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Abstract. In the framework of Markov Decision Processes, we consider
the problem of learning a linear approximation of the value function
of some fixed policy from one trajectory possibly generated by some
other policy. We describe a systematic approach for adapting on-policy

learning least squares algorithms of the literature (LSTD [5], LSPE [15],
FPKF [7] and GPTD [8]/KTD [10]) to off-policy learning with eligibility

traces. This leads to two known algorithms, LSTD(λ)/LSPE(λ) [21] and
suggests new extensions of FPKF and GPTD/KTD. We describe their
recursive implementation, discuss their convergence properties, and il-
lustrate their behavior experimentally. Overall, our study suggests that
the state-of-art LSTD(λ) [21] remains the best least-squares algorithm.

1 Introduction

We consider the problem of learning a linear approximation of the value function
of some fixed policy in a Markov Decision Process (MDP) framework, in the most
general situation where learning must be done from a single trajectory possibly
generated by some other policy, a.k.a. off-policy learning. Given samples, well-
known methods for estimating a value function are temporal difference (TD)
learning and Monte Carlo [19]. TD learning with eligibility traces [19], known as
TD(λ), provide a nice bridge between both approaches, and by controlling the
bias/variance trade-off [12], their use can significantly speed up learning. When
the value function is approximated through a linear architecture, the depth λ of
the eligibility traces is also known to control the quality of approximation [20].
Overall, the use of these traces often plays an important practical role.

In the on-policy case (where the policy to evaluate is the same as the one that
generated data), there has been a significant amount of research on linear Least-
Squares (LS) approaches, which are more sample-efficient than TD/Monte-Carlo.
Notable such works include LSTD(λ) [5], LSPE(λ) [15], FPKF [7] and GPTD [8]/
KTD [10]. Works on off-policy linear learning are sparser: [16] proposed a varia-
tion of TD(λ) that could combine off-policy learning with linear approximation
and eligibility traces. Recently, [21] proposed and analysed off-policy versions of
LSTD(λ) and LSPE(λ). The first motivation of this article is to argue that it
is conceptually simple to extend all the LS algorithms we have just mentionned
so that they can be applied to the off-policy setting and use eligibility traces.
If this allows to rederive the off-policy versions of LSTD(λ) and LSPE(λ) [21],
it also leads to new candidate algorithms, for which we will derive recursive
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formulations. The second motivation of this work is to describe the subtle differ-
ences between these intimately-related algorithms on the analytical side, and to
provide some comparative insights on their empirical behavior (a topic that has
to our knowledge not been considered in the literature, even in the particular
on-policy and no-trace situation).

The rest of the paper is organized as follows. Sec. 2 introduces the background
of Markov Decision Processes and describes the state-of-the-art algorithms for
on-policy learning with recursive LS methods. Sec. 3 shows how to adapt these
methods so that they can both deal with the off-policy case and use eligibility
traces. The resulting algorithms are formalized, the formula for their recursive
implementation is derived, and we discuss their convergence properties. Sec. 4
illustrates empirically the behavior of these algorithms and Sec. 5 concludes.

2 Background and state-of-the-art on-policy algorithms

A Markov Decision Process (MDP) is a tuple {S,A, P,R, γ} in which S is a finite
state space identified with {1, 2, . . . , N}, A a finite action space, P ∈ P(S)S×A

the set of transition probabilities, R ∈ R
S×A the reward function and γ the

discount factor. A mapping π ∈ P(A)S is called a policy. For any policy π, let
Pπ be the corresponding stochastic transition matrix, and Rπ the vector of mean
reward when following π, i.e. of components Ea|π,s[R(s, a)]. The value V π(s) of
state s for a policy π is the expected discounted cumulative reward starting in
state s and then following the policy π: V π(s) = Eπ[

∑∞
i=0 γ

iri|s0 = s] where
Eπ denotes the expectation induced by policy π. The value function satisfies
the (linear) Bellman equation: ∀s, V π(s) = Es′,a|s,π[R(s, a) + γV π(s′)]. It can
be rewritten as the fixed-point of the Bellman evaluation operator: V π = TV π

where for all V, TV = Rπ + γPπV .
In this article, we are interested in learning an approximation of this value

function V π under some constraints. First, we assume our approximation to be
linearly parameterized: V̂θ(s) = θTφ(s) with θ ∈ R

p being the parameter vector
and φ(s) the feature vector. Also, we want to estimate the value function V π

