
Conversion of Security Proofs from One Leakage
Model to Another: A New Issue
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Abstract. To guarantee the security of a cryptographic implementation
against Side Channel Attacks, a common approach is to formally prove
the security of the corresponding scheme in a model as pertinent as pos-
sible. Nowadays, security proofs for masking schemes in the literature
are usually conducted for models where only the manipulated data are
assumed to leak. However in practice, the leakage is better modeled en-
compassing the memory transitions as e.g. the Hamming distance model.
From this observation, a natural question is to decide at which extent
a countermeasure proved to be secure in the first model stays secure in
the second. In this paper, we look at this issue and we show that it must
definitely be taken into account. Indeed, we show that a countermeasure
proved to be secure against second-order side-channel attacks in the first
model becomes vulnerable against a first-order side-channel attack in
the second model. Our result emphasize the issue of porting an imple-
mentation from devices leaking only on the manipulated data to devices
leaking on the memory transitions.



1 Introduction

1.1 Context

Side Channel Analysis (SCA for short) is a class of attacks that extracts
information on sensitive values by analyzing a physical leakage during the
execution of a cryptographic algorithm. They take advantage of the dependence
between one or several manipulated value(s) and physical measurements.
Implementations of block ciphers have been a privileged target and a wide
number of countermeasures have been published during the last decade to
protect them [1,4–8,10,12–15,17].

One of the most common techniques to protect block ciphers against SCA
consists in randomly splitting each sensitive value of the processing into several
shares [2,5,14]. These shares must then be propagated throughout the algorithm
in such a way that no intermediate value is key-dependent, making SCA difficult
to perform. This kind of countermeasures can be characterized by the number
of random shares per sensitive variable: a so-called dth-order masking splits
each sensitive value into d+ 1 shares. Theoretically, such a countermeasure can
always be broken by a so-called (d + 1)th-order side channel analysis, where
the adversary is assumed to be able to observe the physical leakage related
to the manipulation of the d + 1 shares. However, in practice the difficulty of
carrying out a higher order SCA increases exponentially with the order. As a
consequence, the use of a first or second order masking scheme is often sufficient
to achieve practical resistance.

When applying masking to protect a block cipher implementation, the most
critical parts to deal with are the non-linear functions, also called s-boxes.
Among the numerous methods that have been proposed in the literature, many
of them have been broken, which has risen the need for a formal analysis of
the security provided by such countermeasures. When the purpose is to thwart
first-order SCA only, a secure and efficient solution is to use pre-computed
look-up tables in RAM [6, 8]. When the countermeasure must also defeat
second-order SCA, there exists no solution which is at the same time secure
and very efficient for any kind of s-box. To the best of our knowledge only the
schemes [4, 12, 14, 15] have a formal proof of security. The schemes proposed
in [4], [12] and [15] are quite efficient but dedicated to the AES s-box only.
In comparison, [14] is less efficient but it can be applied to protect any s-box
implementation. In this paper, we focus on the latter one.

To guarantee the security of a cryptographic implementation against
dth-order SCA or to simply enable comparison between the resistance of several
countermeasures, it is nowadays a common approach to formally prove the
security of a scheme in a model as pertinent as possible. Two different models
are generally considered in the literature. We recall these models hereafter.
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When the device writes a value Z into the memory, the first leakage model
assumes that the leakage L satisfies:

L = ϕ(Z) +B, (1)

with ϕ a (non-constant) function and B an independent gaussian noise with
zero mean. Such a model is said to leak on the manipulated data bits only. For
example the leakage function ϕ is often the Hamming weight (HW) function (or
an affine function of the HW). In that case, we usually speak about Hamming
weight model. A more conservative choice in terms of security is to suppose that
ϕ might be the identity function i.e. the leakage reveals the value of Z.
The second model assumes that the device leaks on the memory transitions when
a value Z is manipulated. In this situation the function ϕ depends on Z but also
on a second value Y corresponding to the initial state of the memory before the
writing of Z. More precisely, we have:

L = ϕ(Z ⊕ Y ) +B. (2)

In the particular case where ϕ is the HW function, the leakage L defined in
(2) corresponds to the so-called Hamming distance (HD) model.
Several works have demonstrated the validity of HW and HD models in practice,
which are today commonly accepted by the SCA community. However other more
precise models exist in the literature (see for instance [3, 9, 16]).

