
ar
X

iv
:1

10
6.

36
51

v2
  [

cs
.L

G
] 

 1
1 

N
ov

 2
01

1

Robust Bayesian reinforcement learning through

tight lower bounds

Christos Dimitrakakis1

EPFL, Lausanne, Switzerland
christos.dimitrakakis@epfl.ch

Abstract. In the Bayesian approach to sequential decision making, ex-
act calculation of the (subjective) utility is intractable. This extends to
most special cases of interest, such as reinforcement learning problems.
While utility bounds are known to exist for this problem, so far none of
them were particularly tight. In this paper, we show how to efficiently cal-
culate a lower bound, which corresponds to the utility of a near-optimal
memoryless policy for the decision problem, which is generally different
from both the Bayes-optimal policy and the policy which is optimal for
the expected MDP under the current belief. We then show how these
can be applied to obtain robust exploration policies in a Bayesian rein-
forcement learning setting.

1 Setting

We consider decision making problems where an agent is acting in a (possibly
unknown to it) environment. By choosing actions, the agent changes the state
of the environment and in addition obtains scalar rewards. The agent acts so
as to maximise the expectation of the utility function: Ut ,

∑T
k=t γ

krk, where
γ ∈ [0, 1] is a discount factor and where the instantaneous rewards rt ∈ [0, rmax]
are drawn from a Markov decision process (MDP) µ, defined on a state space
S and an action space A, both equipped with a suitable metric and σ-algebra,
with a set of transition probability measures

{

T s,a
µ

∣

∣ s ∈ S, a ∈ A
}

on S , and a

set of reward probability measures
{

Rs,a
µ

∣

∣ s ∈ S, a ∈ A
}

on R, such that:

rt | st = s, at = a ∼ Rs,a
µ , st+1 | st = s, at = a ∼ T s,a

µ , (1.1)

where st ∈ S and at ∈ A are the state of the MDP, and the action taken by
the agent at time t, respectively. The environment is controlled via a policy
π ∈ P . This defines a conditional probability measure on the set of actions,
such that Pπ(at ∈ A | st, at−1) = π(A | st, at−1) is the probability of the
action taken at time t being in A, where we use P, with appropriate subscripts,
to denote probabilities of events and st , s1, . . . , st and at−1 , a1, . . . , at−1

denotes sequences of states and actions respectively. We use Pk to denote the
set of k-order Markov policies. Important special cases are the set of blind policies
P0 and the set of memoryless policies P1. A policy in π ∈ P̄k ⊂ Pk is stationary,
when π(A | stt−k+1, a

t−1
t−k+1) = π(A | sk, ak−1) for all t.
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The expected utility, conditioned on the policy, states and actions is used to
define a value function for the MDP µ and a stationary policy π, at stage t:

Qπ
µ,t(s, a) , Eµ,π(Ut | st = s, at = a), V π

µ,t(s) , Eµ,π(Ut | st = s), (1.2)

where the expectation is taken with respect to the process defined jointly by
µ, π on the set of all state-action-reward sequences (S,A,R)∗. The optimal value
function is denoted by Q∗

µ,t , supπ Q
π
µ,t and V ∗

µ,t , supπ V
π
µ,t. We denote the

optimal policy1 for µ by π∗
µ. Then Q∗

µ,t = Q
π∗

µ

µ,t and V ∗
µ,t = V

π∗

µ

µ,t .
There are two ways to handle the case when the true MDP is unknown.

The first is to consider a set of MDPs such that the probability of the true
MDP lying outside this set is bounded from above [e.g. 20, 21, 4, 19, 28, 27].
The second is to use a Bayesian framework, whereby a full distribution over
possible MDPs is maintained, representing our subjective belief, such that MDPs
which we consider more likely have higher probability [e.g. 14, 10, 31, 2, 12].
Hybrid approaches are relatively rare [16]. In this paper, we derive a method for
efficiently calculating near-optimal, robust, policies in a Bayesian setting.

