
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RDFa2: Lightweight semantic enrichment for hypertext content
Citation for published version:
Bai, X, Klein, E & Robertson, D 2011, RDFa2: Lightweight semantic enrichment for hypertext content:
Lightweight Semantic Enrichment for Hypertext Content. in The Semantic Web: Joint International Semantic
Technology Conference, JIST 2011, Hangzhou, China, December 4-7, 2011. Proceedings. Lecture Notes in
Computer Science, vol. 7185, Springer Berlin Heidelberg, pp. 318-333. https://doi.org/10.1007/978-3-642-
29923-0_21

Digital Object Identifier (DOI):
10.1007/978-3-642-29923-0_21

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
The Semantic Web

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 17. Apr. 2024

https://doi.org/10.1007/978-3-642-29923-0_21
https://doi.org/10.1007/978-3-642-29923-0_21
https://doi.org/10.1007/978-3-642-29923-0_21
https://www.research.ed.ac.uk/en/publications/d84123cf-40bd-4235-a6a0-6228ead6039b


RDFa2: Lightweight Semantic Enrichment for
Hypertext Content

Xi Bai, Ewan Klein, and Dave Robertson

School of Informatics, University of Edinburgh, UK
xi.bai@ed.ac.uk, ewan@inf.ed.ac.uk, dr@inf.ed.ac.uk

Abstract. RDFa is a syntactic format that allows RDF triples to be
integrated into hypertext content of HTML/XHTML documents. Al-
though a growing number of methods or tools have been designed at-
tempting at generating or digesting RDFa, comparatively little work has
been carried out on finding a generic solution for publishing existing
RDF data sets with the RDFa serialisation format. This paper proposes
a generic and lightweight approach to generating semantically-enriched
hypertext content by embedding RDF triples derived from diverse prove-
nances in terms of a concept of topic nodes which will be automatically
recommended by our discovery algorithm. RDFa2 is a proof-of-concept
implementation for our approach and works as an online platform as-
sisting Web content publishers in semi-automatically generating, per-
sonalising and curating pages with RDFa. RDFa2 has been introduced
and employed by students in a master level course and the experimen-
tal results as well as additional case studies indicate the validity of this
approach to generating triple-embedded Web documents such as online
profiles and vocabularies with little user intervention.

1 Introduction

The Semantic Web have been proposed as an extension of the Document Web
where human-readable hypertext documents currently dominate. As part of the
Semantic Web initiative to promote machine-readability of Web documents,
RDFa (a W3C recommendation for more than two years) has been designed
so that “authors can markup human-readable data with machine-readable indi-
cators for browsers and other programs to interpret” [1]. An increasing number
of tools for processing RDFa have been developed which leverage the existing
range of techniques for processing standard RDF. Hundreds of thousands of
FOAF 1 documents have been created (semi-)automatically or manually but
due to the lack of human readability of RDF triples, many of RDF documents
are hidden in repositories or behind SPARQL endpoints which are not accessible
to users without expertise. On the other hand, a growing number of ready-to-
reuse Linked Data sets have been published nowadays and a fully-fledged Linked
Data application is likely to make use of data from more than one source. Auto-
matic information processing and integration hence require Web content to be

1 http://xmlns.com/foaf/spec

http://xmlns.com/foaf/spec
uhiroeh
Typewritten Text
Bai, X., Klein, E., & Robertson, D. (2011). RDFA2: Lightweight Semantic Enrichment for Hypertext Content. In The Semantic Web. (pp. 318-333). (Lecture Notes in Computer Science). Springer Berlin / Heidelberg. 10.1007/978-3-642-29923-0_21

uhiroeh
Typewritten Text



not only human-readable but also machine-readable. Although content publish-
ers can publish a plain HTML page and point it via meta to an RDF document,
since they are separate documents the availability of both documents may not
be achieved at the same time and it is also difficult to avoid data duplication.
While RDFa makes it easy for Web authors to manually add small amounts of se-
mantic markups to XHTML documents, RDFa also offers the potential to trans-
form pre-existing machine-readable data into human-readable format. So far,
this has received relatively little attention. We propose a generic and lightweight
approach to semi-automatically generating semantically-enriched hypertext con-
tent from existing RDF documents 2. A key ingredient, which we will describe
in more detail below, involves the identification of one or more “topic nodes” in
the RDF context(s) to guide the injection of RDFa into an XHTML template. A
proof-of-concept of this approach has been implemented under the name RDFa2

(RDFa annotator), and has been available as an online service 3. RDFa2 runs
within standard Web browsers, and allows users to customise its output in two
ways: either by modifying the generated data in an edit window (with on-the-fly
preview) or by revising the generated XHTML template, which can be saved to
local storage for future use.

