
Computing in the fractal cloud:
modular generic solvers for
SAT and Q-SAT variants

Denys Duchier, Jérôme Durand-Lose?, and Maxime Senot

LIFO, Université d’Orléans,
B.P. 6759, F-45067 ORLÉANS Cedex 2.

Abstract. Abstract geometrical computation can solve hard combina-
torial problems efficiently: we showed previously how Q-SAT can be
solved in bounded space and time using instance-specific signal machines
and fractal parallelization. In this article, we propose an approach for
constructing a particular generic machine for the same task. This ma-
chine deploies the Map/Reduce paradigm over a fractal structure. More-
over our approach is modular : the machine is constructed by combining
modules. In this manner, we can easily create generic machines for solv-
ing satifiability variants, such as SAT, #SAT, MAX-SAT.

Keywords. Abstract geometrical computation; Signal machine; Frac-
tal; SAT; Massive parallelism; Model of computation.

1 Introduction

Since their first formulations in the seventies, problems of Boolean satisfiability
have been studied extensively in the field of computational complexity. Indeed,
the most important complexity classes can be characterized — in terms of re-
ducibility and completeness — by such problems e.g. SAT for NP [Cook, 1971]
and Q-SAT for PSPACE [Stockmeyer and Meyer, 1973]. As such, it is a nat-
ural challenge to consider how to solve these problems when investigating new
computing machinery (quantum, NDA, membrane, hyperbolic spaces. . .) [Păun,
2001, Margenstern and Morita, 2001, Alhazov and Pérez-Jiménez, 2007].

This is the line of investigation that we have been following with signal ma-
chines [Durand-Lose, 2005], an abstract and geometrical model of computation.
We showed previously how such machines were able to solve SAT [Duchier et al.,
2010a] and Q-SAT [Duchier et al., 2010b] in bounded space and time. But in both
cases, the machines were instance-specific i.e. depended on the formula whose
satifiability was to be determined. The primary contribution of the present paper
is to exhibit a particular generic signal machine for the same task: it takes the
instance formula as an input encoded (in polynomial-time by a Turing machine)
in an initial configuration. We further improve our previous results by describing
? Corresponding author Jerome.Durand-Lose@univ-orleans.fr

ar
X

iv
:1

10
5.

34
54

v1
 [

cs
.C

C
]

 1
7

M
ay

 2
01

1

a modular approach that allows us to easily construct generic machines for other
variants of SAT, such as #SAT or MAX-SAT.

The model of signal machines, called abstract geometrical computation, in-
volves two types of fundamental objects: dimensionless particles and collision
rules. We use here one-dimensional machines: the space is the Euclidean real
line, on which the particles move with a constant speed. Collision rules describe
what happens when several particles collide. By representing the continuous time
on a vertical axis, we obtain two-dimensional space-time diagram, in which the
motion of the particles are materialized by segment lines called signals.

Signal machines can simulate Turing machines, and are thus Turing-universal
[Durand-Lose, 2005]. They are also capable of analog computation by using
the continuity of space and time to simulate analog models such as BSS’s one
[Durand-Lose, 2008, Blum et al., 1989] or computable analysis [Durand-Lose,
2009]. Other geometrical models of computation exist: colored universes [Ja-
copini and Sontacchi, 1990], geometric machines [Huckenbeck, 1989], piece-wise
constant derivative systems [Bournez, 1997], optical machines [Naughton and
Woods, 2001]. . . All these models, including signal machines, belong to a larger
class of models of computation, called unconventional, which are more powerful
than classical ones (Turing machines, RAM, λ-calculus . . .). Among all these
abstract models, the model of signal machines distinguishes itself by realistic
assumptions respecting the major principles of physics — finite density of infor-
mation, respect of causality and bounded speed of information — which are, in
general, not respected all at the same time by other models. Nevertheless, signal
machines remain an abstract model, with no a priori ambition to be physically
realizable, and is studied for theoretical issues of computer sciences.

As signal machines take their origins in the world of cellular automa (as illus-
trated in Fig. 1), they can also be viewed as a massively parallel computational
device. This is the approach proposed here: we put in place a fractal compute
grid, then use the Map/Reduce paradigm to distribute the computations, then
aggregate the results.

T
im

e
(N

)

Space (Z)

T
im

e
(R

+
)

Space (R)

Fig. 1. From cellular automata to signal machines.

The Map/Reduce pattern, pioneered by Lisp, is now standard in functional
programming: a function is applied to many inputs (map), then the results are
aggregated (reduce). Google extended this pattern to allow its distributed com-

putation over a grid of possibly a thousand nodes [Dean et al., 2004]. The idea
is to partition the input (petabytes of data) into chunks, and to process these
chunks in parallel on the available nodes.