In the rest of this paper, we keep the generality by considering two models :
ODL model (Only manipulated Data Leak) and MTL model (Memory Transition
Leak), each of them being defined by the leakage function expressed in (1) and
(2) respectively.

1.2 ODL Model vs. MTL Model

Except very rare exceptions (e.g. [10]), security proofs in the literature are
usually conducted in ODL model. This is in particular the case of the counter-
measures proposed in [14]. However, in practice, the leakage is better modeled
by MTL model. Starting from this observation, a natural question is to decide
at which extent a countermeasure proved to be secure in ODL model stays
secure in MTL model. Very close to this question an interesting and practically
relevant problem is the design of methods to transform an implementation
secure in the first model into a new implementation secure in the second.
Hence, if we assume that the memory transitions leak information, the leakage
is modeled by ϕ(Y ⊕ Z) + B. In such a model a masking countermeasure may
become ineffective. For instance, if Z corresponds to a masked variable X ⊕M
and if Y equals the mask, then the leakage reveals information on X. A very
straightforward idea to deal with this issue is to erase the memory before
each new writing (e.g. set Y to 0 in our example). One may note that such
a technique is often used in practice at either the hardware or software level.
Using such a method, the leakage ϕ(Y ⊕ Z) + B is replaced by the sequence
of consecutive leakages ϕ(Y ⊕ 0) + B1 and ϕ(0 ⊕ Z) + B2 that is equivalent to
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ϕ(Y ) + B1 and ϕ(Z) + B2. The single difference with classical ODL model is
the additional assumption that the execution leaks the content of the memory
before the writings. Since this leakage corresponds to a variable that has been
manipulated prior to Z, it is reasonable to assume that the leakage ϕ(Y ) + B1

has already been taken into account when establishing the security of the
countermeasure. As a consequence, this way to implement a countermeasure
proved to be secure in ODL model seems at a first glance also offers security on
a device leaking in MTL model.

In this paper, we emphasize that a countermeasure proved to be secure in
ODL model may no longer stay secure in MTL model. Indeed, we exhibit a
case where a countermeasure proved to be second-order resistant in ODL model
does no longer provide security against first-order SCA when implemented in
a device leaking on the memory transitions. Then, we show that the natural
method proposed above to transfer a countermeasure resistant in ODL model
into a countermeasure resistant in MTL model is flawed. Those two results en-
lighten the actual lack of a framework to solve the (practically) important issue
of porting an implementation from one family of devices to the other one.

1.3 Paper Organization

This paper is organized as follows. In Section 2, we briefly recall a second-order
countermeasure proved to be secure in ODL model [14]. In Section 3, we show
that such a countermeasure can be broken by using a first-order attack in MTL
model. To thwart this attack, we apply in Section 4.1 the method described
previously which erases the memory before each new writing and we show that
this method does not provide an implementation secure in the second model.
We provide the results of a practical implementation of our attacks in Section
5. Finally we conclude this paper in Section 6.

2 Securing Block Cipher Against 2O-SCA

Most of the countermeasure published in the literature to thwart SCA are based
on the algebraic properties of the targeted algorithm (e.g. AES). However,
when the corresponding algorithm involves s-boxes with no particular algebraic
structure (e.g. those in DES, PRESENT or FOX ciphers), then only the meth-
ods proposed in [14] enable to achieve second-order security. In the following,
we focus on the last case where a random-like s-box must be implemented in a
secure way w.r.t. 2O-SCA. For such a purpose, we focus on the second variant
proposed in [14] (this choice can for instance have been made because of its low
RAM consumption compared to the first variant).