The remainder of this paper is organised as follows. Section 2 reviews re-
lated work on processing RDFa. Section 3 describes the preprocessing of “RDF
contexts” required by our approach. Section 4 proposes a hybrid topic-node
discovery method based on weighted occurrences of nodes as well as heuristic
properties and details how our approach can assist users in creating, customising
and reusing Web content with RDFa. How RDFa2-assisted data integration is
compliant with the standard RDF data model as well as the Linked Data [8]
principles is also discussed in this section. Section 5 evaluates this approach by
introducing our prototype to students in a master level course as well as case
studies on republishing online vocabularies. Section 6 draws conclusions and
indicates future work.

2 Related Work

SPARQLScript 4 supports output templating which allows users to embed SPAR-
QL query results into the dynamic generated Web pages via place holders. It
could be used for dynamically embedding triples and users however need to
learn this PHP-like script language and SPARQL. Fresnel [16] is a declarative
language for rendering RDF content in specific browsers (as of writing this pa-
per, it supports five browsers) but requires users to learn how to write lenses and
formats which are two foundational concepts employed in this language. Tal4Rdf
(T4R) 5 is a template language for presenting RDF data into other formats such

2 Here and in the rest of the paper, we take “RDF document” to subsume any docu-
ments containing (or embedding) RDF triples.

3 http://demos.inf.ed.ac.uk:8836/rdfasquare
4 https://github.com/semsol/arc2/wiki/SPARQLScript
5 http://liris.cnrs.fr/~pchampin/t4r/

http://demos.inf.ed.ac.uk:8836/rdfasquare
https://github.com/semsol/arc2/wiki/SPARQLScript
http://liris.cnrs.fr/~pchampin/t4r/


as HTML, SVG, JSON, Atom and so on. However, it currently does not sup-
port the XHTML+RDFa representation of existing RDF data so it is difficult
if not impossible for other users or developers to repurpose (e.g. mashup) the
reformatted data on the generated Web pages. Therefore, although the above de-
signed languages dedicated to RDF-embedded page generation are self-adaptive
to updating of triples, the cost of creating an appropriate intermediate format
(e.g., templates or lenses) is not much less than the cost of manually creating an
XHTML+RDFa page.

FOAFr 6 allows users to convert their FOAF documents into XHTML pages
with RDFa automatically and it is however focused on the FOAF vocabulary 7

only. Likewise, FOAF.Vix 8 is a visualiser and relation explorer for FOAF doc-
uments. It provides RDF documents serialised in RDF/XML and Web pages
containing RDFa with visualisations in which there is no embedded meta infor-
mation. GoodRelations [13] provides a GoodRelations Annotator 9 as well as a
Rich Snippet Generator 10, both of which assist users in creating RDFa snippets
for their businesses or products using the particular GoodRelations vocabulary.
By filling slots in a provided template, a user will get an RDFa snippet generated
using XSLT. Our approach is not domain specific and allows users to generate
RDFa snippets using any vocabularies in the RDF data model.

RDF2RDFa [14] also allows users to copy and paste RDFa snippets generated
from input RDF documents. This copy-and-paste method makes the original
RDF content transparent to users so it is difficult if not impossible that users
can reuse human-readable content from the original RDF documents. Drupal
7 allows developers to generate templates for associating RDFa with Drupal
elements such as content types and fields [10]. It has, however, not offered a
fine-grained solution for content publishers to easily associate RDFa with more
open content lacking a generalised template. Our RDFa2 provides users with the
free-editing functionality and on-the-fly previews after content change so they
can get the real WYSIWYG experience when starting the transformation.

3 Topic Nodes and Topic Trees

Our algorithm for transforming RDF documents to XHTML+RDFa pages is
based on automatically generated templates. These templates are schematic
XHTML documents, and have a tree structure. By contrast, the RDF data
model is a graph, and cannot be converted to a single tree without duplicat-
ing re-entrant nodes. In order to overcome this problem, the conversion from
RDF requires users to select a specific node in the RDF graph which then forms
the root of a tree of RDF statements. Which node should the user choose? In
practice, this seems to follow straightforwardly from the user’s goals, namely to

6 http://sw.joanneum.at:8080/foafr
7 http://xmlns.com/foaf/spec
8 http://foaf-visualizer.org
9 http://www.ebusiness-unibw.org/tools/goodrelations-annotator/en

10 http://www.stalsoft.com/grsnippetgen

http://sw.joanneum.at:8080/foafr
http://xmlns.com/foaf/spec
http://foaf-visualizer.org
http://www.ebusiness-unibw.org/tools/goodrelations-annotator/en
http://www.stalsoft.com/grsnippetgen


focus on the resource which is his or her main topic of interest in the resulting
XHTML page. For example, in the case of a FOAF file, the obvious resource to
choose is the value of the maker or primaryTopic property.

The node that is targeted in this way is called the topic node. The RDF
document from which the topic node is derived is called the RDF context, and
relative to a context C, a set of RDF statements rooted in a topic node is called
a topic C-tree. We distinguish between two kinds of topic trees, depending on
the position (the subject or the object) of the topic node inside a specific triple.
Given a resource r, context C, and RDF statement (s, p, o), the subject (topic)
C-tree based on r is defined as {(s, p, o) ∈ C | s = r}, and similarly for the object
(topic) C-tree based on r.