1.1 Bayes-optimal policies

In the Bayesian setting, our uncertainty about the Markov decision process
(MDP) is formalised as a probability distribution on the class of allowed MDPs.
More precisely, assume a probability measure ξ over a set of possible MDPs M,
representing our belief. The expected utility of a policy π with respect to the
belief ξ is:

Eξ,π Ut =

∫

M

Eµ,π(Ut) dξ(µ). (1.3)

Without loss of generality, we may assume that all MDPs in M share the same
state and action space. For compactness, and with minor abuse of notation, we
define the following value functions with respect to the belief:

Qπ
ξ,t(s, a) , Eξ,π(Ut | st = s, at = a), V π

ξ,t(s) , Eξ,π(Ut | st = s), (1.4)

which represent the expected utility under the belief ξ, at stage t, of policy π,
conditioned on the current state and action.

Definition 1 (Bayes-optimal policy). A Bayes-optimal policy π∗
ξ with re-

spect to a belief ξ is a policy maximising (1.3). Similarly to the known MDP
case, we use Q∗

ξ,t, V
∗
ξ,t to denote the value functions of the Bayes-optimal policy.

Finding the Bayes-optimal policy is generally intractable [11, 14, 18]. It is im-
portant to note that a Bayes-optimal policy is not necessarily the same as the
optimal policy for the true MDP. Rather, it is the optimal policy given that the
true MDP was drawn at the start of the experiment from the distribution ξ. All
the theoretical development in this paper is with respect to ξ.

1 We assume that there exists at least one optimal policy. If there are multiple optimal
policies, we choose arbitrarily among them.
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1.2 Related work and main contribution

Since computation of the Bayes-optimal policy is intractable in the general case,
in this work we provide a simple algorithm for finding near-optimal memoryless
policies in polynomial time. By definition, for any belief ξ, the expected utility
under that belief of any policy π is a lower bound on that of the optimal policy
π∗
ξ . Consequently, the near-optimal memoryless policy gives us a tight lower

bound on the subjective utility.
A similar idea was used in [12], where the stationary policy that is optimal

on the expected MDP is used to obtain a lower bound. This is later refined
through a stochastic branch-and-bound technique that employs a similar upper
bound. In a similar vein, [17] uses approximate Bayesian inference to obtain
a stationary policy for the current belief. More specifically, they consider two
families of expectation maximisation algorithms. The first uses a variational
approximation to the reward-weighted posterior of the transition distribution,
while the second performs expectation propagation on the first two moments.
However, none of the above approaches return the optimal stationary policy.

It is worthwhile to mention the very interesting point-based Beetle algo-
rithm of Poupart et al. [23], which discretised the belief space by sampling a
set of future beliefs (rather than MDPs). Using the convexity of the utility with
respect to the belief, they constructed a lower bound via a piecewise-linear ap-
proximation of the complete utility from these samples. The approach results
in an approximation to the optimal non-stationary policy. Although the algo-
rithm is based on an optimal construction reported in the same paper, sufficient
conditions for its optimality are not known.

In this paper, we obtain a tight lower bound for the current belief by cal-
culating a nearly optimal memoryless policy. The procedure is computationally
efficient, and we show that it results in a much tighter bound than the value of
the expected-MDP-optimal policy. We also show that it can be used in practice
to perform robust Bayesian exploration in unknown MDPs. This is achieved by
computing a new memoryless policy once our belief has changed significantly, a
technique also employed by other approaches [19, 3, 2, 29, 31]. It can be seen as a
principled generalisation of the sampling approach suggested in [29] from a single
MDP sample to multiple samples from the posterior. The crucial difference is
that, while previous work uses some form of optimistic policy, we instead employ
a more conservative policy in each stationary interval. This can be significantly
better than the policy which is optimal for the expected MDP.

The first problem we tackle is how to compute this policy given a belief
over a finite number of MDPs. For this, we provide a simple algorithm based on
backwards induction [see 11, for example]. In order to extend this approach to an
arbitrary MDP set, we employ Monte Carlo sampling from the current posterior.
Unlike other Bayesian sampling approaches [10, 29, 2, 6, 30, 12, 31], we use these
samples to estimate a policy that is nearly optimal (within the restricted set of
memoryless policies) with respect to the distribution these samples were drawn
from. Finally, we provide theoretical and experimental analyses of the proposed
algorithms.
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2 MMBI: Multi-MDP Backwards Induction