Based on a secure primitive compareb defined such that compareb(x, y)
equals b if x = y and b otherwise (see [13, Appendix A] for more details), the
authors in [14] propose the algorithm below:
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Algorithm 1 Computation of a 2O-masked s-box output from a 2O-masked input
Inputs: a masked value x̃ = x⊕t1⊕t2 ∈ Fn

2 , the pair of input masks (t1, t2) ∈ Fn
2 ×Fn

2 ,
a pair of output masks (s1, s2) ∈ Fm

2 × Fm
2 , a (n,m) s-box function F

Output: the masked s-box output F (x)⊕ s1 ⊕ s2 ∈ Fm
2

1. b← rand(1)

2. for a = 0 to 2n − 1 do

3. cmp← compareb(t1 ⊕ a, t2)

4. Rcmp ← (F (x̃⊕ a)⊕ s1)⊕ s2

5. return Rb

To compute F (x) ⊕ s1 ⊕ s2, the core idea of Algorithm 1 is to successively
read all values of the lookup table F from index x̃⊕ a with a = 0 to index x̃⊕ a
with a = 2n − 1. When the correct value F (x)⊕ s1 ⊕ s2 is accessed, it is stored
in a pre-determined register Rb whereas the other values F (x̃ ⊕ a) ⊕ s1 ⊕ s2,
with x̃ ⊕ a 6= x, are stored in a garbage register Rb . In practice two registers
R0 and R1 are used and their roles are chosen thanks to a random bit b.

Depending on the loop index a, the fourth step of Algorithm 1 processes the
following operation:{

cmp← b ; Rcmp ← F (x)⊕ s1 ⊕ s2 if a = t1 ⊕ t2
cmp← b ; Rcmp ← F (x̃⊕ a)⊕ s1 ⊕ s2 otherwise

. (3)

In view of (3), it may be observed that the register Rb is modified only once
whereas Rb changes 2n − 1 times. As proven in [14], this behavior difference be-
tween the registers Rb and Rb cannot be successfully exploited by a second-order
attack when the device leaks in the ODL model. The proof can be straightfor-
wardly extended to any leakage model called linear, in which all bits of the
manipulated data leak independently. However, if Algorithm 1 must be imple-
mented on a physical device with a different leakage model, then the security
proof in [14] can no longer be invoked. Hence, since the most common alternative
is MTL model, it is particularly interesting to investigate whether Algorithm 1
stays secure in this context. In the next section, we put forward the kind of
security issues brought by a straightforward implementation of Algorithm 1 on
a device leaking the memory transition. In particular, for a specific (but quite
natural) implementation, we exhibit a first-order SCA.

3 Attack of Algorithm 1 in the MTL Model

This section is organized as follows: first we present a straightforward imple-
mentation of the 2O-SCA countermeasure described in Algorithm 1. Then we
expose how a first-order attack in MTL model can break this second-order
countermeasure.

In the analysis developed in this paper, we will denote random variables by
capital letters (e.g. X) and their values by small letters (e.g. x).
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3.1 Straightforward Implementation of Algorithm 1

In the following, we assume that the considered device is based on an assembler
language for which a register RA is used as accumulator. Moreover we assume
that registers RA, R0 and R1 are initially set to zero.

Based on these assumptions, the fourth step of Algorithm 1 can be imple-
mented in the following way:

4.1 RA ← x̃⊕ a
4.2 RA ← F (RA)
4.3 RA ← RA ⊕ s1
4.4 RA ← RA ⊕ s2
4.5 Rcmp ← RA

(4)

During this processing where X̃ = X⊕T1⊕T2, the initial content of register
Rcmp, denoted by Y , satisfies the following equation depending on the values of
the loop index a, T1 and T2:

Y =


0 if a = 0 ,
0 if a = 1 and T1 ⊕ T2 = 0 ,
0 if a > 0 and T1 ⊕ T2 = a ,

F (X̃ ⊕ (a− 2))⊕ S1 ⊕ S2 if a > 1 and T1 ⊕ T2 = (a− 1) ,

F (X̃ ⊕ (a− 1))⊕ S1 ⊕ S2 otherwise.