(or equivalently associated parameters) from a single finite trajectory generated
using a possibly different behaviorial policy π0. Let µ0 be the stationary distri-
bution of the stochastic matrix P0 = Pπ0 of the behavior policy π0 (we assume it
exists and is unique). Let D0 be the diagonal matrix of which the elements are
(µ0(i))1≤i≤N . Let Φ be the matrix of feature vectors: Φ = [φ(1) . . . φ(N)]T . The
projection Π0 onto the hypothesis space spanned by Φ with respect to the µ0-
quadratic norm, which will be central for the understanding of the algorithms,
has the following closed-form: Π0 = Φ(ΦTD0Φ)

−1ΦTD0.

In the rest of this section, we review existing on-policy least-squares based
temporal difference learning algorithms. In this case, the behavior and target
policies are the same so we omit the subscript 0 for the policy (π) and the projec-
tion (Π). We assume that a trajectory (s1, a1, r1, s2, . . . , sj , aj , rj , sj+1, . . . si+1)
sampled according to the policy π is available. Let us introduce the sampled Bell-
man operator T̂j , defined as: T̂j : V ∈ R

S → T̂jV = rj + γV (sj+1) ∈ R so that
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T̂jV is an unbiased estimate of TV (sj). If values were observable, estimating
the projected parameter vector θ would reduce to project the value function
onto the hypothesis space using the empirical projection operator. This would
be the classical least-squares approach. Since values are not observed — only
transitions (rewards and next states) are —, we will rely on temporal differences

(terms of the form T̂jV − V (sj)) to estimate the value function.
The Least-Squares Temporal Differences (LSTD) algorithm of [6] aims at

finding the fixed point of the operator being the composition of the projection
onto the hypothesis space and of the Bellman operator. Otherwise speaking, it
searches for the fixed point V̂θ = ΠTV̂θ, Π being the just introduced projection
operator. Using the available trajectory, LSTD solves the following fixed-point
problem: θi = argminω∈Rp

∑i

j=1(T̂j V̂θi − V̂ω(sj))
2. The Least-Squares Policy

Evaluation (LSPE) algorithm of [15] searches for the same fixed point, but in
an iterative way instead of directly (informally, V̂θi ≃ ΠTV̂θi−1

). The corre-

sponding optimization problem is: θi = argminω∈Rp

∑i
j=1(T̂j V̂θi−1

− V̂ω(sj))
2.

The Fixed-Point Kalman Filter (FPKF) algorithm of [7] is a least-squares vari-
ation of the classical temporal difference learning algorithm [19]. Value func-
tion approximation is treated as a supervised learning problem, and unobserved
values are bootstrapped: the unobserved value V π(sj) is replaced by the esti-

mate T̂j V̂θj−1
. This is equivalent to solving the following optimization problem:

θi = argminω∈Rp

∑i

j=1(T̂j V̂θj−1
− V̂ω(sj))

2. Finally, the Bellman Residual Min-
imization (BRM) algorithm aims at minimizing the distance between the value
function and its image through the Bellman operator, ‖V − TV ‖2. When the
sampled operator is used, this leads to biased estimates (e.g. see [1]). The cor-

responding optimization problem is: θi = argminω∈Rp

∑i

j=1(T̂j V̂ω − V̂ω(sj))
2.

This cost function has originally been proposed by [2] who minimized it using a
stochastic gradient approach. It has been considered by [14] with a least-squares
approach, however with a double sampling scheme to remove the bias. The para-
metric Gaussian Process Temporal Differences (GPTD) algorithm of [8] and the
linear Kalman Temporal Differences (KTD) algorithm of [10] can be shown to
minimize this cost using a least-squares approach (so with bias).

All these algorithms can be summarized as follows:

θi = argmin
ω∈Rp

i
∑

j=1

(

T̂j V̂ξ − V̂ω(sj)
)2

. (1)

One of the presented approach is obtained by instantiating ξ = θi, θi−1, θj−1 or ω
and solving the corresponding optimization problem. If more algorithms can be
summarized under this generic equation (see [11]), the current paper will restrict
its focus on linear least-squares based approaches.

3 Extension to eligibility traces and off-policy learning

This section contains the core of our contribution: we are going to describe a
systematic approach in order to adapt the previously mentionned algorithms
so that they can deal with eligibility traces and off-policy learning. The actual
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formalization of the algorithms, along with the derivation of their recursive im-
plementation, will then follow.