Even when our belief ξ is a probability measure over a finite set of MDPs M, the
finding an optimal policy is intractable. For that reason, we restrict ourselves to
memoryless policues π ∈ P1. We can approximate the optimal memoryless policy
with respect to ξ, by setting the posterior measure given knowledge of the policy
so far and the current state, to equal the initial belief, i.e. ξ(µ | st = s, π) = ξ(µ)
(we do not condition on the complete history, since the policies are memoryless).
The approximation is in practice quite good, since the difference between the
two measures tends to be small. The policy πMMBI can then be obtained via the
following backwards induction. By definition:

Qπ
ξ,t(s, a) = Eξ,π(rt | st = s, at = a) + γ Eξ,π(Ut+1 | st = s, at = a), (2.1)

where the expected reward term can be written as

Eξ,π(rt | st = s, at = a) =

∫

M

Eµ(rt | st = s, at = a) dξ(µ), (2.2a)

Eµ(rt | st = s, at = a) =

∫ ∞

−∞

r dRs,a
µ (r). (2.2b)

The next-step utility can be written as:

Eξ,π(Ut+1 | st = s, at = a) =

∫

M

Eµ,π(Ut+1 | st = s, at = a) dξ(µ), (2.3a)

Eµ,π(Ut+1 | st = s, at = a) =

∫

S

V π
µ,t+1(s

′) dT s,a
µ (s′). (2.3b)

Putting those steps together, we obtain Algorithm 1, which greedily calculates
a memoryless policy for a T -stage problem and returns its expected utility.

Algorithm 1 MMBI - Backwards induction on multiple MDPs.

1: procedure MMBI(M, ξ, γ, T )
2: Set Vµ,T+1(s) = 0 for all s ∈ S .
3: for t = T, T − 1, . . . , 0 do

4: for s ∈ S , a ∈ A do

5: Calculate Qξ,t(s, a) from (2.1) using {Vµ,t+1} .
6: end for

7: for s ∈ S do

8: a∗

ξ,t(s) = argmax {Qξ,t(s, a) | a ∈ A}.
9: for µ ∈ M do

10: Vµ,t(s) = Qµ,t(s, a
∗

ξ,t(s)).
11: end for

12: end for

13: end for

14: end procedure
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Fig. 1. Value function bounds.

The calculation is greedy, since op-
timising over π implies that at any
step t+ k, we must condition the be-
lief on past policy steps ξ(µ | st+k =
s, πt, . . . , πt+k−1) to calculate the ex-
pected utility correctly. Thus, the op-
timal πt+k depends on both future
and past selections. Nevertheless, it
is easy to see that Alg. 1 returns
the correct expected utility for time
step t. Theorem 1 bounds the gap
between this and the Bayes-optimal
value function when the difference be-
tween the current and future beliefs is
small.

Theorem 1. For any k ∈ [t, T ], let ξk , ξ(· | sk, ak) be the posterior after k ob-
servations. Let λ be a dominating measure on M and ‖f‖λ,1 =

∫

M
|f(µ)| dλ (µ),

for any λ-measurable function f . If ‖ξt − ξk‖λ,1 ≤ ǫ, for all k, then the policy
πMMBI found by MMBI is within rmax(1− γ)−2ǫ of the Bayes-optimal policy π∗

ξ .

Proof. The error at every stage k > t, is bounded as follows:

|Vξ,k(s)− Eξ(Uk | sk, ak)| =

∣

∣

∣

∣

∫

M

[ξt(µ)− ξk(µ)(s)]Vµ,k(s) dλ (µ)

∣

∣

∣

∣

≤
rmax

1− γ

∫

M

|ξt(µ)− ξk(µ)(s)| dλ (µ) ≤
rmax

1− γ
ǫ.

The final result is obtained via the geometric series. ⊓⊔

We can similarly bound the gap between the MMBI policy and the ξ-optimal
memoryless policy, by bounding supk,s,π ‖ξt(·)− ξt(· | sk = s, π)‖λ,1.