(5)

In the following we will show that the distribution of the value Y defined in
(5) brings information on the sensitive variable X. We will consider two cases
depending on whether RA equals Rcmp or not.

3.2 Description of the First-Order Attack when RA = Rcmp

According to this decomposition, if we assume that the register Rcmp is the
accumulator register, then Step 4.5 of (4) is unnecessary and the register Rcmp

leaks at each state. This is in particular the case at Step 4.1,

In this part, we assume that the physical leakage of the device is modeled by
MTL model and hence the leakage L associated to Step 4.1 of (4) satisfies:

L ∼ ϕ(Y ⊕ X̃ ⊕ a) +B , (6)

where Y denotes the initial state of Rcmp before being updated with X̃ ⊕ a,
defined above by (5).

From (5) and (6), we deduce:
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L =


ϕ(X̃) +B if a = 0 ,
ϕ(X ⊕ 1) +B if a = 1 and T1 ⊕ T2 = 0 ,
ϕ(X) +B if a > 0 and T1 ⊕ T2 = a ,

ϕ(F (X̃ ⊕ (a− 2))⊕ S1 ⊕ S2 ⊕ X̃ ⊕ a) +B if a > 1 and T1 ⊕ T2 = (a− 1) ,

ϕ(F (X̃ ⊕ (a− 1))⊕ S1 ⊕ S2 ⊕ X̃ ⊕ a) +B otherwise.

When a = 0, the leakage L is an uniform value which brings no information
on the value X. Therefore in the following, we omit this particular case.

Hence, we have

L =

ϕ(X) +B if T1 ⊕ T2 = a ,
ϕ(X ⊕ 1) +B if T1 ⊕ T2 = 0 and a = 1 ,
ϕ(Z) +B otherwise ,

(7)

with Z a variable independent of X and with uniform distribution.

In view of (7), the leakage L depends on X. Indeed, the mean of (L|X = x)
satisfies:

E(L | X = x) =


1
2n × (ϕ(x) + ϕ(x⊕ 1)) + 2n−2

2n × E(ϕ(Z)) if a = 1 ,

1
2n × ϕ(x) + 2n−1

2n × E(ϕ(Z)) if a > 1 ,

or equivalently (since Z has uniform distribution):

E(L | X = x) =


1
2n × (ϕ(x) + ϕ(x⊕ 1)) + n×(2n−2)

2n+1 if a = 1 ,

1
2n × ϕ(x) + n×(2n−1)

2n+1 if a > 1 .

(8)

When a > 1, the mean in (8) is an affine function of ϕ(x) and it is an affine
function of (ϕ(x) + ϕ(x ⊕ 1)) otherwise. Therefore in both cases the mean
leakage reveals some information on X.
An adversary can thus target the second round in Algorithm 1 (i.e. a = 1) and
get a sample of observations for the leakage L defined as in (6). The value X
typically corresponds to the bitwise addition between a secret sub-key K and
a known plaintext subpart M . In such a case and according to the statistical
dependence shown in (8), the set of observations can be used to perform a
first-order SCA allowing an attacker to recover the secret value K.

As an illustration, we simulated a first-order CPA in the Hamming weight
model without noise targeting the second loop (namely a = 1) with the AES
s-box. The secret key byte was recovered with a success rate of 99% by using
1.000.000 acquisitions.
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3.3 Description of the First-Order Attack when RA 6= Rcmp

In this part, the accumulator register RA is assumed to be different from the
register Rcmp. Under such an assumption, Step 4.5 in (4) leaks the transition
between the initial content Y of Rcmp and the current content of RA. Namely,
after denoting T1 ⊕ T2 and S1 ⊕ S2 by T and S respectively, we have:

L = ϕ(Y ⊕ F (X ⊕ T ⊕ a)⊕ S) +B. (9)

Due to (5), Relation (9) may be developed in the following way according to
the values of a and T :

L =


ϕ( F (X ⊕ T )⊕ S ) +B if a = 0,
ϕ( F (X)⊕ S ) +B if a = 1 and T = (a− 1),
ϕ( F (X)⊕ S ) +B if a > 0 and T = a,
ϕ( Da⊕(a−2)F (X ⊕ (a− 2)⊕ (a− 1) ) +B if a > 1 and T = (a− 1),
ϕ( Da⊕(a−1)F (X ⊕ (a− 1)⊕ T ) ) +B otherwise,

(10)
where DyF denotes the derivative of F with respect to y ∈ Fn

2 , which is defined
for every x ∈ Fn

2 by DyF (x) = F (x)⊕ F (x⊕ y).