Let 0 ≤ λ ≤ 1 be the eligibility factor. Using eligibility traces amounts
to looking for the fixed point of the following variation of the Bellman op-
erator [4]: ∀V ∈ R

S , TλV = (1 − λ)
∑∞

i=0 λ
iT i+1V, that makes a geomet-

ric average with parameter λ of the powers of the original Bellman opera-
tor T . Clearly, any fixed point of T is a fixed point of Tλ and vice-versa.
An equivalent temporal difference based definition of Tλ is (see e.g. [15]): ∀s,

TλV (s) = V (s) + Eπ[
∑∞

j=i(γλ)
j−i

(

rj + γV (sj+1)− V (sj)
)∣

∣

∣
si = s].

As learning is done over a finite trajectory, it is natural to introduce the fol-
lowing truncated operator, which considers samples until time n: ∀s, Tλ

nV (s) =

V (s) + Eπ[
∑n

j=i(γλ)
j−i

(

rj + γV (sj+1) − V (sj)
)∣

∣

∣
si = s]. To use it practically,

we still need to remove the dependency to the model (i.e. the expectation) and
to take into account the fact that we want to consider off-policy learning. As-
sume from now on that we have a trajectory (s1, a1, r1, s2, . . . , sn, an, rn, sn+1)
sampled according to the behaviour policy π0. As behaviorial and target policies
are different, estimates of Tλ

n need to be corrected through importance sam-

pling [17]. For all s, a, let us introduce the following weight: ρ(s, a) = π(a|s)
π0(a|s)

.

In our trajectory context, write ρji =
∏j

k=i ρk with ρj = ρ(sj , aj). Now, con-

sider the off-policy, sampled and truncated T̂λ
i,n : RS → R operator as: T̂λ

i,nV =

V (si) +
∑n

j=i(γλ)
j−i

(

ρ
j
i T̂jV − ρ

j−1
i V (sj)

)

. It can be seen that T̂λ
i,nV is an un-

biased estimate of Tλ
nV (si) (see [16,21] for details).

Replacing T̂j by T̂λ
j,i in the optimization problem of Eq. (1), is a generic way

to extend any parametric value function approximators to the off-policy setting
and the use of eligibility traces : θi = argminω∈Rp

∑i
j=1(T̂

λ
j,iV̂ξ − V̂ω(sj))

2. In
the rest of this section, by instantiating ξ to θi, θi−1, θj−1 or ω, we derive the
already existing algorithms off-policy LSTD(λ)/LSPE(λ) [21], and we extend
two existing algorithms to eligibility traces and to off-policy learning, that we
will naturally call FPKF(λ) and BRM(λ). With λ = 0, this exactly corresponds
to the algorithms we described in the previous section. When λ = 1, it can be
seen that T̂λ

i,nV = T̂ 1
i,nV =

∑n

j=i γ
j−iρ

j
i rj+γ

n−i+1ρni V (sn+1); thus, if γ
n−i+1ρni

tends to 0 when n tends to infinity3 so that the influence of ξ in the definition
of T̂λ

i,nVξ vanishes, all algorithms should asymptotically behave the same.

Recall that a linear parameterization is chosen here, V̂ξ(si) = ξTφ(si). We
adopt the following notations: φi = φ(si), ∆φi = φi − γρiφi+1 and ρ̃k−1

j =

(γλ)k−jρk−1
j . The generic cost function to be solved is therefore:

θi = argmin
ω∈Rp

i
∑

j=1

(φTj ξ +

i
∑

k=j

ρ̃k−1
j (ρkrk −∆φTk ξ)− φTj ω)

2. (2)

3 This is not always the case, see [21] and the discussion in Sec. 3.4.
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3.1 Off-policy LSTD(λ)

The off-policy LSTD(λ) algorithm corresponds to instantiating Problem (2)
with ξ = θi. This can be solved by zeroing the gradient respectively to ω:
0 =

∑i

j=1(
∑j

k=1 φkρ̃
j−1
k )(ρjrj −∆φTj θi). Introducing the (corrected) eligibility

vector zj :

zj =

j
∑

k=1

φkρ̃
j−1
k =

j
∑

k=1

φk(γλ)
j−k

j−1
∏

m=k

ρm = γλρj−1zj−1 + φj , (3)

one obtains the following batch estimate:

θi = (

i
∑

j=1

zj∆φ
T
j )