The ξ-optimal memoryless policy is generally different from the policy which
is optimal with respect to the expected MDP µ̂ξ , Eξ µ, as can be seen via
counterexample where Eξ V

π
µ 6= V π

µ̂ξ
, or even where Eξ µ /∈ M. MMBI can be

used to obtain a much tighter value function bound than the µ̂ξ-optimal policy,
as shown in Fig. 1, where the MMBI bound is compared to the µ̂ξ-optimal policy
bound and the simple upper bound: V ∗

ξ (s) ≤ Eξ maxπ V
π
µ (s). The figure shows

how the bounds change as our belief over 8 MDPs changes. When we are more
uncertain, MMBI is much tighter than µ̂ξ-optimal. However, when most of the
probability mass is around a single MDP, both lower bounds coincide. In further
experiments on online reinforcement learning, described in Sec. 3, near-optimal
memoryless policies are compared against the µ̂ξ-optimal policy.

2.1 Computational complexity

When M is finite and T < ∞, MMBI (Alg. 1) returns a greedily-optimised
policy πMMBI and its value function. When T → ∞, MMBI can be used to
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calculate an ǫ-optimal approximation by truncating the horizon, as shown below.

Lemma 1. The complexity of Alg. 1 for bounding the value function error by ǫ,

is O
(

[

|M||S|2(|A|+ 1) + (1 + |M|)|S||A|
]

logγ
ǫ(1−γ)
rmax

)

, assuming rt ∈ [0, rmax],

Proof. Since rt ∈ [0, rmax], if we look up to some horizon T , our value function
error is bounded by γT c, where c = Hrmax and H = 1

1−γ is the effective horizon.

Consequently, we need T ≥ logγ(ǫ/c) to bound the error by ǫ. For each t, step 5
is performed |S||A| times. Each step takes O(|M|) operations for the expected
reward and O(|S||M|) operations for the next-step expected utility. The second
loop is O(|S|(|A|+ |M||S|)), since it is performed |S| times, with the max oper-
ators taking |A| operations, while inner loop is performed |M| times with each
local MDP update step 10 takes |S| operations. ⊓⊔

Algorithm 2 MSBI: Multi-Sample Backwards Induction

1: procedure MSBI(ξ, γ, ǫ)

2: n =
(

3rmax

ǫ(1−γ)

)3

.

3: M = {µ1, . . . , µn}, µi ∼ ξ.

4: MMBI(M, p, γ, logγ
ǫ(1−γ)
rmax

), with p(µi) = 1/n for all i.
5: end procedure

It is easy to see that the most significant term is O(|M||S|2|A|), so the algorith-
mic complexity scales linearly with the number of MDPs. Consequently, whenM
is not finite, exact computation is not possible. However, we can use high prob-
ability bounds to bound the expected loss of a policy calculated stochastically
through MSBI (Alg.2).

MSBI simply takes a sufficient number of samples of MDPs from ξ, so that
in ξ-expectation, the loss relative to the MMBI policy is bounded according to
the following lemma.

Lemma 2. The expected loss of MSBI relative to MMBI is bounded by ǫ.

Proof. Let Ê
n
U = 1

n

∑n
i=1 Eµi

U denote the empirical expected utility over the
sample of n MDPs, where the policy subscript π is omitted for simplicity. Since

Eξ Ê
n
U = Eξ U , we can use the Hoeffding inequality to obtain:

ξ
({

µn
∣

∣

∣
Ê
n
U ≥ Eξ U + ǫ

})

≤ e−2nǫ2/c2 .

This implies the following bound:

Eξ(Ê
n
U − Eξ U) ≤ cδ + c

√

ln(1/δ)

2n
≤ c(8n)−1/3 + c

√

(8n)1/3

2n
= 3cn−1/3.



Robust Bayesian reinforcement learning through tight lower bounds 7

Let P1 be the set of memoryless policies. Since the bound holds uniformly (for

any π ∈ P), the policy π̂∗ ∈ P̄1 maximising Ê
n
is within 3cn−1/3 of the ξ-optimal

policy in P1. ⊓⊔

Finally, we can combine the above results to bound the complexity of achieving
a small approximation error for MSBI, with respect to expected loss:

Theorem 2. MSBI (Alg. 2) requires O

(

(

6rmax

ǫ(1−γ)

)3

|S|2|A| logγ
ǫ(1−γ)
2rmax

)

opera-

tions to be ǫ-close to the best MMBI policy.