The notion of a topic tree for a topic node is essentially the same as a bounded
description of a resource; that is, where “a sub-graph can be extracted from a
data set which contains all of relevant properties and relationships associated
with a resource” [11]. For the sake of clarity, a topic node is not necessarily the
global topic of an RDF document; rather, it corresponds to a resource in the
document which the user regards as interesting enough to represent in XHTML.
Figure 1 illustrates the selection of a subject topic tree from an RDF context.

knows

workplaceHomepage

name

name

name

topic node

Fig. 1. Subject (topic) C-tree of a FOAF document

In this figure, for the sake of brevity, we have omitted the name spaces
(henceforth abbreviated as NS) of all properties here. In this figure, circles denote
resources and squares denote literals. The node coloured in dark grey is the
current topic node while the sub-graph surrounded by the dashed line is the
subject topic tree for this node. The labelling information about the resources
in the subject position are also included in the topic tree in order to make the
resources themselves human-readable on the RDF-embedded page.

Although the most straightforward use case for our approach creates a stan-
dalone XHTML page from an RDF document, we also want to accommodate



cases where the output of this approach is inserted as a snippet into a larger
(X)HTML document. Taking Sir Tim Berners-Lee’s Twitter profile as an ex-
ample, Figure 2 illustrates RDFa2 generated an RDFa snippet from the triples
obtained via SemanticTweet APIs 11 (it is needless to mention FOAF docu-
ments can be fed into this tool directly as snippet-generation seeds [3]). In the
copy&paste way, this snippet is ready to be inserted into the <body> section of
the homepage or exported as a separate Web page and notably, it can be further
customised by publishers through adding more human-readable content.

Fig. 2. Personalise the raw page generated by RDFa2

4 Embedded-Annotation Generation

Our approach to assisting users (e.g., Web content publishers) in generating
annotations embedded in their hypertext content is detailed in this section. This
approach has the ability to automatically discover a candidate set of topic nodes
(from existing RDF contexts) which can be offered to the user thereafter and also
supports federated integration in the sense that users can embed multiple topic
nodes from multiple RDF contexts into a single Web page. Within the publishing
process, publishers can revise suggested annotated blocks or raw pages in terms
of their individual requirements. Moreover, templates are also provided via our
approach and customised by publishers (and also stored, loaded and reused)
if needed. Algorithm 1 describes the annotation generation process (generating
the partial snippet for the subject topic tree) and will be further discussed in
the following subsections. Likewise, the snippet generation corresponding to the
object topic tree is not described here due to the space limitation but can be

11 http://semantictweet.com/

http://semantictweet.com/


achieved by revising this algorithm and moving the topic node from the subject
position to the object position. For the mashup purpose, the embedded RDF
triples can be harvested and serialised in several formats such as Notation3
(N3) [7], RDF/XML [6], N-Triples [12] and Turtle [5].

Algorithm 1: RDFa Snippet Generation Algorithm (subject (topic) C-
tree)

Input: topic uri, the URI of the topic node and model, the model containing
triples in the current context.

Output: rdfa snippet, the RDFa snippet representing the information about
the inputted topic node.

begin
def rdfa snippet = getDIVHead(topic uri);
def sub topic tree = model.getStantementsBySubject(topic uri);
def properties = model.getUniquePropertiesBySubject(topic uri);
for each property in properties do

def objects = sub topic tree.getObjectsByProperty(property);
def prop local name = property.getLocalName();
def prop node name = (property.getNameSpace() + ” ” +
prop local name + ”rel”).replace(” ”, ”dash”);
def prop curie name = model.getPrefix(property.getNameSpace()) +
”:” + prop local name;
for each object in objects do

if object.isListeral() then
rdfa snippet += ”<#if topic.” + prop node name + ”??>” +
”<#list topic.” + prop node name + ”?keys as key>” +
getLiteralStyle(prop local name, property.getURI()) + ... ;

else
def snippet = ””;
if object.isURIResource() && object.getURI().indexOf(”.”) ! =
-1 then

def obj uri = object.getURI();
def expansion =
obj uri.subString(obj uri.lastIndexOf(”.”));
snippet += getSnnipetByExpansion(prop curie name,
prop node name);

else
snippet += ”<a rel=’” + prop curie name + ”’
href=’${topic.” + prop node name + ”[key].uri}’
onclick=’return false;’>${topic” + prop node name +
”[key].uri}</a></span><br/>”;

rdfa snippet += ”<#if topic.” + prop node name + ”??>” +
”<#list topic.” + prop node name + ”?keys as key>” + ”<#
if topic.” + prop node name + ”[key].uri??>” +
getResourceStyle(prop local name, property.getURI(), true) +
snippet + ”<#if><#list><#if>”;

return rdfa snippet;