−1
i

∑

j=1

zjρjrj = (Ai)
−1bi. (4)

A recursive implementation of this algorithm (where Mi = (Ai)
−1 is updated

on-the-fly) has been proposed and analyzed recently by [21] and is described in
Alg. 1. The author proves that if the behavior policy π0 induces an irreducible
Markov chain and chooses with positive probability any action that may be
chosen by the target policy π, and if the compound (linear) operator Π0T

λ has
a unique fixed point4, then off-policy LSTD(λ) converges to it almost surely.
Formally, it converges to the solution θ∗ of the so-called projected fixed-point

equation:
Vθ∗ = Π0T

λVθ∗ . (5)

Using the expression of the projection Π0 and the form of the Bellman operator
Tλ it can be seen that θ∗ satisfies (see [21] for details) θ∗ = A−1b where

A = ΦTD0(I − γP )(I − λγP )−1Φ and b = ΦTD0(I − λγP )−1R. (6)

The core of the analysis of [21] consists in showing that 1
i
Ai and

1
i
bi defined in

Eq. (4) respectively converge to A and b almost surely. Through Eq. (4), this
implies the convergence of θi to θ

∗.

Algorithm 1: LSTD(λ)

Initialization;
Initialize vector θ0 and matrix M0 ;
Set z0 = 0;

for i = 1, 2, . . . do

Observe φi, ri, φi+1 ;

Update traces ;
zi = γλρi−1zi−1 + φi ;

Update parameters ;

Ki =
Mi−1zi

1+∆φT
i

Mi−1zi

;

θi = θi−1 + Ki(ρiri − ∆φT
i θi−1) ;

Mi = Mi−1 − Ki(M
T
i−1∆φi)

T ;

Algorithm 2: LSPE(λ)

Initialization;
Initialize vector θ0 and matrix N0 ;
Set z0 = 0, A0 = 0 and b0 = 0;

for i = 1, 2, . . . do

Observe φi, ri, φi+1;

Update traces ;
zi = γλρi−1zi−1 + φi ;

Update parameters ;

Ni = Ni−1 −
Ni−1φiφ

T
i Ni−1

1+φT
i

Ni−1φi

;

Ai = Ai−1 + zi∆φT
i ;

bi = bi−1 + ρiziri;

θi = θi−1 + Ni(bi − Aiθi−1) ;

3.2 Off-policy LSPE(λ)

The off-policy LSPE(λ) algorithm corresponds to the instantiation ξ = θi−1 in
Problem (2). This can be solved by zeroing the gradient respectively to ω: θi =

4 It is not always the case, see [20] or Sec. 4 for a counter-example.
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θi−1 + (
∑i

j=1 φjφ
T
j )

−1
∑i

j=1 zj(ρjrj − ∆φTj θi−1), where we used the eligibility
vector zj defined Eq. (3). Write

Ni = (
i

∑

j=1

φjφ
T
j )

−1 = Ni−1 −
Ni−1φiφ

T
i Ni−1

1 + φTi Ni−1φi
(7)

where the second equality follows from the Sherman-Morrison formula. Using
Ai and bi as defined in the LSTD description in Eq. (4), one gets: θi = θi−1 +
Ni(bi −Aiθi−1). The overall computation is provided in Alg. 2. This algorithm,
(briefly) mentionned by [21], generalizes the LSPE(λ) algorithm of [15] to off-
policy learning. With respect to LSTD(λ), which computes θi = (Ai)

−1bi (cf.
Eq. (4)) at each iteration, LSPE(λ) is fundamentally recursive. Along with the
almost sure convergence of 1

i
Ai and

1
i
bi to A and b (defined in Eq. (6)), it can

be shown that iNi converges to N = (ΦTD0Φ)
−1 (see for instance [15]) so that,

asymptotically, LSPE(λ) behaves as: θi = θi−1 + N(b − Aθi−1) = Nb + (I −
NA)θi−1, which is equivalent to (e.g. see [15]):

Vθi = Φθi = ΦNb+ Φ(I −NA)θi−1 = Π0T
λVθi−1

. (8)

The behavior of this sequence depends on the spectral radius of Π0T
λ. Thus,

the analyses of [21] and [15] (for the convergence of Ni) imply the following
convergence result: under the assumptions required for the convergence of off-
policy LSTD(λ), and the additional assumption that the operator Π0T

λ has
spectral radius smaller than 1 (so that it is contracting), LSPE(λ) also converges
almost surely to the fixed point of the compound Π0T

λ operator.
There are two sufficient conditions that can (independently) ensure such

a desired contraction property. The first one is when one considers on-policy
learning (see e.g. [15], where the authors studied the on-policy case and use
this property in the proof). When the behavior policy π0 is different from the
target policy π, a sufficient condition for contraction is that λ be close enough
to 1; indeed, when λ tends to 1, the spectral radius of Tλ tends to zero and can
potentially balance an expansion of the projection Π0. In the off-policy case,
when γ is sufficiently big, a small value of λ can make Π0T

λ expansive (see [20]
for an example in the case λ = 0) and off-policy LSPE(λ) will then diverge.
Eventually, Equations (5) and (8) show that when λ = 1, both LSTD(λ) and
LSPE(λ) asymptotically coincide (as T 1V does not depend on V ).

3.3 Off-policy FPKF(λ)

The off-policy FPKF(λ) algorithm corresponds to the instantiation ξ = θj−1

in Problem (2). This can be solved by zeroing the gradient respectively to ω:

θi = Ni(
∑i

j=1 φjφ
T
j θj−1 +

∑i

j=1

∑j

k=1 φkρ̃
j−1
k (ρjrj − ∆φTj θk−1)) where Ni is

the matrix introduced for LSPE(λ) in Eq. (7). With respect to the previously
described algorithms, the difficulty here is that on the right side there is a depen-
dence with all the previous terms θk−1 for 1 ≤ k ≤ i. Using the symmetry of the
dot product ∆φTj θk−1 = θTk−1∆φj , it is possible to write a recursive algorithm
by introducing the trace matrix Zj that integrates the subsequent values of θk as

follows: Zj =
∑j

k=1 ρ̃
j−1
k φkθ

T
k−1 = Zj−1 + γλρj−1φjθ

T
j−1. With this notation we



7

obtain: θi = Ni(
∑i

j=1 φjφ
T
j θj−1 +

∑i

j=1(zjρjrj − Zj∆φj). Using Eq. (7) and a
few algebraic manipulations, we end up with: θi = θi−1+Ni(ziρiri−Zi∆φi). This
provides Alg. 3.

It generalizes the FPKF algorithm of [7] that was originally only introduced
without traces and in the on-policy case. As LSPE(λ), this algorithm is funda-
mentally recursive. However, its overall behavior is quite different. As we dis-
cussed for LSPE(λ), iNi asymptotically tends to N = (ΦTD0Φ)

−1 and FPKF(λ)
iterates eventually resemble: θi = θi−1+

1
i
N(ziρiri−Zi∆φi). The term in brack-

ets is a random component (that depends on the last transition) and 1
i
acts as

a learning coefficient that asymptotically tends to 0. In other words, FPKF(λ)
has a stochastic approximation flavour. In particular, one can see FPKF(0) as a
stochastic approximation of LSPE(0)5. When λ > 0, the situation is less clear
(all the more that, as previously mentionned, we expect LSTD/LSPE/FPKF to
asymptotically behave the same when λ tends to 1).

Due to its much more involved form (notably the matrix trace Zj integrating
the values of all the values θk from the start), we have not been able to obtain
a formal analysis of FPKF(λ), even in the on-policy case. To our knowledge,
there is no full proof of convergence for stochastic approximation algorithms
with eligibility traces in the off-policy case6, and a related result for FPKF(λ)
thus seems difficult. Nevertheless, it is reasonable to conjecture that off-policy
FPKF(λ) has the same asymptotic behavior as LSPE(λ).

Algorithm 3: FPKF(λ)

Initialization;
Initialize vector θ0 and matrix N0 ;
Set z0 = 0 and Z0 = 0;

for i = 1, 2, . . . do

Observe φi, ri, φi+1;

Update traces ;
zi = γλρi−1zi−1 + φi ;

Zi = γλρi−1Zi−1 + φiθ
T
i−1;

Update parameters ;

Ni = Ni−1 −
Ni−1φiφ

T
i Ni−1

1+φT
i

Ni−1φi

;

θi = θi−1 + Ni(ziρiri − Zi∆φi) ;

Algorithm 4: BRM(λ)

Initialization;
Initialize vector θ0 and matrix C0 ;
Set y0 = 0, ∆0 = 0 and z0 = 0;

for i = 1, 2, . . . do

Observe φi, ri, φi+1;

Pre-update traces ;

yi = (γλρi−1)2yi−1 + 1 ;

Compute ;

Ui =

(

√
yi∆φi +

γλρi−1√
yi

∆i−1
γλρi−1√

yi
∆i−1

)

;

Vi =

(

√
yi∆φi +

γλρi−1√
yi

∆i−1 −
γλρi−1√

yi
∆i−1

)T
;

Wi =

(

√
yiρri +

γλρi−1√
yi

zi−1 −
γλρi−1√

yi
zi−1

)T
;

Update parameters ;

θi = θi−1 + Ci−1Ui(I2 + ViCi−1Ui)
−1(Wi − Viθi−1) ;

Ci = Ci−1 − Ci−1Ui(I2 + ViCi−1Ui)
−1ViCi−1 ;

Post-update traces ;
∆i = (γλρi−1)∆i−1 + ∆φiyi ;

zi = (γλρi−1)zi−1 + riρiyi ;

3.4 Off-policy BRM(λ)

The off-policy BRM(λ) algorithm corresponds to the instantiation ξ = ω in Prob-

lem (2): θi = argminω∈Rp

∑i

j=1(zj→i − ψT
j→iω)

2 where ψj→i =
∑i

k=j ρ̃
k−1
j ∆φk

5 To see this, one can compare the asymptotic behavior of both algorithms. FPKF(0)
does θi = θi−1 +

1

i
N(ρiφiri −φi∆φT

i θi−1). One then notices that ρiφiri and φi∆φT
i

are samples of A and b to which Ai and bi converge through LSPE(0).
6 An analysis of TD(λ), with a simplifying assumption that forces the algorithm to
stay bounded, is given in [21]. An analysis of a related algorithm, GQ(λ), is provided
in [13], with an assumption on the second moment of the traces, which does not hold
in general (see Propostion 2 in [21]). A full analysis thus remains to be done.
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and zj→i =
∑i

k=j ρ̃
k−1
j ρkrk. Thus θi = (Ãi)

−1b̃i where Ãi =
∑i

j=1 ψj→iψ
T
j→i

and b̃i =
∑i

j=1 ψj→izj→i. The recursive implementation of θi is somewhat te-
dious, but space restriction precludes its description. The resulting algorithm,
which is based on 3 traces — 2 reals (yi and zi) and 1 vector (∆i) — and involves
the (straightforward) inversion of a 2× 2 matrix, is described in Alg. 4.

GPTD and KTD, which are close to BRM, have also been extended with
some trace mechanism; however, GPTD(λ) [8], KTD(λ) [9] and the just de-
scribed BRM(λ) are different algorithms. Briefly, GPTD(λ) mimics the on-
policy LSTD(λ) algorithms and KTD(λ) uses a different Bellman operator7.
As BRM(λ) builds a linear systems of which it updates the solution recursively,
it resembles LSTD(λ). However, the system it builds is different. The following
theorem characterizes the behavior of BRM(λ) and its potential limit.

Theorem 1. Assume that the stochastic matrix P0 of the behavior policy is

irreducible and has stationary distribution µ0. Further assume that

there exists a coefficient β < 1 such that ∀(s, a), λγρ(s, a) ≤ β, (9)

then 1
i
Ãi and

1
i
b̃i respectively converge almost surely to

Ã = ΦT [D − γDP − γPTD + γ2D′ + S(I − γP ) + (I − γPT )ST ]Φ and b̃ =
ΦT [(I − γPT )QTD + S]Rπ where we wrote: D = diag((I − (λγ)2P̃T )−1µ0),
D′ = diag(P̃T (I − (λγ)2P̃T )−1µ0), Q = (I − λγP )−1, S = λγ(DP − γD′)Q,

and where P̃ is the matrix of coordinates p̃ss′ =
∑

a π(s, a)ρ(s, a)T (s, a, s
′).

As a consequence the BRM(λ) algorithm converges with probability 1 to Ã−1b̃.
The assumption given by Eq. (9) trivially holds in the on-policy case (in which
ρ(s, a) = 1 for all (s, a)) and in the off-policy case when λγ is small with respect
to the mismatch between policies ρ(s, a). The matrix P̃ , which is in general not a
stochastic matrix, can have a spectral radius bigger than 1; Eq. (9) ensures that
(λγ)2P̃ has spectral radius smaller than β so that D and D′ are well defined.
Finally, note that there is probably no hope to remove the assumption of Eq. (9)
since by making λγ big enough, one may force the spectral radius of (λγ)2P̃ to
be as close to 1 as one may want, which would make Ã and b̃ diverge.

The proof of this Theorem follows the general lines of that of Proposition 4 in
[3]. Due to space constraints, we only provide its sketch: Eq. (9) implies that the
traces can be truncated at some depth l, of which the influence on the potential
limit of the algorithm vanishes when l tends to ∞. For all l, the l-truncated
version of the algorithm can easily be analyzed through the ergodic theorem for
Markov chains. Making l tend to ∞ allows to tie the convergence of the original
arguments to that of the truncated version. Eventually, the formula for the limit
of the truncated algorithm is (tediously) computed and one derives the limit.

The fundamental idea behind the Bellman Residual approach is to address
the computation of the fixed point of Tλ differently from the previous meth-
ods. Instead of computing the projected fixed point as in Eq. (5), one consid-
ers the overdetermined system: Φθ ≃ TλΦθ ⇔ Φθ ≃ (I − λγP )−1(R +

7 Actually, the corresponding loss is (T̂ 0
j,iV̂ (ω)−V̂ω(sj)+γλ(T̂ 1

j+1,iV̂ (ω)−V̂ω(sj+1)))
2.

With λ = 0 it gives T̂ 0
j,i and with λ = 1 it provides T̂ 1

j,i
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(1 − λ)γPΦθ) ⇔ Φθ ≃ QR + (1 − λ)γPQΦθ ⇔ Ψθ ≃ QR with
Ψ = Φ−(1−λ)γPQΦ and solves it in a least-squares sense, that is by computing
θ∗ = Ā−1b̄ with Ā = ΨTΨ and b̄ = ΨTQR. One of the motivation for this ap-
proach is that, contrary to the matrix A of LSTD/LSPE/FPKF, Ā is inversible
for all values of λ, and one can always guarantee a finite error bound with re-
spect to the best projection [18]. If the goal of BRM(λ) is to compute Ā and
b̄ from samples, what it actually computes (Ã and b̃) will in general be biased
because it is based on a single trajectory8. Such a bias adds an uncontrolled
variance term to Ā and b̄ (e.g. see [1]) of which an interesting consequence is
that Ã remains non singular9. More precisely, there are two sources of bias in
the estimation: one results from the non Monte-carlo evaluation (the fact that
λ < 1) and the other from the use of the correlated importance sampling factors
(as soon as one considers off-policy learning). The interested reader may check
that in the on-policy case, and when λ tends to 1, Ã and b̃ coincide with Ā and
b̄. However, in the strictly off-policy case, taking λ = 1 does not prevent the
bias due to the correlated importance sampling factors. If we have argued that
LSTD/LSPE/FPKF asymptotically coincide when λ = 1, we see here that BRM
may generally differ in an off-policy situation.

4 Illustration of the algorithms

In this section, we briefly illustrate the behavior of all the algorithms we have
described so far. In a first set of experiments, we consider random Markov chains
involving 3 states and 2 actions and projections onto random spaces10 of dimen-
sion 2. The discount factor is γ = 0.99. For each experiment, we have run all
algorithms (plus TD(λ) with stepsize αt = 1

t+1 ) 50 times with initial matrix

(M0, N0, C0) equal to11 100I, with θ0 = 0 and during 100, 000 iterations. For
each of these 50 runs, the different algorithms share the same samples, that are
generated by a random uniform policy π0 (i.e. that chooses each action with
probability 0.5). We consider two situations: on-policy, where the policy to eval-
uate is π = π0, and off-policy, where the policy to evaluate is random (i.e. , it
picks the actions with probabilities p and 1− p, where p is chosen uniformly at
random). In the curves we are about to describe, we display on the abscissa the it-
eration number and on the ordinate the median value of the distance (quadratic,
weighted by the stationary distribution of P ) between the computed value Φθ
and the real value V = (I − γP )−1R (i.e. the lower the better).

8 It is possible to remove the bias when λ = 0 by using double samples. However, in
the case where λ > 0, the possibility to remove the bias seems much more difficult.

9 Ā is by construction positive definite, and Ã equals Ā plus a positive term (the
variance term), and is thus also positive definite.

10 For each action, rewards are uniform random vectors on (0, 1)3, transition matrices
are random uniform matrices on (0, 1)3×3 normalized so that the probabilities sum
to 1. Random projections are induced by random uniform matrices Φ of size 3× 2.

11 This matrix acts as an L2 regularization and is used to avoid numerical instabilities
at the beginning of the algorithms. The bigger the value, the smaller the influence.
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For each of the two situations (on- and off-policy), we present data in two
ways. To appreciate the influence of λ, we display the curves on one graph per
algorithm with different values of λ (Fig. 1 and 2). To compare the algorithms
for solving the Bellman equation V = TλV , we show on one graph per value of λ
the error for the different algorithms (Fig. 3 and 4). In the on-policy setting,
LSTD and LSPE have similar performance and convergence speed for all values
of λ. They tend to converge much faster than FPKF, which is slightly faster
than TD. BRM is usually in between LSTD/LSPE and FPKF/TD, though for
small values of λ, the bias seems significative. When λ increases, the performance
of FPKF and BRM improves. At the limit when λ = 1, all algorithms (except
TD) coincide (confirming the intuition for λ = 1, the influence of the choice ξ
vanishes in Eq. (2)). In the off-policy setting, LSTD and LSPE still share
the same behavior. The drawbacks of the other algorithms are amplified with re-
spect to the on-line situation. As λ increases, the performance of FPKF catches
that of LSTD/LSPE. However, the performance of BRM seems to worsen while
λ is increased from 0 to 0.99 and eventually approaches that of the other algo-
rithms when λ = 1 (though it remains different, cf. the discussion in the previous
section). Globally, the use of eligibility traces allows to significantly improve
the performance of FPKF(λ) over FPKF [7] in both on- and off-policy cases,
and that of BRM(λ) over BRM/GPTD/KTD of [8,10] in the on-policy case.
The performance of BRM(λ) in the off-policy case is a bit disappointing, prob-
ably because of its inherent bias, which deserves further investigation. However,
LSTD(λ)/LSPE(λ) appear to be in general the best algorithms.

Eventually, we consider 2 experiments involving an MDP and a projection
due to [20], in order to illustrate possible numerical issues when solving the
projected fixed-point Eq. (5). In the first experiment one sets (λ, γ) such that
Π0T

λ is expansive; as expected one sees (Fig. 5) that LSPE and FPKF both
diverge. In the latter experiment, one sets (λ, γ) so that the spectral radius of
Π0T

λ is 1 (so that A is singular), and in this case LSTD also diverges (Fig. 6).
In both situations, BRM is the only one not to diverge12.

5 Conclusion

We considered LS algorithms for value estimation in an MDP context. Start-
ing from the on-policy case with no trace, we recalled that several algorithms
(LSTD, LSPE, FPKF and BRM/GPTD/KTD) optimize similar cost functions.
Substituting the original Bellman operator by an operator that deals with traces
and off-policy samples leads to the state-of-the-art off-policy trace-based versions
of LSTD and LSPE, and suggests natural extensions of FPKF and BRM. We
described recursive implementations of these algorithms, discussed their conver-
gence properties, and illustrated their behavior empirically. Overall, our study

12 Note that this adverserial setting is meant to illustrate the fact that for the prob-
lem considered, some values (λ, γ) may be problematic for LSTD/LSPE/FPKF. In
practice, λ can be chosen big enough so that these algorithms will be stable.
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suggests that even if the use of eligibility traces generally improves the effi-
ciency of the algorithms, LSTD(λ) and LSPE(λ) remain in general better than
FPKF(λ) (that is much slower) and BRM(λ) (that may suffer from high bias).
Furthermore, since LSPE(λ) requires more conditions for stability, LSTD(λ)
probably remains the best choice in practice.
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Fig. 1. Influence of λ, on-policy (LSTD, LSPE, FPKF and BRM).
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Fig. 2. Influence of λ, off-policy (LSTD, LSPE, FPKF and BRM).
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Fig. 3. Comparison of the algorithms, on-policy (λ ∈ {0.3, 0.6, 0.9, 1}).
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Fig. 4. Comparison of the algorithms, off-policy (λ ∈ {0.3, 0.6, 0.9, 1}).
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Fig. 5. Pathological situation where LSPE and FPKF diverge, while LSTD converges
(LSPE, FPKF, LSTD and BRM).
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Fig. 6. Pathological situation where LSPE, FPKF and LSTD all diverge (LSPE, FPKF,
LSTD and BRM).
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