When solving combinatorial problems, we are also faced with massive inputs;
namely, the exponential number of candidate solutions. Our approach is to dis-
tribute the candidates, and thus the computation, over an unbounded fractal
grid. In this way, we adapt the map/reduce pattern for use over a grid with
fractal geometry.

Our contribution in this paper is three fold: first, we show how Q-SAT can
be solved in bounded space and time using a generic machine, where the input
(the formula) is simply compiled into an initial configuration. This improves on
our previous result where the machine itself depended on the formula. Second,
we propose the first architecture for fractally distributed computing (the fractal
cloud) and give a way to automatically shrink the data into this structure by
means of a lens device. Third, we show how generic machines for many variants
of SAT can be assembled by composing independent modules, which naturally
emerged from the generalization of our previous family of machines into a sin-
gle machine solving Q-SAT. Each module can be programmed and understood
independently.

The paper is structured as follow. Signal machines are introduced in Section 2.
Section 3 presents the fractal tree structure used to achieve massive parallelism
and how general computations can be inserted in the tree. Section 4 details this
implementation for a Q-SAT solver and Section 5 explains how some variants of
satisfiability problems can be solved with the same approach. Complexities are
discussed in Section 6 and conclusions and remarks are gathered in Section 7.

2 Definitions

Signal machines are an extension of cellular automata from discrete time and
space to continuous time and space. Dimensionless signals/particles move along
the real line and rules describe what happens when they collide.

Signals. Each signal is an instance of a meta-signal. The associated meta-signal
defines its velocity and what happen when signals meet. Figure 2 presents a very
simple space-time diagram. Time is increasing upwards and the meta-signals are
indicated as labels on the signals.

Generally, we use over-line arrows to indicate the direction and speed of
propagation of a meta-signal. For example, −→a and⇐=a denotes two different meta-
signals; the first travels to the right at speed 1, while the other travels to the
left at speed −3. w and a are both stationary meta-signals.

Collision rules. When a set of signals collide, they are replaced by a new set of
signals according to a matching collision rule. A rule has the form:

σ1, . . . , σn → σ′1, . . . , σ
′
p

Meta-signal Speed
w, a 0
−→a 1
=⇒a 3
⇐=a −3

w w

=⇒a

⇐=a
−→a

a

Collision rules
=⇒a ,w → ⇐=a ,w
−→a ,⇐=a → a

Initial configuration

{w,−→a ,=⇒a }@0
{w}@1

Fig. 2. Geometrical algorithm for computing the middle

where all σi are meta-signals of distinct speeds as well as σ′j (two signals cannot
collide if they have the same speed and outcoming signals must have different
speeds). A rule matches a set of colliding signals if its left-hand side is equal to
the set of their meta-signals. By default, if there is no exactly matching rule for
a collision, the behavior is defined to regenerate exactly the same meta-signals.
In such a case, the collision is called blank. Collision rules can be deduced from
space-time diagrams as on Fig. 2. They are also listed on the right of this figure.

Signal machine. A signal machine is defined by a set of meta-signals, a set of
collision rules, and and initial configuration, i.e. a set of particles placed on the
real line. The evolution of a signal machine can be represented geometrically as a
space-time diagram: space is always represented horizontally, and time vertically,
growing upwards. The geometrical algorithm displayed in Fig. 2 computes the
middle: the new a is located exactly halfway between the initial two w.

3 Computing in the fractal cloud

Constructing the fractal: the fractal structure that interests us is based on the
simple idea of computing the middle illustated in Figure 2. We just indefinitely
repeat this geometrical construction: once space has been halved, we recursively
halve the two halves, and so on. This is illustrated in Figure 3(a), and can be
generated by the following rules:1

w,⇐=a → w,=⇒a −→a ,⇐=a →⇐=a ,←−a , a,−→a ,=⇒a

using {w,−→a ,=⇒a }@0 {w}@1 as the initial configuration. This produces a stack of
levels: each level is half the height of the previous one. As a consequence, the
full fractal has width 1 and height 1.

1 For brevity, we will always omit the rules which can be obtained from the others by
symmetry. We refer to AppendixA for more details.

(a) Constructing the fractal cloud (b) Distributing a computation

Fig. 3. Computing in the fractal cloud

Distributing a computation: the point of the fractal is to recursively halve space.
At each point where space is halved, we position a stationary signal (a vertical
line in the space-time diagram). We can use this structure, so that, at each
halving point (stationary signal), we split the computation in two: send it to the
left with half the data, and also to the right with the other half of the data.