4.1 Topic-Node Discovery

In the preceding section, we assumed that topic nodes will be selected by the
user. However, this requires the user to understand the basic syntax of the RDF
context inside which these node are represented. One way of automatically iden-
tifying topic nodes in a given RDF context is to query the document for URIs
with properties that are diagnostic of topic-hood, such as foaf:primaryTopic

or foaf:maker in FOAF files. However, not all RDF documents contain such
properties, and even in FOAF files which do employ them, they do not al-
ways take semantically appropriate values. Consequently, topic nodes cannot
reliably be detected just in terms of the semantics of statements in the RDF
context itself. Xiang et al. compared five measurements from three categories
(degree centrality, shortest-path-based centrality and eigenvector centrality) for
automatically summarising ontologies in a topic-independent manner and their
interesting evaluation showed that weighted in-degree centrality measures and
several eigenvector centralities all have good performance on ontology summari-
sation [17]. As analysed in [4], for the case that the target RDF documents mix
up ontology-related triples and individual-related triples, the above topic-free
measurements may be affected by unforeseen noise nodes. Moreover, each prop-
erty could have a corresponding inverse property so it is difficult if not impossible
to draw a conclusion that an RDF node’s in-degree (or out-degree) prioritises its
out-degree (or in-degree). In this paper, we propose an improved algorithm for
semi-automatically discovering and recommending topic nodes. Since the RDF
data model is a directed graph and nodes are connected to one another through
directed edges, one solution for discovering the topic node is based on node con-
nectivity. In other words, the more edges (outgoing or incoming) a node has,
the more important it is likely to be. In order to maximise the accuracy of this
heuristic, our algorithm selects the top n most highly connected URIs and offers
them to users for subsequent confirmation 12. Perhaps not surprisingly, this algo-
rithm works especially well for RDF documents such as FOAF files that usually
do have a central topic.

When a user inputs the URI of a resource that she wants to integrate into
her Web page, together with an RDF context, RDFa2 will query this context
with the selected URI for all statements in which the URI is either subject or
object. From this set, a subject (respectively, object) topic tree will automati-
cally be selected if it exists. Its root will be the topic node and its corresponding
properties and values will be stored in other nodes or leaves. Then the user
can refer to any information about this topic node using the path structure
root.predicate.values[key].[resource] or root.predicate.values[key].
[literal] in the template which will be discussed in Subsection 4.3. Here, root
denotes the resource currently being integrated; predicate denotes a specific
property with which this resource is associated; and values is a list that stores
the values of a property (since some properties may have multiple values). The

12 The value of n can be any reasonable integer. Although RDFa2 takes n to 10, by
default it only just shows the top three URIs to users. It is also worth noting that
blank nodes are filtered out from the set of candidates.



screenshot in Figure 3 illustrates how topic nodes derived from an RDF context
(Sir Tim Berners-Lee’s twitter profile in RDF) were discovered and the most
important URI in this context was shown at the top of the recommendation list.

Fig. 3. Screenshot for discovering the topic node from an RDF context

4.2 Federated-Annotation Generation

We do not want to exclude the possibility of the user selecting more than one
topic node from a given RDF context. For example, a user may wish to render
the FOAF document vocabulary (i.e., encoded as a set of RDF statements) as
XHTML, and in this use case, all of the nodes foaf:Person, foaf:Agent and
foaf:Document, for example, should be treated as topics. We can use multiple
templates to help the user achieve this goal. Once a user selects a temporary topic
node, a hash tree, a template and an XHTML+RDFa page will be generated
based on node occurrences. Meanwhile, the relevant NSs are also grouped and
displayed on the final page. Thereafter, the generated XHTML+RDFa snippets
will be automatically combined into a single snippet.

It is not uncommon that users publish an XHTML+RDFa page using triples
from different RDF sources (or in our terminology, from different contexts).
We can accommodate this in a way similar to our approach to dealing with
multiple topic nodes. Our approach supports federated integration by managing
the NSs derived from different RDF documents separately and combining them
at the final stage. However, it should be noted that different vocabularies do not
necessarily employ the same QName prefix for a given NS. prefix.cc (PCC ) 13

alleviates the issue that RDF documents involve different prefixes indicating the
same NS or the same prefix indicating more than one NS by allowing users to
look up the collected NSs on PCC and vote for their favourite ones. Nevertheless,
it is difficult if not impossible to stop people from using ambiguous prefixes.

13 http://prefix.cc

http://prefix.cc


Our approach can automatically detect if a prefix is ambiguous across a set of
contexts, and will synthesise new prefixes to ensure disambiguation by generating
different prefixes as substitutions. Moreover, many of the NSs in the original RDF
context set are unused in the final XHTML+RDFa Web pages. In order to avoid
an unnecessary burden on browsers rendering the page, the NSs which are not
used in the user’s RDF-embedded Web page will be automatically excluded. It is
notable that RDFa 1.1 harnesses @profile to come over the lengthy declaration
of NS prefixes recommended in RDFa 1.0 and this can be also used for avoiding
possible ambiguous prefixes to some extent. Figure 4 illustrates the generation
of a triple-embedded Web page by combining triples derived from three different
Twitter profiles (contexts).

