedings of the Annual Research Conference of the South African Institute of Computer Scientists and Information Technologists (SAICSIT), pp. 417–420. ACM (2010)

    Google Scholar 

  7. Krajca, P., Outrata, J., Vychodil, V.: Parallel recursive algorithm for FCA. In: Proceedings of the 6th International Conference on Concept Lattices and Their Applications (CLA), vol. 433, pp. 71–82. CEUR WS (2008)

    Google Scholar 

  8. Krajca, P., Outrata, J., Vychodil, V.: Advances in algorithms based on CbO. In: Proceedings of the 8th International Conference on Concept Lattices and Their Applications (CLA), vol. 672, pp. 325–337. CEUR WS (2010)

    Google Scholar 

  9. Andrews, S.: In-Close2, a High Performance Formal Concept Miner. In: Andrews, S., Polovina, S., Hill, R., Akhgar, B. (eds.) ICCS-ConceptStruct 2011. LNCS, vol. 6828, pp. 50–62. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  10. Tane, J., Cimiano, P., Hitzler, P.: Query-Based Multicontexts for Knowledge Base Browsing: An Evaluation. In: Schärfe, H., Hitzler, P., Øhrstrøm, P. (eds.) ICCS 2006. LNCS (LNAI), vol. 4068, pp. 413–426. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  11. Maedche, A., Staab, S.: Ontology learning for the Semantic Web. IEEE Intelligent Systems 16, 72–79 (2001)

    Article  Google Scholar 

  12. Cimiano, P., Hotho, A., Staab, S.: Learning concept hierarchies from text corpora using Formal Concept Analysis. Journal of Artificial Intelligence Research 24, 305–339 (2005)

    MATH  Google Scholar 

  13. Völker, J., Rudolph, S.: Lexico-Logical Acquisition of OWL DL Axioms; An Integrated Approach to Ontology Refinement. In: Medina, R., Obiedkov, S. (eds.) ICFCA 2008. LNCS (LNAI), vol. 4933, pp. 62–77. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  14. Formica, A.: Concept similarity in Formal Concept Analysis: An information content approach. Knowledge-Based Systems 21, 80–87 (2008)

    Article  Google Scholar 

  15. Lee, M.C., Chen, H.H., Li, Y.S.: FCA based concept constructing and similarity measurement algorithms. International Journal of Advancements in Computing Technology (IJACT) 3(1), 97–105 (2011)

    Article  MathSciNet  Google Scholar 

  16. Ferré, S.: Conceptual Navigation in RDF Graphs with SPARQL-Like Queries. In: Kwuida, L., Sertkaya, B. (eds.) ICFCA 2010. LNCS, vol. 5986, pp. 193–208. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  17. d’Aquin, M., Motta, E.: Extracting relevant questions to an RDF dataset using formal concept analysis. In: Proceedings of the 6th International Conference on Knowledge Capture (K-CAP), pp. 121–128. ACM (2011)

    Google Scholar 

  18. Bizer, C., Heath, T., Berners-Lee, T.: Linked data - the story so far. International Journal on Semantic Web andInformation Systems 5(3), 1–22 (2009)

    Article  Google Scholar 

  19. Prud’hommeaux, E., Seaborne, A.: SPARQL query language for RDF, W3C Recommendation (2008)

    Google Scholar 

  20. Berners-Lee, T.: Semantic Web - XML2000, Keynote Presentation at XML, Slide 10, Architecture (2000)

    Google Scholar 

  21. Crockford, D.: The application/json media type for JavaScript object notation (JSON), IETF, sec. 6, RFC 4627 (2006)

    Google Scholar 

  22. Clark, K.G., Feigenbaum, L., Torres, E.: SPARQL protocol for RDF, W3C Recommendation (2008)

    Google Scholar 

  23. Carroll, J.J., Dickinson, I., Dollin, C., Reynolds, D., Seaborne, A., Wilkinson, K.: Jena: Implementing the Semantic Web recommendations. In: Proceedings of the 13th International World Wide Web (WWW) Conference on Alternate Track Papers & Posters, pp. 74–83. ACM (2004)

    Google Scholar 

  24. Fielding, R.T., Taylor, R.N.: Principled design of the modern Web architecture. ACM Transactions on Internet Technology 2(2), 115–150 (2002)

    Article  Google Scholar 

  25. Bizer, C., Jentzsch, A., Cyganiak, R.: State of the LOD cloud (2011), http://www4.wiwiss.fu-berlin.de/lodcloud/state/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kirchberg, M., Leonardi, E., Tan, Y.S., Link, S., Ko, R.K.L., Lee, B.S. (2012). Formal Concept Discovery in Semantic Web Data. In: Domenach, F., Ignatov, D.I., Poelmans, J. (eds) Formal Concept Analysis. ICFCA 2012. Lecture Notes in Computer Science(), vol 7278. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29892-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29892-9_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29891-2

  • Online ISBN: 978-3-642-29892-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics