
What should I link to? Identifying relevant
sources and classes for data linking

Andriy Nikolov, Mathieu d’Aquin, Enrico Motta

Knowledge Media Institute, The Open University, Milton Keynes, UK
{a.nikolov, m.daquin, e.motta}@open.ac.uk

Abstract. With more data repositories constantly being published on
the Web, choosing appropriate data sources to interlink with newly pub-
lished datasets becomes a non-trivial problem. It is necessary to choose
both the repositories to link to and the relevant subsets of these repos-
itories, which contain potentially matching individuals. In order to do
this, detailed information about the content and structure of semantic
repositories is often required. However, retrieving and processing such
information for a potentially large number of datasets is practically un-
feasible. In this paper, we propose an approach which utilises an existing
semantic web index in order to identify potentially relevant datasets for
interlinking and rank them. Furthermore, we adapt instance-based ontol-
ogy schema matching to extract relevant subsets of selected data source
and, in this way, pre-configure data linking tools.

1 Introduction

The principles of Linked Data1 recommend data publishers to reuse exiting URIs
for their entities, where possible, or to provide links to them. In this way, more
information can be obtained by following the links. In order to achieve that,
data publishers face two non-trivial problems. First, they must be able to find
existing data sources which can be reused or linked to. For this, they must be
aware of the content of existing repositories describing relevant domains and be
able to assess their suitability. Second, they must configure and run data linking
tools which would discover mappings between individuals in their dataset and
the chosen external ones.

With the growing number of repositories published based on the Linked Data
principles, identifying relevant datasets and resources can become problematic.
As a result, data publishers usually only link their datasets to the popular repos-
itories (such as DBPedia2 and Geonames3). This may not always be the optimal
solution in some cases, for example:

– If the data domain is highly specialised and not covered by popular reposi-
tories in sufficient details.

1 http://www.w3.org/DesignIssues/LinkedData
2 http://dbpedia.org
3 http://www.geonames.org/

– If different parts of the dataset are covered by several external reposito-
ries: e.g., when a repository contains references to scientific publications
both on computer science (described by DBLP4) and medicine (described
by PubMed5).

To support assessment of different sources, catalogs of Linked Data reposito-
ries are maintained (e.g., in CKAN6), and meta-level descriptors of reposito-
ries are provided using the VoiD vocabulary7. However, these sources can still
be insufficient as they do not take into account the distribution of instances
in repositories. For example, several repositories contain information about aca-
demic researchers, however, they use different criteria to include individuals: e.g.,
DBPedia only mentions the most famous ones, DBLP only includes Computer
Science researchers, and RAE8 deals with researchers working in UK institu-
tions. In order to be able to choose the most appropriate repositories to link to,
one must have access to complete instance-level data stored in them. Obtaining
these data directly from the data sources and analysing them is often not feasible
due to the size of datasets which need to be downloaded.

Once the dataset is chosen, the second challenge is to configure the data
linking tool which would discover actual links between individuals in two repos-
itories. The configuration typically includes choosing the selection criterion for
determining potential matching candidates and the matching function, which
would determine whether a pair of matching candidates actually represent the
same entity. Both choices heavily depend on the structure of data in the external
data repository.

In this paper we describe an approach which helps to solve these tasks with-
out the need to process complete external datasets. The approach involves two
methods, which we consider our contribution:

– Identifying and ranking relevant candidate data repositories for linking. To
achieve this, the method utilises keyword-based search over existing an se-
mantic web index, integrates search results, and analyses them.

– Identifying relevant classes containing potentially matching individuals in
chosen external sources. To this end, the method adapts and extends instance-
based ontology matching techniques. We define the task of finding the best
matching class in an external dataset and evaluate the suitability of different
instance-based similarity metrics to the task.

The rest of the paper is organized as follows. Section 2 outlines the use case which
provided the main motivation for this work. Section 3 describes the method
for selecting and ranking the data sources. Section 4 focuses on application of
instance-based ontology matching techniques in order to determine a relevant

4 http://dblp.l3s.de/
5 http://www.ncbi.nlm.nih.gov/pubmed/
6 http://ckan.net/ see http://ckan.net/group/lodcloud
7 http://semanticweb.org/wiki/VoiD
8 http://rae2001.rkbexplorer.com/

subset of the chosen data source. Section 5 discusses the results of the exper-
iments we performed to test our algorithms. Finally, section 7 concludes the
paper.

2 Motivation

The problem of determining a set of relevant repositories is a generic one and can
occur in different contexts. Our work was primarily motivated by two use cases:
the SmartProducts project and development of the data.open.ac.uk repository.

2.1 Scenarios and requirements

One of the tasks within the SmartProducts project9 involves reusing the data
from external semantic repositories to build knowledge bases for smart consumer
devices: e.g., to extend the core domain knowledge base of food recipes for a
smart kitchen with nutritional data, alternative recipes, health profiles of food
products, etc. In order to extend the core domain knowledge base, the developer
has to be able to find relevant repositories on the Web of Data and interlink
them with this core knowledge base [2].

In another scenario, the data.open.ac.uk repository10 aims at publishing var-
ious data related to the activities of The Open University (OU)11 according to
Linked Data principles. These datasets include, among others, the publications
originated by OU researchers, courses provided by the university, etc. Many en-
tities referenced in these datasets are also mentioned in other public repositories.
Thus, in order to facilitate data integration, it makes sense to create links from
instances used in the data.open.ac.uk datasets to external semantic data stores.
Given the range of categories to which data instances belong, it is difficult to
select a single external source to link to: e.g., publication venues can be linked
to different subsets of RKBExplorer, DBLP, PubMed, DBPedia, or Freebase12.
Moreover, the repository is constantly extended with more instance data for ex-
isting topics (e.g., as more research output is published with time) as well as
with more topics (as more internal datasets are released online). Selecting rele-
vant sources for linking and selecting specific individuals to link to within these
sources becomes a time-consuming procedure, which needs to be automated as
much as possible.

There are several factors which can guide the selection of the repository for
linking, in particular:

– Degree of coverage. In order to maximise the possibility to reuse external
descriptions, the sources which contains more references to the entities stored
in the newly published repository are preferable.

9 http://www.smartproducts-project.eu
10 http://data.open.ac.uk
11 http://www.open.ac.uk
12 http://www.freebase.com/

– Additional information provided by the source. When selecting a source to
link to, it is important to take into account how much additional information
about entities is provided by each external source: i.e., what properties and
relations are used to describe these entities.

– Popularity of the source. Linking to URIs defined in a popular data source
or reusing them makes it easier for external developers to find the published
data and use them.

Among these factors, only the degree of coverage heavily relies on instance-level
data stored in external repositories. The level of detail of instance descriptions
can be obtained from the domain ontology used by the external dataset and,
possibly, a few example instances, while the popularity of the source can be
estimated based on VoiD linkset descriptors. Therefore, when designing our al-
gorithm, we primarily focused on estimating the degree of coverage between
the internal dataset prepared for publishing and potentially relevant external
datasets.

2.2 Overview of the approach

The task of finding relevant repositories assumes that there is a dataset to be
published Ds = {Os, Is} containing a set of individuals Is structured using the
ontology Os. We will refer to this dataset as the source dataset. Each individual
belongs to at least one class cλ defined in Os: I = {ij |cλ(ij), cλ ∈ Os}. On
the Web there is a set of Linked Data repositories {D1, . . . , Dn} such that Dj =
{Oj , Ij}. There is a subset of these repositories {D1, . . . , Dm} which overlap with
Ds, i.e., ∀(j ≤ m)∃(IOj ⊆ Ij) : IOj = {ik|equiv(ik, is), ij ∈ Ij , is ∈ Is}, where
equiv denotes the relation of equivalence between individuals. The meaning of
the equivalence relation here depends on the identity criterion chosen by the
data publisher: e.g., owl:sameAs links or direct reuse of URIs assume that URIs
must be strictly interchangeable (see [4] for the analysis of different types of
identity). The goal is to identify the subset of relevant repositories {D1, . . . , Dm}
and to rank them according to the degree of coverage |IOj |/|Is|. Given that the
publisher may want to select different repositories to link for different categories
of instances in Ds, then for each class cλ ∈ Os a separate ranking should be
produced based on the degree of coverage for instances of this class |IOjλ|, where

IOjλ = {ik|equiv(ik, is), is ∈ Is, cλ(is)} ⊆ IOj .
Since the actual discovery of links is usually performed by an automated

tool (such as Silk [14] or KnoFuss [10]), another important task is to restrict the
search space for this tool by identifying in each dataset Dj a set of relevant classes
cjk which contain potentially overlapping individuals with cλ. Then the tool can
be configured to select only individuals of these classes as candidates for linking.
The main obstacle with these tasks is the need to identify the overlapping subset
of instances |IOj | from each external dataset. Downloading whole datasets or
applying data linking tools to their complete sets of instances is often unfeasible
due to their size and required computational time, network load, and local disk
space.

In order to minimize the amount of data from external repositories which
must be processed locally, we adopted a two-stage approach. At the first stage,
a semantic web index which supports keyword-based search for data instances
is utilised to propose and rank relevant sources as well as potentially relevant
classes. This solution, which extends the earlier version of the algorithm pre-
sented in [8], is described in section 3. Once a source is selected, the second
stage involves finding the relevant classes which would facilitate the data linking
process. At this stage, partial information is retrieved from the selected source,
in particular, labels of instances of the candidate classes (see section 4).

3 Selecting relevant data sources using keyword search
services

We assume that a semantic keyword search service takes as its input a set of
keywords K = {k1, . . . , ki}. As output, it returns a set of potentially relevant in-
dividuals which may belong to different repositories: Ires = Ires1 ∪Ires2 ∪. . .∪Iresm ,
where Iresj ⊆ Ij . For returned individuals ijk ∈ Iresj , their types {cjkλ|cjkλ(ijk)}
are also available in the search results. An example of the search service which
satisfies this assumption is Sig.ma [12], which uses Sindice as its search index.

Fig. 1. Keyword-based search for relevant individuals.

3.1 Finding potentially relevant sources

In order to find potentially relevant individuals from the source dataset Ds,
we query the search service using the labels of individuals (values of rdfs:label,

foaf:name, dc:title, etc.) as keywords. Then, these query results are aggregated to
estimate the degree of coverage of different data sources (Fig. 1). The procedure
consists of the following steps:

1. Randomly selecting a subset of individuals I∗s from Ds belonging to a class
cs. This is done in order to reduce the number of queries to the search service
in case where the complete extension set of individuals is too large. On the
other hand, the subset must be large enough to produce reliable ranking of
sources.

2. Querying the search service (Sig.ma) for labels of each individual in the
selected subset. The results of each search are returned as an RDF document,
which includes the references to individuals, their sources, and the classes
they belong to.

3. Aggregation of the search results. RDF documents returned by Sig.ma are
loaded into a common repository, and the individuals ijk are grouped ac-
cording to their sources Dj .

4. Data sources are ranked according to the number of their individuals re-
turned by the search service |{ijk|ijk ∈ Dj}|.

In our approach we assume that the relevance function used by the search ser-
vice to select query answers serves as an approximation of the identity function
equiv(). In the general case, this is in not true due to ambiguity of labels and
the fact that search services may not always achieve 100% precision. Taking a
sufficiently large subset of individuals to search makes it possible to reduce the
impact of ‘false positives’ returned by the search engine.

After applying these steps to our test scenarios (see section 5), we found that
the rankings obtained using this procedure are still likely to be imprecise for two
main reasons:

– Inclusion of irrelevant sources. For individuals belonging to classes with
highly ambiguous labels, many ‘false positives’ in the set of answers can re-
sult in irrelevant repositories achieving high ranking positions. For instance,
when searching for specific subcategories of people, any source mentioning
sufficiently large number of people would be considered relevant: e.g., Twit-
ter and DBLP were highly ranked when searching for music contributors.

– Inclusion of irrelevant classes. Resulting sets often contained classes which
would not allow selecting appropriate candidate individuals by a matching
tool. Sometimes a generic superclass was ranked higher than the correct
class: e.g., dbpedia:Person was ranked higher than a more relevant dbpe-
dia:MusicalArtist. In other cases, completely irrelevant classes were included:
e.g., for scientific journals the class akt:Publication-Reference describing spe-
cific volumes of journals was ranked higher than akt:Journal.

In order to overcome these issues, our approach includes the second stage: filter-
ing of search results using ontology matching techniques.

3.2 Using ontology matching techniques to filter out irrelevant
results

In order to filter out irrelevant search results, our approach can utilise mappings
between classes provided by existing schema matching tools (Fig. 2). In our

Fig. 2. Using ontology matching to refine search results.

experiments we utilised ontology mappings produced by two algorithms:

– CIDER [3] which takes as input two ontologies in RDF format and two URIs
defining ontological terms from these ontologies and produces as output the
similarity score between these terms. CIDER utilises evidence defined at the
level of ontological schema: string similarity between class labels, semantic
relations defined in WordNet and positions of classes in class hierarchies.

– Instance-based matching algorithm described in [9], which generated schema
mappings between classes on the Web of Data based on their overlapping sets
of instances. Overlapping sets of instances were inferred based on existing
owl:sameAs relations between them published in the Billion Triple Challenge
2009 (BTC) dataset13. Resulting mappings represent subsumption relations
of the form cA v cB , where cA and cB belong to different ontologies.

As the first step of the filtering procedure, CIDER is applied to measure similar-
ity between the class cs in Ds, for which overlapping sources have to be found,
and each of the classes cjkλ appearing in the aggregated search results. Then,
a threshold is applied to filter out classes with low similarity scores. Remaining
classes from the search results constitute the set of ‘confirmed’ classes Cconfirmed.
At the next stage, this set of ‘confirmed’ classes is enriched using the mappings
obtained using instance-based matching. For each class ci ∈ Cconfirmed, all map-
pings from the BTC-based set where cA v ci are selected, and all cA are added
into Cconfirmed. After the filtering stage, the datasets for which there is at least

13 http://vmlion25.deri.ie/

one ‘confirmed’ class are moved in the ranking above those for which no classes
were confirmed.

In our tests described in section 5, the filtering stage led to improved preci-
sion in the resulting ranking of data sources. However, the approach was found
insufficient to deal with the actual task of finding relevant classes in target repos-
itories. While the main problem with unfiltered results was the choice of too
generic classes, the filtering procedure left out many relevant classes or chose
too specific classes in the hierarchy. Because of this, the special method was
implemented to identify the best-matching classes in the ontology of a given
dataset.

4 Identifying relevant classes in the dataset

Identifying a relevant repository for interlinking represents only the first stage
of the process. In order to configure the data linking method and minimize the
possible errors, it is important to select the relevant subset of instance containing
potentially coreferent individuals. Selecting too broad subset can substantially
increase the computational time required to compare irrelevant individuals and
can also lead to many spurious mappings, thus reducing precision. Selecting too
small subset, on the other hand, can lead to missing mappings and reduced
recall. Given that the instances in semantic repositories are organised using
ontological class hierarchies, selecting a relevant subset of data for interlinking
requires selecting the best fitting class in the target ontology.

Definition 1: Let Is represent a set of individuals from the source reposi-
tory Ds. A subset of these individuals IOs has matching individuals in the target
repository Dt: ∀is ∈ IOs ∃it ∈ IOt : is ≡ it. Then the best fitting class for Is is

such a class cfitt ∈ Dt that it contains all individuals from IOt and there is no

subclass cx v cfitt that ∀it ∈ IOt : it ∈ cx.
Assuming that all instances is ∈ Is belong to the same class cs, the task of

choosing a best-fitting class represents a special case of the ontology matching
problem. However, it has several specific features [11]:

– It is possible that not all instances of the source class have matching coun-
terparts in the target repository. Thus, the goal is to find a fuzzy ‘overlap’
relation between classes rather than strict logical equivalence or subsump-
tion.

– Class definitions in the ontology can be insufficient to capture the intended
meaning: e.g., the class Actor in LinkedMDB refers to any person participat-
ing in a movie, while Actor in DBPedia refers to professional actors (both
film and stage).

Because of this, instance-based ontology matching techniques, which determine
relations between classes based on the overlap between their instance sets, appear
especially suitable for the task. However, these techniques cannot be directly
reused: in the absence of mappings between individuals in two repositories, it is
impossible to determine the overlap between their instance sets. Thus, applying

instance-based ontology matching to the task of determining the most relevant
class in the hierarchy requires dealing with two challenges:

– Approximating the power of the overlapping set of instances for two classes
in the absence of actual instance mappings.

– Selecting a suitable set-based similarity measure, which can determine the
degree of relevance of a particular class cj for a set of instances Is.

In order to estimate the power of the overlap relation between two classes,
we use the same evidence as for the source ranking: keywords extracted from
instance labels. The algorithm takes as its input the selected subset of individuals
from the source dataset as well as the output of the source selection algorithm:
the target repository Dt and the initial class ctopt . As our tests have shown,
the class ctopt returned by the source selection procedure is usually too generic.

The goal of the algorithm is to find the ‘best-fitting’ subclass cfitt v ctopt . The
procedure consists of the following steps:

1. Create profiles of all instances itj ∈ ctopt . A profile P (itj) of the instance itj
includes all keywords extracted from the label of itj .

2. Randomly select a subset of individuals I∗s from Is.
3. For each individual is ∈ I∗s , find the ‘best matching’ individual i+tj using the

cosine similarity between individual profiles: i+tj = argmax(cosim(P (is), P (itj))).

For each class cti such that i+tj ∈ cti, increase the score s(ci).

4. For each subclass cti v ctopt , its score s(cti) serves as an estimation of the
overlap |cs ∩ cti|. Based on this overlap estimation, the similarity between
classes is calculated simi(|cs ∩ cti|) ≈ simi(s(cti)). The class cti with the

highest similarity degree is assigned as cfitt .

Obtaining the best matching target individual is implemented using a stan-
dard keyword-based search mechanism using an in-memory Lucene index. This
procedure cannot be used as a replacement for the actual instance matching
tools due to its low accuracy, but, given a sufficient sample size, it can approxi-
mate instance equivalence in order to produce schema-level links. At this stage,
the sample from the first step of the algorithm (search for potentially relevant
sources) can be reused.

In order to measure the actual similarity between two classes with overlapping
sets of instances, several metrics have been used, in particular:

– The Jaccard index is defined as JC(I1, I2) = |I1∩I2|
|I1∪I2| . In [5] a modified version

was proposed to give advantage to classes with large number of instances.

This corrected Jaccard index is defined as JCcorr =

√
|I1∩I2|×(|I1∩I2|−0.8)

|I1∪I2| .

– Overlap coefficient is another set similarity metrics defined as Overlap(I1, I2) =
|I1∩I2|

min(|I1|,|I2|) . It can reduce the impact of situations in which classes of one

dataset contain substantially less individuals than in the other one. However,
it is often incapable of ranking several alternative mappings with the same
size of the overlap.

– Pointwise Mutual Information determines the reduction of uncertainty pro-
vided by the assignment of an instance to one class to the assignment to the

other: PMI(I1, I2) = log2
|I1∩I2|×N
|I1|×|I2| .

– Log likelihood ratio represents a statistical test used to compare the fit of two
hypotheses. The null hypothesis states that the probability p(i ∈ I1) that
an instance belongs to I1 does not depend on whether it already belongs to

I2, i.e., p0 = p(i ∈ I1|i ∈ I2) = p(i ∈ I1|¬i ∈ I2) = |I1|
N , where N is a total

number of instances in both datasets. The alternative hypothesis states that

p1 = p(i ∈ I1|i ∈ I2) = |I1∩I2|
|I2| and p2 = p(i ∈ I1|¬i ∈ I2) = |I1|−|I1∩I2|

N−|I2| .

The log likelihood ratio is defined as −2(logL(p0, k1, n1) + logL(p0, k2, n2)−
logL(p1, k1, n1)−logL(p2, k2, n2)), where logL(p, k, n) = klnp+(n−k)ln(1−
p), k1 = |I1 ∩ I2|, k2 = |I1| − |I1 ∩ I2|, n1 = |I2|, and n2 = N − |I2|.

– Information Gain measures the reduction of entropy of assigning an instance
to one set, if it has already been assigned to another set. IG = e1−e2, where

e1 = − |I2|N log2
|I2|
N and e2 = − |I1∩I2||I1| log2

|I1∩I2|
|I1| .

An empirical study [5] found the Jaccard index to be the most suitable simi-
larity measure for instance-based ontology matching. However, this study was
primarily aimed at identifying equivalence mappings, and the experiments were
performed with the ontologies which actually had overlapping sets of instances.
Because of this, we decided to perform experiments to evaluate the suitability
of different similarity metrics for determining the best-fitting classes.

5 Experiments

We performed two sets of experiments. First, we tested the dataset selection
algorithm in three different scenarios (section 5.1). Second, we performed exper-
iments with the algorithm identifying best matching classes in order to choose
the instance-based similarity measure best suited to the task.

5.1 Dataset search

In our tests, we have applied the approach described in section 3 to the following
datasets:

– ORO journals. A set of 3110 journals mentioned in the ORO repository
constituting a part of data.open.ac.uk. Each individual belongs to the class
bibo:Journal14.

– LinkedMDB films. A subset of 400 randomly selected instances of the class
movie:film15 representing movies in the LinkedMDB repository.

– LinkedMDB music contributors. A subset of 400 randomly selected instances
of the class movie:music contributor representing music contributors for films
in the LinkedMDB repository.

14 http://purl.org/ontology/bibo/Journal
15 http://data.linkedmdb.org/movie/film

For each individual in these sets, we queried Sig.ma using their labels as key-
words. The search results containing potentially relevant instances were aggre-
gated, and individuals were grouped by data source and ontological class. These
grouped results were used to produce the ranking of sources as described in
section 3.1. Among the top-10 ranked data sources, we counted the number of
actually relevant ones. Then, we applied the filtering mechanism using ontology
schema matching results and checked the relevance of remaining sources. The re-
sults we obtained are presented in Table 1: for each dataset it shows the list of top
ranked sources as well as our judgement whether these sources were actually rel-
evant (column “+/-”). In the table, “(RKB)” denotes the datasets from RKBEx-
plorer and “open EAN” corresponds to openean.kaufkauf.net. For both Linked-
MDB datasets, we did not consider the LinkedMDB repository itself when it was
returned in the search results. As we can see from the results, the initial search-

Table 1. Test results: ranking of data sources

Dataset
Before filtering After filtering

Top-ranked +/- Top-ranked +/-

Journals

rae2001(RKB) + rae2001(RKB) +
dotac(RKB) + DBPedia +
DBPedia + dblp.l3s.de +
oai(RKB) + Freebase +
dblp.l3s.de + DBLP(RKB) +
wordnet(RKB) - eprints(RKB) +
www.bibsonomy.org -
eprints(RKB) +
Freebase +
www.examiner.com -

Films

DBPedia + DBPedia +
open EAN + Freebase +
bestbuy.com +
Freebase +
www.answers.com -
bitmunk.com -
wordnet -
www.examiner.com -
it.bestshopping.com +
www.songkick.com -

Musicians

DBPedia + Freebase +
www.realpageslive.com - DBPedia +
twitter.com -
BBC +
www.songkick.com +
Freebase -
Open EAN +
LinkedIn -
dblp.l3s.de -
Yahoo!Movies +

based ranking managed to discover relevant datasets for the sets of individuals
in question. Top-ranked sources in the Journals and Films categories contained
relevant individuals which could be linked to the individuals in Ds, and their sets
of individuals are to a large degree overlapping. For music contributors, the pro-
portion of irrelevant sources was substantially larger due to higher ambiguity of
human names. The filtering stage in all cases resulted in improving the ranking

precision: only relevant sources were confirmed. However, if we look at the rank-

Table 2. Test results: ranking of ontological classes.

Dataset
Before filtering After filtering Best-fitting classes

Journals

akt:Publication-Reference akt:Journal dc:BibliographicResource
dc:BibliographicResource yago:Periodical akt:Publication-Reference
foaf:Document swrc:Journal akt:Journal
swrc:Publication dbpedia:Work yago:Periodical
vcard:VCard freebase:book.periodical dbpedia:Work
yago:Periodical freebase:book.periodical
geo:SpatialThing
wn:Word
rss:item
swap:SocialEntity

Films

dbpedia:Work dbpedia:Film dbpedia:Film
goodrelations: yago:Movie goodrelations:
ProductOrServiceModel ProductOrServiceModel
yago:Movie freebase:film.film yago:Movie
icalendar:Vevent freebase:film.film
foaf:Person searchmonkey:Product
vcard:VCard
searchmonkey:Product
skos:Concept
geo:SpatialThing
freebase:common.topic

Musicians

vcard:VCard freebase:film. freebase:film.
music contributor music contributor

geo:SpatialThing yago:American mo:MusicArtist
TelevisionComposers

swap:Person dbpedia:Artist
foaf:Person yago:Composer
dc:Agent
mo:MusicArtist
icalendar:vcalendar
dbpedia:Person
goodrelations:ProductOrService
frbr:ResponsibleEntity

ing of ontological classes (Table 2), we can see that correctly identifying classes
presents a number of issues. The table shows the highest ranking classes returned
after each stage of the algorithm (only one highest-ranking class from each on-
tology is shown). Top-ranked classes produced from the search results usually
represent high-level concepts and correspond to superclasses of the original class:
e.g., foaf:Document or dc:BibliographicResource for journals, dbpedia:Work for
movies, and foaf:Person for musicians. The filtering stage largely removed these
problems so that only classes with a stronger degree of semantic similarity were
confirmed. However, it also reduced the recall in cases where a directly corre-
sponding class was not present in the external ontology: e.g., individuals from
dotac.rkbexplorer.com and oai.rkbexplorer.com, which only used the generic class
dc:BibliographicResource were not considered as relevant sources for linking jour-
nals. Similarly, many relevant classes were filtered out because they were not
considered as exact matches or subclasses of the class movie:music contributor
(e.g., mo:MusicArtist and dbpedia:MusicalArtist). In other cases, the algorithm
selected too specific class, such as yago:AmericanTelevisionComposers. Apply-

ing the best-fitting class selection procedure in these cases (column 4) provided
more adequate results.

5.2 Finding the best-fitting class

In order to evaluate different set similarity metrics for the best-fitting class, we
needed a set of multiple test cases. Each test case required the availability of gold
standard mappings between instances as well as ontologies with detailed class
hierarchies. To generate sufficient number of such test cases, we have chosen two
large-scale datasets which has already been linked: DBPedia and Freebase. Pairs
of classes for tests were selected from the YAGO ontology and the Freebase
schema. We selected such pairs of classes (cy; cf) from YAGO and Freebase
respectively that:

– There is a set of owl:sameAs mappings Mi = {(iy, if)} such that ∀iy, if :
iy ∈ cy, if ∈ cf .

– There is a pair of classes (ctopy ; ctopf) such that cy v ctopy , cf v ctopf , and

ctopy ≡ ctopf .
– There is no such class cx such that |cx| < |cy| and, given Mi = {(iy, if)}, all

iy would belong to cx. The same holds for cf and if , respectively.

We selected medium-size classes from Freebase and DBPedia (having between
400 and 20000 individuals) with at least 400 mappings between them, coming
from two different domains: people and organisations. After eliminating classes
which did not satisfy the criteria or semantically irrelevant ones, the test set
contained 111 pairs of classes. For each test, we randomly selected n individuals
for which owl:sameAs mappings existed, and used them as Iasts . For these in-
dividuals, we ran the procedure described in section 4 using different simi and
the sample size n. If the procedure returned the actual target class as the best
fitting one, the result was considered correct. The test results are summarised
in Table 3 (numbers show the proportion of correctly identified target classes).
As can be seen, the log likelihood ratio clearly outperforms other metrics both
in terms of absolute performance and robustness. The PMI, IG, and Over

Table 3. Test results: finding the best fitting classes.

N simi n = 50 n = 100 n = 200 n=400

1 Jaccard index, JC 0.25 0.46 0.61 0.74

2 Corrected Jaccard index, JCcorr 0.41 0.51 0.65 0.74

3 Log likelihood ratio, LogL 0.93 0.96 0.97 0.98

4 Pointwise mutual information, PMI 0.12 0.07 0.06 0.05

5 Information gain, IG 0.0 0.0 0.0 0.0

6 Overlap coefficient, Over 0.0 0.0 0.0 0.0

measures were found to be unsuitable for the task. While they usually return
semantically correct class mappings, they tend to select too specific classes in
the hierarchy.

6 Related work

Although both the problem of search in semantic datasets and the task of data
interlinking are actively studied in the Semantic Web community, there has been
relatively little research dedicated to the task of search for relevant datasets. One
recent approach [7] also discusses the problem of integrating a dataset with ex-
ternal semantic resources. As a use case, the authors consider the Google Refine
application16 scenario: enriching data from tabular sources. The authors describe
an extension to this application capable of linking these tabular data to external
semantic repositories and discuss applicable linking techniques (e.g., SPARQL
extension and reuse of Sindice and Silk services). However, their experiments only
compare these techniques on the task of linking to pre-defined data sources, and
do not focus on the actual search for relevant sources. The OKKAM project17

took a radical centralised approach, in which a global repository of entities exists
and provides lookup services for other datasets to retrieve canonical URIs for
their data instances.

To deal with the task of identifying matching classes, instance-based match-
ing techniques are actively researched in the ontology matching community [1]
and incorporated in several schema matching tools (e.g., ILIADS [13] and Ri-
MOM [6]). In particular, in [15] the authors use the ‘bag of words’ approach
adapted from the natural language processing: classes are annotated with the
sets of string tokens extracted from properties of their instances, and similarity
between classes is measured using the cosine similarity. However, this technique
loses the information about distribution of words in different instances and is
not suitable for estimation of the overlap between instance sets. As mentioned
in section 4, the comparative study reported in [5] evaluated the suitability of
different similarity metrics, although the focus of their task and their conclusions
differ from ours.

7 Conclusion

The Linked Data cloud is constantly growing, and in order to make its use
widespread, data owners must be able to publish their datasets without exten-
sive knowledge about the state of the Web of Data or assistance from the research
community. Interlinking is an important part of the publishing process and the
one which can require substantial exploratory work with external data. Thus,
this process has to become straightforward for data publishers and, preferably,
require minimal human involvement. A specific feature of this problem is the
fact that the amount of necessary information about the Web of Data which is
immediately available on the client (data publisher) side is limited, and gath-
ering this information is a time-consuming process for the user. The proposed
solution provides the data publisher with a ranked set of potentially relevant
data sources and, in addition, a partial configuration of the data linking tool

16 http://code.google.com/p/google-refine/
17 http://www.okkam.org

(classes containing relevant sets of instances). In this way, it can substantially
reduce the need to perform exploratory search. One direction of the continuation
work, which we are currently pursuing, involves developing algorithms which are
able to suggest to the user suitable instance matching algorithms for the data
linking tool depending on the task at hand.

Another potentially interesting research direction is related to the develop-
ment of semantic indexes. Search for relevant data repositories can become a
novel interesting use case in addition to the more common search for entities
and documents. In order to support it, new types of search services can be
valuable: for example, batch search for a large array of resource labels instead
of multiple queries for small sets of keywords, which increase number of server
requests and overall processing time.

8 Acknowledgements

This research has been partially funded under the EC 7th Framework Pro-
gramme, in the context of the SmartProducts project (231204).

References

1. J. Euzenat and P. Shvaiko. Ontology matching. Springer-Verlag, Heidelberg, 2007.

2. M. Fernandez, Z. Zhang, V. Lopez, V. Uren, and E. Motta. Ontology augmentation:
combining semantic web and text resources. In 6th International Conference on
Knowledge Capture (K-CAP 2011), 2011.

3. J. Gracia and E. Mena. Matching with CIDER: Evaluation report for the OAEI
2008. In 3rd Ontology Matching Workshop (OM’08) at the 7th International Se-
mantic Web Conference (ISWC’08), Karlsruhe, Germany, 2008.

4. H. Halpin, P. J. Hayes, J. P. McCusker, D. L. McGuinness, and H. S. Thompson.
When owl:sameas isn’t the same: An analysis of identity in linked data. In 9th
International Semantic Web Conference (ISWC 2010), pages 305–320, Shanghai,
China, 2010.

5. A. Isaac, L. van der Meij, S. Schlobach, and S. Wang. An empirical study of
instance-based ontology matching. In 6th International Semantic Web Conference,
pages 253–266, Busan, Korea, 2007.

6. J. Li, J. Tang, Y. Li, and Q. Luo. RiMOM: A dynamic multistrategy ontology
alignment framework. IEEE Transactions on Knowledge and Data Engineering,
21(8):1218–1232, 2009.

7. F. Maali, R. Cyganiak, and V. Peristeras. Re-using cool URIs: Entity reconciliation
against LOD hubs. In Workshop on Linked Data on the Web (LDOW 2011), WWW
2011, Hyderabad, India, 2011.

8. A. Nikolov and M. d’Aquin. Identifying relevant sources for data linking using
a semantic web index. In Workshop on Linked Data on the Web (LDOW 2011),
WWW 2011, Hyderabad, India, 2011.

9. A. Nikolov and E. Motta. Capturing emerging relations between schema ontologies
on the web of data. In Workshop on Consuming Linked Data (COLD 2010), ISWC
2010, Shanghai, China, 2010.

10. A. Nikolov, V. Uren, E. Motta, and A. de Roeck. Integration of semantically
annotated data by the KnoFuss architecture. In 16th International Conference on
Knowledge Engineering and Knowledge Management (EKAW 2008), pages 265–
274, Acitrezza, Italy, 2008.

11. A. Nikolov, V. Uren, E. Motta, and A. de Roeck. Overcoming schema heterogeneity
between linked semantic repositories to improve coreference resolution. In 4th
Asian Semantic Web Conference (ASWC 2009), pages 332–346, Shanghai, China,
2009.

12. G. Tummarello, R. Cyganiak, M. Catasta, S. Danielczyk, R. Delbru, and S. Decker.
Sig.ma: Live views on the Web of Data. Journal of Web Semantics, 8(4):355–364,
2010.

13. O. Udrea, L. Getoor, and R. J. Miller. Leveraging data and structure in ontology
integration. In SIGMOD’07, pages 449–460, Beijing, China, 2007.

14. J. Volz, C. Bizer, M. Gaedke, and G. Kobilarov. Discovering and maintaining links
on the Web of Data. In 8th International Semantic Web Conference (ISWC 2009),
pages 650–665, Washington, DC, USA, 2009.

15. S. Wang, G. Englebienne, and S. Schlobach. Learning concept mappings from
instance similarity. In 7th International Semantic Web Conference (ISWC’08),
pages 339–355, Karlsruhe, Germany, 2008.