Fig. 4. Screenshot for generating annotation from multiple contexts

Figure 5 illustrates how our approach assists users in creating Web pages
annotated with RDF triples derived from different data sources. Users inform
RDFa2 of the target in one or more RDF contexts by providing one or more
URLs. These documents will be retrieved on the fly and each of them forms an
RDF context. After the topic nodes are selected, triples related to them will be
extracted. Finally, the page with RDFa annotation will be sent back to users.

RDF Triples

Context

RDF Triples

Context

U
R

L
s

T
o

p
ic

N
o

d
e

s

RDF Contexts

R
D

F
a

P
a
g

e
s

HTTP

Requests

RDF

Files

RDF File

RDF Triples

Context

Fig. 5. Context-based federated integration



4.3 Customisation and Template Reuse

One of the primary functions of our approach is to automatically carry out a
template-based transformation of RDF to XHTML+RDFa. However, the result
of the transformation will almost certainly not be in the precise form required
by users, and consequently it is important to allow users to further edit the out-
put. The RDFa2 interface provides the user with both a rendered preview and
the source code of the generated XHTML+RDFa. Users without expertise in
RDF(a) can modify the output by clicking and editing elements on the preview
page or editing the content in the WYSIWYG way as shown in Figure 2. More
experienced users can edit the page source and check its preview but it is recom-
mended that revisions are limited to the text nodes of the page since manually
edited RDFa needs revalidation.

When users deal with a great number of RDF documents of the same type
(e.g., all of them are FOAF documents), they may have to carry similar or even
identical manual revisions for each document processed by RDFa2. To avoid this
unnecessary effort, we provide users with another way of personalising the RDFa-
embedded web pages by letting them revise the templates. Each transformation
will generate a template and this template will be returned before being applied
to the RDF context. A basic template is generated using placeholders of the
kind standardly offered by template tools (e.g., FreeMarker 14 applied here).
Each placeholder indicates a piece of information which will be extracted during
the transformation process (e.g., personal.firstname and personal.lastname

are two placeholders which will be replaced with the first name and the last
name of a particular person, respectively). As long as a template is generated,
a hash tree that stores the data about the topic nodes is also generated, based
on the RDF context: we call this an intermediate tree. The structure of the
intermediate tree evolved from the structure of the topic tree but is more friendly
to templating. Figure 6 shows the excerpt of a generated template that will
be used for displaying all the people connected to the selected topic node via
foaf:knows.

Fig. 6. Excerpt of a generated template for displaying known people

14 http://freemarker.org

http://freemarker.org


The triples taking the topic node as subjects or objects may take literals or
other resources as their objects. Both of these two cases have to be taken into
consideration before the template is generated. If the object is a literal, it will be
enclosed within an HTML tag with @property (@ATTRIBUTE is used hereafter for
denoting a tag’s attribute in terms of the XPath syntax) indicating the predicate
attached with this object. If the object is a resource, it will be enclosed within by
an HTML tag with @resource taking this object as its value and @rel indicating
the predicate attached to this object. As mentioned in Section 3, the text value
of this tag node will be the preferred label (if exists) of the resource rather than
its URI. This complies with the modelling pattern introduced in [11] as well.

4.4 Self-Adaptability and Reflections on RDF Features

Our approach queries the RDF context using SPARQL with the topic node
either given by the user or discovered by the topic recommender semiautomat-
ically, which has been discussed above. The result will be used for replacing
the pre-generated placeholders insides templates. In a specific RDF vocabulary,
some properties may be defined as functional properties (e.g., foaf:gender and
foaf:primaryTopic in FOAF). Each of them only takes one object or one lit-
eral as its value. Other properties (e.g., foaf:maker and foaf:member) may take
more than one object or literal as their values. The SPARQL query results are
grouped in terms of properties. With respect to the evolution of an RDF vocab-
ulary, new classes or properties may be involved and some classes or properties
may be deprecated. Since templates are created and applied on the fly and al-
ways based on the given vocabularies (RDF contexts), the above evolution will be
transparent to users. For some of them who want to reuse their templates, their
existing templates can be merged with the newly generated ones. A few manual
reconciling work on these two kinds of templates might be involved within this
process.

According to [1], @resource and @href can be used for hooking the object
of an RDF triple. The value of the former is a URI which is ”not intended to be
clickable” and normally denotes a non-information resource while the value of the
latter is a URI which normally denotes a information resource. The minters of
non-clickable URIs need to provide relevant information resources as these URIs’
representations [15]. RDFa2 currently assumes each non-information resource has
an informational representation and by clicking it, users will be redirected to an-
other information resource associated with it. Thus, either information resources
or non-information resources will be wrapped in <a> tags and attached to @href

rather than @resource here. Since @href supports only URIs, the object of each
RDF triple will not be expressed in CURIE (a generic, abbreviated syntax for
expressing URIs) syntax in the final page. With respect to BNodes, the labelling
property (if exists) and corresponding value surrounding a specific BNode in the
original RDF context will be used as the representation. Nevertheless, users are
recommended not to use BNodes when publishing Linked Data on the Web [9].



4.5 Linking Annotations to the LOD Cloud

There is one step to go before RDF triples are injected into Web pages because
these embedded triples may otherwise cause provenance and trust issues. RDF
statements are focused on describing who said what but statements themselves
may or may not be true. Additionally, the licence is another thing that should not
be ignored especially when users attempt to reuse data by other data providers.
Therefore, the enriched documents need to be associated with provenance in-
formation and linked to the Linked Open Data (LOD) Cloud 15. Here, we use
the Vocabulary of Interlinked Datasets (voiD) [2] to describe the relationships
between the annotations and the RDF contexts from which the harnessed triples
are derived. This vocabulary has been used here due to its simplicity and con-
cision but alternative linked dataset vocabularies could be applied here for the
same purpose. Suppose the URI of the topic node is denoted by Turi and the
URI of the RDF context (provenance) is denoted by Curi. An XHTML+RDFa
snippet will be automatically generated to describe the provenance of Turi as
follows:

<div about="Turi" xmlns:void="http://rdfs.org/ns/void#"
xmlns:dcterms="http://purl.org/dc/terms/">
<span rel="dcterms:isPartOf">

<span typeof="void:Dataset">
<span rel="void:dataDump" resource="Curi"/>

</span>
</span>

</div>

5 Experiment and Use-Case Analysis

We experiment with our approach and show the preliminary performance of
RDFa2 , which has been deployed on the Apache Tomcat server installed on a
PC with a PentiumrD 3.00GHz × 2 CPU and 1 GB RAM.

Online profiles have been widely used by various Web sites for managing
user identification. FOAF is currently one of the most widely used profile vo-
cabulary for RDF on the Web. RDFa2 can help users inject their FOAF triples
into their online profile documents such as homepages. Our experiment first in-
volved asking students who participated in a masters level course on Semantic
Web technologies to use RDFa2 to publish their own profiles (FOAF documents)
along with information about their favourite actors/actresses denoted by URIs
minted and curated on DBPedia 16 and submit URLs of these documents to
Sindice 17. Fresnel and SPARQLScript were also introduced during the course
as alternatives. In total, 64 students participated in this experiment and 60
of them successfully submitted their reports. On a public server, each student
has been allocated personal space to store his or her own documents (e.g., the

15 http://linkeddata.org
16 http://dbpedia.org/
17 http://www.sindice.com/main/submit

http://linkeddata.org
http://dbpedia.org/
http://www.sindice.com/main/submit


homepage). By searching documents of type XHTML+RDFa on Sindice with
the domain name of the above homepage server as well as students’ matricula-
tion numbers, we found that 58 out of 60 students finally published their RDFa
profiles and also successfully managed to make Sindice index them. 93.33% of
students chose the first topic nodes (at the top of the generated topic-node lists)
recommended by our topic-node discovery algorithm as their priority within the
process of RDFa snippet generation while two students chose the second topic
nodes as their priority. Based on their feedback, RDFa2 made straightforward
the process for generating triple-embedded Web pages from existing RDF data
sets and Fresnel as well as SPARQLScript are however more flexible for users
with expertise on specific languages as well as RDFa itself to customise pages.

We also collected 324 FOAF documents (without considering dead links de-
clared already on the homepage) from FOAFBulletinBoard (FBB) 18 and 146
FOAF documents from W3C RDF Harvester Starting Point (WRDFHSP) 19

respectively. These two sites are separate Wikis for bootstrapping a commu-
nity in which any users are allowed to contribute FOAF documents collabora-
tively. Finally we got 149 and 63 valid FOAF documents in total from FBB and
WRDFHSP respectively and republished them with RDFa2 thereafter. Table 1
shows the results of retrievals of FOAF documents collected from the above two
sites.

Table 1. FOAF document retrieval on FBB and WRDFHSP

Dataset 403 404 406 503 invalid UC UKH OOM valid

FBB
N 6 72 9 1 59 9 18 1 149
P 2.74%22.60%1.37%.68%12.33%6.16%8.90%2.05%43.15%

WRDFHSP
N 4 33 2 1 18 9 13 3 63
P 1.85%22.22%2.78%.31%18.21%2.78%5.56% .31% 45.99%

In this table, by “invalid”, we mean these URLs indicate FOAF documents
published in an unrecommended way (e.g., FOAF documents have syntax errors
or involve deprecated syntax which can not be accepted by the up-to-date RDF
parser). Besides, 403, 404, 406 and 503 denotes the numbers of retrievals that
caused HTTP 403, 404, 406 and 503 errors respectively. UC denotes the numbers
of retrievals that caused unconnected errors and UKH denotes the ones caused
unknown-host errors. A few FOAF documents contain too many triples to be
loaded into our parser and the number of these documents is denoted by OOM.
N and P denote the number of retrievals and the corresponding percentage
respectively. We see in this table that 54.01% of documents on FBB and 56.85%
of documents on WRDFHSP do not contain valid FOAF information. Due to the
space limitation, the time costs of these transformations dedicated to the above
two sites are not listed here (see in [3]). On average, 98.58% of valid documents
on both sites can be transformed via RDFa2 within 3 seconds.

18 http://wiki.foaf-project.org/w/FOAFBulletinBoard
19 http://esw.w3.org/AnRdfHarvesterStartingPoint

http://wiki.foaf-project.org/w/FOAFBulletinBoard
http://esw.w3.org/AnRdfHarvesterStartingPoint


Besides online profiles, our approach can be also used for republishing RDF
vocabularies on normal Web pages. Since there is no central repository of vocab-
ularies on the Semantic Web 20, we collected RDF vocabularies in terms of NSs
collected from Ping The Semantic Web (PTSW) 21 and PCC respectively. At the
time of writing this paper, there were 825 NSs recorded by PTSW. Since URLs
of corresponding vocabularies can not be inferred with the NS URIs(publishers
may use rewriting rules to manage the URI of the NS and the URL of the vocab-
ulary document separately), we can only use these NS URIs to do the vocabulary
retrievals via HTTP requests as well as content negotiations. Finally we got 249
vocabularies in total and republished them with RDFa2 afterward. We did the
same experiment on PCC as well and 349 NS URIs were obtained at the time
of writing. We got 165 vocabularies in total and republished them with RDFa2.
Table 2 shows the results of retrievals of RDF vocabularies in terms of names
spaces from PTSW and PCC.

Table 2. RDF vocabulary retrieval in terms of name spaces from PTSW and PCC

Dataset 400 401 403 404 406 408 500 503

PTSW
N 1 8 8 180 14 1 2 33
P .12% .97% .97% 21.82% 1.70% .12%.24%4.00%

PCC
N - - 3 35 26 - - -
P - - .86% 10.03% 7.45% - - -

Dataset invalid UC UKH OOM valid - - -

PTSW
N 258 29 39 3 249 - - -
P 31.27%3.52%4.73% .36% 30.18% - - -

PCC N 108 4 7 1 165 - - -
P 30.95%1.15%2.01% .29% 47.28% - - -

In Table 2, by “invalid”, we mean these NS URIs were not valid HTTP
URIs or moved temporarily/permanently or indicate vocabularies which were
actually not published in the RDF data model or serialised in syntaxes apart
from RDF/XML which we just took into consideration in our experiment or
published in an unrecommended way (e.g., RDF codes were attached in the
comment section of the HTML document or have the error or deprecated syntax
which can not be accepted by the RDF parser). Besides, this table contains more
columns than Table 1 because more types of HTTP errors occurred within the
process of retrieving vocabularies from these two sites. Within the retrieving
process, 69.82% vocabularies on PTSW and 52.72% vocabularies on PCC can
not be retrieved by dereferencing their NS URIs.

Figure 7 depicts the costs of time on republishing RDF vocabularies collected
in terms of NS URIs from PTSW and PCC respectively on XHTML pages with
embedded RDFa. From this figure, 20 out of 249 vocabularies on PTSW as
well as 5 out of 165 vocabularies on PCC cost around 16ms and there were
no results generated after the running of the program. The reason for this is

20 http://vocamp.org/wiki/Where_to_find_vocabularies
21 http://pingthesemanticweb.com/

http://vocamp.org/wiki/Where_to_find_vocabularies
http://pingthesemanticweb.com/


because these 25 vocabularies in total do not contain any class or property
declarations. On average, 93.96% of successfully retrieved vocabularies can be
transformed via RDFa2 within 3 seconds. RDFa2’s performance on dealing with
documents containing a large number of triples is related to the employed third
party RDF parser and the memory allocated for running the RDFa snippet
generation program. It is however not recommended to use RDFa2 to process
large RDF documents since this may lead to Web pages with massive content in
the end, which will affect the readability and bring the overhead onto browsers
when being rendered.

 0

 2000

 4000

 6000

 8000

 10000

 0  50  100  150  200

c
o

s
t 

o
f 

ti
m

e
 (

m
s
)

name spaces

Republishing vocabularies from PTSW

(a) PTSW

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0  20  40  60  80  100  120  140  160

c
o

s
t 

o
f 

ti
m

e
 (

m
s
)

name spaces

Republishing vocabularies from PCC

(b) PCC

Fig. 7. Republishing RDF vocabularies on PTSW and PCC

6 Conclusions

A generic and lightweight approach is proposed to assisting content publishers
in generating semantically-enriched hypertext content with triples derived from
existing distributed RDF (or RDFa) documents (repositories). The experiment
and the use-case analysis show that this approach can help publishers republish
their triples in the RDFa serialisation with little human intervention. Nowadays,
more and more Linked Data applications have come up and began to employ
data from more than one source (or contexts in this paper) and RDFa2 helps
users harness resources from different contexts and potential conflict NSs decla-
rations will be automatically handled. A property of a specific triple could be a
topic node as well and a method needs to be carefully designed to synthesise re-
lated triples and topic trees. The support in this will be further investigated and
integrated in the next step. For other hypertext-friendly formats of embedded
metadata such as Microformats 22 or Microdata 23, our approach can be em-
ployed as well for generating Web pages with those formats from existing RDF

22 http://microformats.org/about
23 http://www.w3.org/TR/microdata

http://microformats.org/about
http://www.w3.org/TR/microdata


data sets. At the time of writing, XHTML+RDFa 1.1 24 and HTML+RDFa
1.1 25 W3C working drafts were released and have been improved in progress,
our goal is to make our approach harness new features compatible with the
up-coming W3C recommendations.