The intuition is that the computation is represented by a beam of signals,
and that stationary signals split this beam in two, resulting in one beam that
goes through, and one beam that is reflected.

Unfortunately, a beam of constant width will not do: eventually it becomes
too large for the height of the level. This can be clearly seen in Figure 3(b).

The lens device: the lens device narrows the beam by a factor of 2 at each
level, thus automatically adjusting it to fit the fractal. It is implemented by the
following meta-rule: unless otherwise specified, any signal −→σ is accelerated by ⇐=a
and decelerated and split by any stationary signal s.

−→σ

=⇒σ

←−σ −→σ

⇐=a

t 3t

t

t

(a) narrows by 2 (b) effect on propagation

Fig. 4. The lens device

Generic computing over the fractal cloud: with the lens device in effect, generic
computations can take place over the fractal by propagating a beam from an
initial configuration. We write [(−→σn . . .−→σ1)spawn] for an initial configuration
with a sequence −→σn . . .−→σ1 of signals. Geometrically, it can be seen easily that, in
order for the beam to fit through the first level, the sequence −→σn . . .−→σ1 must be
placed in the interval (− 1

4 , 0).

Stopping the fractal: For finite computations, we don’t need the entire fractal.
The [until(n)] module can be inserted in the initial configuration to cut the
fractal after n levels have been generated. [until(n)] = −→z

−→
ζ
n−1

=⇒
ζ ,←−a →←−a◦,

=⇒
ζ

=⇒
ζ , a→ a◦

=⇒
ζ , a◦ →

←−
ζ , a◦,

−→
ζ

=⇒z ,←−a →←−a◦,=⇒z =⇒z ,←−a◦ →←−a ,=⇒z =⇒z , a◦ →←−z , a,−→z
=⇒z , a→ a,=⇒z =⇒z ,−→a → −→a◦ =⇒a ,←−a◦ →

The subbeam
−→
ζ
n−1

are the inhibitors for −→z . One inhibitor is consumed at each
level, after which =⇒z takes effect and turns ←−a into ←−a◦, then crosses a and turns
−→a on the other side into −→a◦. Finally the annihilation rule =⇒a ,←−a◦ → ∅ brings the
fractal to a stop. Thus, a computation [(−→σn . . .−→σ1[until(n)])spawn] uses only
n levels. It can be seen geometrically that, for the collision of =⇒z with −→a to occur
before the latter meets with ⇐=a , −→z must initially be placed in (− 1

6 , 0).

4 A modular Q-SAT solver

Q-SAT is the satisfiability problem for quantified Boolean formulae (QBF). A
QBF is a closed formula of the form:

φ = Q1x1Q1x2 . . . Qnxn ψ(x1, x2, . . . , xn)

where Qi ∈ {∃,∀} and ψ is a quantifier-free formula of propositional logic. A
recursive algorithm for solving Q-SAT is:

qsat(∃x φ) = qsat(φ[x← false]) ∨ qsat(φ[x← true])
qsat(∀x φ) = qsat(φ[x← false]) ∧ qsat(φ[x← true])

qsat(β) = eval(β)

where β is a ground Boolean formula. This is exactly the structure of our con-
struction: each quantified variable splits the computation in 2, qsat(φ[x← false])
is sent to the left and qsat(φ[x ← true]) to the right, and subsequently the re-
cursively computed results that come back are combined (with ∨ for ∃ and ∧ for
∀) to yield the result for the quantified formula. This process can be viewed as
an instance of Map/Reduce, where the Map phase distributes the combinatorial
exploration of all possible valuations across space using a binary decision tree,

and the Reduce phase collects the results and aggregates them using quantifier-
appropriate Boolean operations. Our Q-SAT solver is modularly composed as
follows:

[([reduce:qsat(Q1x1 . . . Qnxn)][map:sat(ψ)][decide(n)][until(n+ 1)])spawn]

We describe the modules decide, map:sat, and reduce:qsat below.

4.1 Setting up the decision tree

For a QBF with n variables, we need 1 level per variable, and then at level n+1
we have a ground propositional formula that needs to be evaluated. Thus, the
first module we insert is [until(n + 1)] to create n + 1 levels. We then insert
[decide(n)] because we want to use the first n levels as decision points for each
variable. [decide(n)] = −→α n

=⇒α , a→ x =⇒α , x→←−α , x,−→α

4.2 Compiling the formula

The intuition is that we want to compile the formula into a form of inverse
polish notation to obtain executable code using postfix operators. At level n+1

all variables have been decided, and have become −→t or
−→
f . The ground formula,

regarded as an expression tree, can be executed bottom up to compute its truth
value: the resulting signal for a subexpression is sent to interact with its parent
operator.