Proof. From Lem. 2, we can set n = (6c/ǫ)3 to bound the regret by ǫ/2. Using
the same value in Lem. 1, and setting |M| = n, we obtain the required result. ⊓⊔

2.2 Application to robust Bayesian reinforcement learning

While MSBI can be used to obtain a memoryless policy which is in expectation
close to both the optimal memoryless policy and the Bayes-optimal policy for a
given belief, the question is how to extend the procedure to online reinforcement
learning. The simplest possible approach is to simply recalculate the stationary
policy after some interval B > 0. This is the approach followed by MCBRL

(Alg. 3), shown below.

Algorithm 3 MCBRL: Monte-Carlo Bayesian Reinforcement Learning

1: procedure MCBRL(ξ0, γ, ǫ, B)
2: Calculate ξt(·) = ξ0(· | s

t, at−1).
3: Call MSBI(ξt, γ, ǫ) and run returned policy for B steps.
4: end procedure

3 Experiments in reinforcement learning problems

Selecting the number of samples n according to ǫ forMCBRL is computationally
prohibitive. In practice, instead of setting n via ǫ, we simply consider increasing
values of n. For a single sample (n = 1), MCBRL is equivalent to the sampling
method in [29], which at every new stage, samples a single MDP from the cur-
rent posterior and then uses the policy that is optimal for the sampled MDP.
In addition, for this particular experiment, rather than using the memoryless
policy found, we apply the stationary policy derived by using the first step of
the memoryless policy. This incurs a small additional loss. We also compared
MCBRL against the common heuristic of acting according to the policy that is
optimal with respect to the expected MDP µ̂ξ , Eξ µ. The algorithm, referred
to as the Exploit heuristic in [23], is shown in detail in Alg. 4. At every step,
this calculates the expected MDP by obtaining the expected transition kernel
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Algorithm 4 Exploit: Expected MDP exploitation [23]

1: procedure Exploit(ξ0, γ)
2: for t = 1, . . . do

3: Calculate ξt(·) = ξ0(· | s
t, at−1).

4: Estimate µ̂ξt , Eξt µ.
5: Calculate Q∗

µ̂ξt
(s, a) using discount parameter γ.

6: Select at = argmaxa Q
∗

µ̂ξt
(s, a)

7: end for

8: end procedure

and reward function under the current belief. It then acts according to the opti-
mal policy with respect to µ̂ξ. This policy may be much worse than the optimal
policy, even within the class of stationary policies P̄1.

250

300

350

400

450

500

550

2 4 6 8 10 12 14 16

PSfrag replacements

n

L

Alg. 3
Alg. 4

(a) Expected regret estimate

0

100

200

300

400

500

1 1.5 2 2.5 3 3.5 4 4.5 5

PSfrag replacements

total reward ×10−3

n
u
m
b
er

o
f
ru
n
s n = 1

n = 8

Alg. 4

(b) Empirical performance distribution

Fig. 2. Performance on the chain task, for the first 103 steps, over 104 runs. (a):
Expected regret relative to the optimal (oracle) policy. The sampling curve shows
the regret of Alg. 3, as the number of samples increases, with 95% confidence
interval calculated via a 104-boostrap. The expected curve shows the performance
of an algorithm acting greedily with respect to the expected MDP. (b): Empirical
distribution of total rewards for: the expected MDP approach and MCBRL with
n = 1 and n = 8 samples.

We compared the algorithms on the Chain task [9], commonly used to eval-
uate exploration in reinforcement learning problems. Traditionally, the task has
a horizon of 103 steps, a discount factor γ = 0.95, and the expected total reward
Eµ,π

∑T
t=1 rt is compared. We also report the expected utility Eµ,π Ut, which

depends on the discount factor. All quantities are estimated over 104 runs with
appropriately seeded random number generators to reduce variance.2 The initial
belief about the state transition distribution was set to be a product-Dirichlet

2 In both cases this expectation is with respect to the distribution induced by the
actual MDP µ and policy π followed, rather than with respect to the belief ξ.
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prior [see 11] with all parameters equal to |S|−1, while a product-Beta prior with
parameters (1, 1) was used for the rewards.

Figure 2 summarises the results in terms of total reward. The left hand
side (2(a)) shows the expected difference in total reward between the optimal

policy π∗ and the used policy π, over T steps, i.e. the regret: L = Eµ,π

∑T
t=1 rt−

Eµ,π

∑T
t=1 rt. The error bars denote 95% confidence intervals obtained via a

104-bootstrap [15]. For n = 1, MCBRL performs worse than the expected MDP
approach, in terms of total reward. On the other hand, as the number of samples
increase, its performance monotonically improves.

Some more detail on the behaviour of the algorithms is given in Figure 2(b),
which shows the empirical performance distribution in terms of total reward.
The expected MDP approach has a high probability of getting stuck in a sub-
optimal regime. On the contrary, MCBRL, for n = 1, results in significant
over-exploration of the environment. However, as n increases, MCBRL explores
significantly less, while the number of runs where we are stuck in the sub-optimal
regime remains small (< 1% of the runs). Table 1 presents comparative results on

Model
∑1000

t=1 rt (EU) 80% percentile confidence interval

Alg. 4 3287 (26.64) 2518 – 3842 3275 – 3299
n = 1 3166 (28.50) 2748 – 3582 3159 – 3173
n = 8 3358 (29.65) 2932 – 3800 3350 – 3366
n = 16 3376 (29.95) 2946 – 3830 3368 – 3384

Model
∑1000

t=1 rt Standard interval

Beetle [23] 1754 1712–1796
AMP-EM [17] 2180 2108–2254

SEM [17] 2052 2000 –2111

Table 1. Comparative results on the chain task. The 80% percentile interval is
such that no more than 10% of the runs were above the maximum or below the
minimum value. The confidence interval on the accuracy of the mean estimate,
is the 95% bootstrap interval. The results for Beetle and the EM algorithms
were obtained from the cited papers, with and the interval based on the reported
standard deviation.

the chain task for Alg. 4 and for MCBRL for n ∈ {1, 8, 16} in terms of the total
reward received in 103 steps. This enables us to compare against the results
reported in [23, 17]. While the performance of Alg. 4 may seem surprisingly
good, it is actually in line with the results reported in [23]. Therein, Beetle

only outperformed Alg. 4 in the Chain task when stronger priors were used. In
addition, we would like to note that while the case n = 1 is worse than Alg. 4
for the total reward metric, this no longer holds when we examine the expected
utility, where an improvement can already be seen for n = 1.
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4 Discussion

We introduced MMBI, a simple backwards induction procedure, to obtain a
near-optimal memoryless policy with respect to a belief over a finite number
of MDPs. This was generalised to MSBI, a stochastic procedure, whose loss is
close in expectation to MMBI, with a gap that depends polynomially on the
number of samples, for a belief on arbitrary set of MDPs. It is shown that MMBI

results in a much tighter lower bound on the value function that the value of
the µ̂ξ-optimal policy. In addition, we prove a bound on the gap between the
value of the MMBI policy and the Bayes-optimal policy. Our results are then
applied to reinforcement learning problems, by using the MCBRL algorithm to
sample a number of MDPs at regular intervals. This can be seen as a principled
generalisation of [29], which only draws one sample at each such interval. Then
MSBI is used to calculate a near-optimal memoryless policy within each interval.
We show experimentally that this performs significantly better than following
the µ̂ξ-optimal policy. It is also shown that the performance increases as we make
the bound tighter by increasing the number of samples taken.

Compared to results reported for other Bayesian reinforcement learning ap-
proaches on the Chain task, this rather simple method performs surprisingly
well. This can be attributed to the fact that at each stage, the algorithm selects
actions according to a nearly-optimal stationary policy.

In addition,MSBI itself could be particularly useful for inverse reinforcement
learning problems (see for example [1, 22]) where the underlying dynamics are
unknown, or to multi-task problems[26]. Then it would be possible to obtain good
stationary policies that take into account the uncertainty over the dynamics,
which should be better than using the expected MDP heuristic. More specifically,
in future work, MMBI will be used to generalise the Bayesian methods developed
in [13, 25] for the case of unknown dynamics.

In terms of direct application to reinforcement learning, MSBI could be
used in the inner loop of some more sophisticated method than MCBRL. For
example, it could be employed to obtain tight lower bounds for the leaf nodes
of a planning tree such as[12]. By tight integration with such methods, we hope
to obtain improved performance, since we would be considering wider policy
classes. In a related direction, it would be interesting to see examine better
upper bounds [8, 7, 24] and in particular whether the information relaxations
discussed by Brown et al. [5] could be extended to the Bayes-optimal case.
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