References

1. Adida, B., Birbeck, M., McCarron, S., Pemberton, S.: RDFa in XHTML:
Syntax and processing, W3C recommendation (2008), http://www.w3.org/TR/

rdfa-syntax

2. Alexander, K., Cyganiak, R., Hausenblas, M., Zhao, J.: Describing linked datasets
- on the design and usage of voiD, the ‘vocabulary of interlinked datasets’. In:
Proc. WWW Workshop on LDOW ’09 (2009)

3. Bai, X.: Addressing the RDFa Publishing Bottleneck. In: Proc. WWW (Companion
Volume) ’11. pp. 331–336. ACM Press (2011)

4. Bai, X., Delbru, R., Tummarello, G.: RDF snippets for Semantic Web search en-
gines. In: Proc. OTM ’07. vol. 5332, pp. 1304–1318. Springer (2008)

5. Beckett, D., Berners-Lee, T.: Turtle - terse RDF triple language, W3C team sub-
mission (2008), http://www.w3.org/TeamSubmission/turtle

6. Beckett, D., McBride, B.: RDF/XML syntax specification (revised), W3C recom-
mendation (2004), http://www.w3.org/TR/REC-rdf-syntax

7. Berners-Lee, T.: Notation 3 specification, W3C design issues (1998), http://www.
w3.org/DesignIssues/Notation3.html

8. Berners-Lee, T.: Linked Data (2006), http://www.w3.org/DesignIssues/

LinkedData.html

9. Bizer, C., Cyganiak, R., Heath, T.: How to publish Linked Data on the Web (2007),
http://www4.wiwiss.fu-berlin.de/bizer/pub/LinkedDataTutorial

10. Corlosquet, S., Delbru, R., Polleres, A., Decker, S.: Produce and consume Linked
Data with Drupal! In: Proc. ISWC ’09. vol. 5823, pp. 763–778. Springer (2009)

11. Dodds, L., Davis, I.: Linked Data patterns - a pattern catalogue for modelling, pub-
lishing, and consuming Linked Data (2010), http://patterns.dataincubator.

org/book

12. Grant, J., Beckett, D., McBride, B.: RDF test cases, W3C recommendation (2004),
http://www.w3.org/TR/rdf-testcases

13. Hepp, M.: GoodRelations: An ontology for describing products and services offers
on the Web. In: Proc. EKAW ’08. vol. 5268, pp. 332–347. Springer (2008)

14. Hepp, M., Garćıa, R., Radinger, A.: RDF2RDFa: Turning RDF into snippets for
copy-and-paste. In: Proc. Posters and Demonstrations Track on ISWC ’09 (2009)

15. Lewis, R.: Dereferencing HTTP URIs (2007), http://www.w3.org/2001/tag/doc/
httpRange-14/HttpRange-14.html

16. Pietriga, E., Bizer, C., Karger, D., Lee, R.: Fresnel: A browser-independent presen-
tation vocabulary for RDF. In: Proc. ISWC ’06. vol. 4273, pp. 158–171. Springer
(2006)

17. Zhang, X., Cheng, G., Qu, Y.: Ontology summarization based on RDF sentence
graph. In: Proc. WWW ’07. pp. 707–716. ACM Press (2007)

24 http://www.w3.org/TR/2010/WD-xhtml-rdfa-20101109
25 http://www.w3.org/TR/rdfa-in-html

http://www.w3.org/TR/rdfa-syntax
http://www.w3.org/TR/rdfa-syntax
http://www.w3.org/TeamSubmission/turtle
http://www.w3.org/TR/REC-rdf-syntax
http://www.w3.org/DesignIssues/Notation3.html
http://www.w3.org/DesignIssues/Notation3.html
http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/LinkedData.html
http://www4.wiwiss.fu-berlin.de/bizer/pub/LinkedDataTutorial
http://patterns.dataincubator.org/book
http://patterns.dataincubator.org/book
http://www.w3.org/TR/rdf-testcases
http://www.w3.org/2001/tag/doc/httpRange-14/HttpRange-14.html
http://www.w3.org/2001/tag/doc/httpRange-14/HttpRange-14.html
http://www.w3.org/TR/2010/WD-xhtml-rdfa-20101109
http://www.w3.org/TR/rdfa-in-html