In the three first cases in (10), the presence of S implies that the leakage L
is independent of X. Indeed, in these cases the leakage is of the form ϕ(Z) +B
where Z is an uniform random variable independent of X. In the last two cases,
S does not appear anymore. As a consequence it may be checked that the leakage
L depends on X. Indeed, due to the law of total probability, for any x and a = 1,
the mean of (L|X = x) satisfies:

E(L|X = x) =
2µ

2n
+

1

2n

2n−1∑
t=2

ϕ(DaF (x⊕ t)), (11)

where µ denotes the expectation E[ϕ(U)] with U uniform over Fn
2 (e.g. for ϕ =

HW we have µ = n/2). And when a > 1, the mean of (L|X = x) satisfies:

E(L|X = x) =
µ

2n
+

1

2n
ϕ(Da⊕(a−2)F (x⊕ (a− 2)⊕ (a− 1)))

+
1

2n

2n−1∑
t=0,t6=a,(a−1)

ϕ(Da⊕(a−1)F (x⊕ (a− 1)⊕ t)). (12)

From an algebraic point of view, the sums in (11) and (12) may be
viewed as the mean of the value taken by DaF (x ⊕ t) (respectively
Da⊕(a−1)F (x ⊕ (a − 1) ⊕ t)) over the coset x ⊕ {t, t ∈ [2, 2n − 1]} (re-
spectively x⊕{t, t ∈ [0, 2n−1]\{a−1, a}}). Since those cosets are not all equal,
the means are likely to be different for some values of x. Let us for instance
consider the case of F equal to the AES s-box and let us assume that ϕ is the
identity function. In Relation (11), the sum equals 34066 if x = 1 and equals
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34046 if x = 2. When a > 1, we have the similar observation.

From (11) and (12), we can deduce that the mean leakage reveals information
on X and thus, the set of observations can be used to perform a first-order SCA.

By exhibiting several attacks in this section, we have shown that the second-
order countermeasure proved to be secure in ODL model may be broken by a
first-order attack in MTL model. These attacks demonstrate that a particular
attention must be paid when implementing Algorithm 1 on a device leaking in
MTL model. Otherwise, first-order leakage may occur as those exploited in the
attacks presented above. As already mentioned in the introduction, a natural
solution to help the security designer to deal with those security traps could be
to systematically erase the registers before any writing. This solution is presented
and discussed in the next section.

4 Study of a Straightforward Patch

In the following, we present a straightforward method to patch the flaw exhibited
in the previous section. The aim of this patch is to transform an implementation
secure in ODL model into an implementation secure in MTL model. It essentially
consists in erasing the memory before each new writing. In this section, we
evaluate this strategy when applied to implement Algorithm 1 leaking in MTL
model. Then, we show that this natural method does not suffice to go from
security in ODL model to security in MTL model. Indeed, we present a second-
order attack against the obtained second-order countermeasure.

4.1 Transformation of Algorithm 1 into a MTL-Resistant Scheme

As in the previous section, we assume that the leakage model is MTL model
and that the registers Rb and Rb are initially set to zero. In order to preserve
the security proof given in the first model, we apply a solution consisting in
erasing the memory before each new writing.

Based on these assumptions, the fourth step of Algorithm 1 can be imple-
mented in the following way:

4.1 Rcmp ← 0
4.2 Rcmp ← F (x̃⊕ a)⊕ s1 ⊕ s2

(13)

As previously, we assume that the initial state of Rcmp before Step 4.1 is
equal to Y . Then, according to this decomposition, the register Rcmp is set to 0

before the writing of Z = F (X̃⊕a)⊕S1⊕S2 in the Step 4.2. Hence, the leakage
defined by (6) is replaced by the sequence of consecutive leakages ϕ(Y, 0) + B1

(Step 4.1), ϕ(0, Z) +B2 (Step 4.2), that is ϕ(Y ) +B1, ϕ(Z) +B2. However this
model is not equivalent to the ODL model since here the previous value in Rcmp

leaks whenever it is erased. And as we show hereafter, such a leakage enables a
second-order attack breaking the countermeasure althought secure in the ODL
model.
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4.2 Description of a Second-Order Attack

To perform our second-order attack, we use two information leakages L1 and
L2 during the same execution of Algorithm 1 implemented with (13).

The first leakage L1 corresponds to the manipulation of X̃ prior to Algorithm
1. L1 thus satisfies:

L1 ∼ ϕ(X̃) +B0. (14)

The second leakage L2 corresponds to Step 4.1 of (13). Thus it satisfies:

L2 ∼ ϕ(Y ) +B1. (15)

From (5) and (15), we deduce:

L2 =


ϕ(0) +B1 if a = 0 ,
ϕ(0) +B1 if a = 1 and T1 ⊕ T2 = 0 ,
ϕ(0) +B1 if a > 0 and T1 ⊕ T2 = a ,

ϕ(F (X̃ ⊕ (a− 2))⊕ S1 ⊕ S2) +B1 if a > 1 and T1 ⊕ T2 = (a− 1) ,

ϕ(F (X̃ ⊕ (a− 1))⊕ S1 ⊕ S2) +B1 otherwise.
(16)

which implies that:

L2 =


ϕ(0) +B1 if a = 0 ,
ϕ(0) +B1 if a = 1 and T1 ⊕ T2 = 0 or 1 ,
ϕ(Z) +B1 if a = 1 and T1 ⊕ T2 6= 0 or 1 ,
ϕ(0) +B1 if a > 1 and T1 ⊕ T2 = a ,
ϕ(Z) +B1 if a > 1 and T1 ⊕ T2 6= a ,

(17)

where Z is a variable independent of X and with uniform distribution.

From (17), the leakage is independent from T1 ⊕ T2 when a = 0. For this
reason, in the following we only study the mean of L2 for a > 0:

E(L2) =


ϕ(0) if a = 1 and T1 ⊕ T2 = 0 or 1 ,
ϕ(Z) if a = 1 and T1 ⊕ T2 6= 0 or 1 ,
ϕ(0) if a > 1 and T1 ⊕ T2 = a ,
ϕ(Z) if a > 1 and T1 ⊕ T2 6= a ,

or equivalently (since Z has uniform distribution):

E(L2) =

ϕ(0) if a = 1 and T1 ⊕ T2 = 0 or 1 ,
ϕ(0) if a > 1 and T1 ⊕ T2 = a ,

n
2 otherwise.

(18)

On the other hand, the leakage L1 depends by definition on X ⊕ T1 ⊕ T2.
As a consequence, one deduces that the pair (L1, L2) statistically depends on
the sensitive value X. Moreover, it can be seen in (18) that the leakage on
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T1 ⊕ T2 is maximal when a = 1. An adversary can thus target the second
loop in Algorithm 1 (i.e. a = 1), make measurements for the pair of leakages
(L1, L2) and then perform a 2O-CPA to extract information on X from those
measurements.

Fig. 1. Convergence with simulated curves without noise, for a = 1.

We have simulated such a 2O-SCA with X = M ⊕ K where M is a 8-bit
value known to the attacker and K a 8-bit secret key value. By combining
L1 and L2 using the normalized multiplication and the optimal prediction
function as defined in [11], the secret value k is recovered with a success rate of
99% by using less than 200.000 curves. Fig.1 represents the convergence of the
maximal correlation value for different key guesses over the number of leakage
measurements. Each curve corresponds to some hypothesis on the secret K. In
particular the black curve corresponds to the correct hypothesis k.

The second-order attack presented in this section show that erasing registers
before writing a new value does not suffice to port the security of an implemen-
tation from ODL model to MTL model. For the case of Algorithm 1, a possible
patch is to erase Rcmp using a random value. However, though this patch works
in the particular case of Algorithm 1, it does not provide a generic method to
transform a dth-order countermeasure secure in the ODL model to a dth-order
countermeasure secure in the MTL model. The design of such a generic method
is an interesting problem that we leave open for future research.
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5 Experimental Results

This section provides the practical evaluation of the attacks presented above. We
have verified the attacks on block ciphers with two different kinds of s-boxes:
an 8-bit to 8-bit s-box (AES) and two 4-bit to 4-bit s-boxes (PRESENT and
Klein). We have implemented Algorithm 1 as described in Section 4.1 on a 8-bit
microcontroller. Using 2O-CPA, we were able to find the secret key for all three
s-boxes. In case of the 4×4 s-boxes, we needed fewer than 10.000 power traces to
find the correct key. However, for the 8× 8 s-box, the number was much higher,
since more than 150.000 traces were required to distinguish the correct key from
the rest of the key guesses.

Initially, we set the value in the two memory locations R0 and R1 to zero.
We randomly generate the plaintexts mi and the input/output masks ti,1, ti,2
and si,1, si,2 using a uniform pseudo-random number generator where the value
of i varies from 1 to N (i.e., the number of measurements). Then, we calculate
x̃i from the correct key k via x̃i = k⊕mi⊕ ti,1⊕ ti,2. As described in Section 4.1,
before writing a new value to any memory location, we first erase its contents
by writing 0, and then write the new value as shown in (13). For verifying the
attacks, we only consider the power traces where a = 1. During respectively
the manipulation of the x̃i and the memory erasing, we measure the power
consumption of the device. This results in a sample of pairs of leakage points that
are combined thanks to the centered product combining function defined in [11].
For each key hypothesis kj , the obtained combined leakage sample (Li)1≤i≤N is
correlated with the sample of hypotheses (HW (mi ⊕ kj))1≤i≤N . The key guess
for which the correlation coefficient is the maximum will be the correct key.
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Fig. 2. Convergence with practical im-
plementation of 20-CPA for Klein.
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Fig. 3. Convergence with practical im-
plementation of 20-CPA for PRESENT

Figure 2 and Figure 3 show the correlation traces for a 2O-CPA on the Klein
and PRESENT s-boxes, respectively. As it can be observed, the right key is found
in both cases with less than 10.000 power traces. Figure 4 shows the correlation
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Fig. 4. Convergence with practical im-
plementation of 20-CPA for AES.
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Fig. 5. Convergence with practical im-
plementation of 10-CPA for PRESENT.

traces for a 2O-CPA on the AES s-box. Here the convergence of the traces to
the correct key is observable only after 150.000 traces. Finally, Figure 5 shows
the first-order attack on the PRESENT s-box in the Hamming Distance model
as described in Section 3.2. Here we implemented Algorithm 1 directly without
the additional step of erasing the memory contents before performing a write
operation. The power traces are collected for 50.000 inputs, and only the traces
corresponding to the case a = 1 are considered. The correct key candidate can
be identified with less than 10.000 traces.

6 Conclusion and Perspectives

In this paper, we have shown that a particular attention must be paid when
implementing a countermeasure proved to be secure in one model on devices
leaking in another one. In particular we have shown that the second-order coun-
termeasure proposed in [14] together with a security proof in ODL model is
broken by first-order SCA when running on a device leaking in MTL model.
Then, we have focused on a method that looked at first glance very natural to
convert a scheme resistant in ODL model in a new one secure in MTL model.
Our analysis pointed out flaws in the conversion method and hence led us to
identify two new issues that we think to be very promising for further research.
The first issue is the design of a generic countermeasure proved to be secure in
any practical model and the second is the design of a method of porting the
security from a model to another one.
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