The formula is represented by a beam of signals: each subformula is repre-
sented by a (contiguous) subbeam. A subformula that arrives at level n+1 starts
evaluating when it hits the stationary a. When its truth value has been com-
puted, it is reflected so that it may eventually collide with the incoming signal
of its parent connective.

Compilation. For binary connectives: one argument arrives first, it is evaluated,
and its truth value is reflected toward the incoming connective; but, in order to
reach it, it must cross the incoming beam for the other argument and not interact
with the connectives contained therein. For this reason, with each subexpression,
we associate a beam −→γ k of inhibitors that prevents its resulting truth value
to interact with the first k connectives that it crosses. We write C[[ψ]] for the
compilation of ψ into a contribution to the initial configuration, and ‖ ψ ‖ for
the number of occurrences of connectives in ψ.

C[[ψ]] = C[[ψ]]
0

C[[ψ1 ∧ ψ2]]
k
=
−→∧ −→γ k C[[ψ1]]

0
C[[ψ2]]

‖ψ1‖

C[[ψ1 ∨ ψ2]]
k
=
−→∨ −→γ k C[[ψ1]]

0
C[[ψ2]]

‖ψ1‖

C[[¬ψ]]k = −→¬ −→γ k C[[ψ]]

C[[xi]]
k
= [var(xi)] −→γ

k

Variables. We want variable xi to be decided at level i. This can be achieved
using i− 1 inhibitors. [var(xi)] = −→x

−→
β
i−1

=⇒
β , x→ x◦

=⇒
β , x◦ →

←−
β , x◦,

−→
β

=⇒x , x→
←−
f , x,−→t =⇒x , x◦ →←−x , x,−→x

For variable xi, the idea is to protect =⇒x from being assigned into
←−
f and −→t until

it reaches the ith level. This is achieved with a stack of i− 1 signals
=⇒
β : at each

level, the first
=⇒
β turns the stationary signal x into x◦(the non-assigning version

of x), and dies. The following
=⇒
β are simply split, and so is =⇒x but it additionally

turns x◦ back into x. After the first i− 1 levels, all the
−→
β have been consumed

so that =⇒x finally collides with x and splits into
←−
f going left and −→t going right.

Evaluation. When hitting a at level n + 1, =⇒t is reflected as
←−
T , and

=⇒
f as

←−
F :

these are their activated versions which can interact with incoming connectives
to compute the truth value of the formula according to the rules below (for ∧;
other connectives are similar, cf AppendixA). See Fig. 5(a) for an example.

=⇒t , a→
←−
T , a

=⇒
f , a→

←−
F , a =⇒γ , a→←−γ+, a

=⇒∧ ,
←−
T → =⇒∧+

=⇒
f+,
←−
T →

=⇒
f =⇒∧+,

←−
T → =⇒t

=⇒∧ ,
←−
F →

=⇒
f+

=⇒
f+,
←−
F →

=⇒
f =⇒∧+,

←−
F →

=⇒
f

=⇒∧ ,←−γ+ →
=⇒∧◦

=⇒∧◦,
←−
T →

←−
T ,=⇒∧ =⇒∧◦,

←−
F →

←−
F ,=⇒∧

Storing the result. In order to make the result easily exploitable by the Reduce
phase, we now store it as the stationary signal at level n + 1; it replaces a.

[store] = −→s
=⇒s ,
←−
T →

=⇒
T =⇒s ,

←−
F →

=⇒
F

=⇒
T , a→ t

=⇒
F , a→ f

The complete Map phase in implemented by: [map:sat(ψ)] = [store]C[[ψ]]

4.3 Aggregating the results

As explained earlier, the results for an existentially (resp. universally) quantified
variable must be combined using ∨ (resp. ∧).

Setting up the quantifiers. We turn the decision points of the first n levels into
quantifier signals. Moreover, at each level, we must also take note of the direction
in which the aggregated result must be sent. Thus ∃L represents an existential
quantifier that must send its result to the left.

[reduce:qsat:init(Q1x1 · · ·Qnxn)] =
−→
Qn . . .

−→
Q1

x,
⇐=
∃ → ∃R

=⇒
∃ , x→ ∃L x,

⇐=
∀ → ∀R

=⇒
∀ , x→ ∀L

=⇒γ a

=⇒γ

←−γ
+

=⇒γ

a

=⇒t
←−γ
+

=⇒t

←−γ
+

=⇒t

a

=⇒t ←−γ
+

=⇒t
←−γ
+

=⇒¬ ←−γ
+

=⇒¬◦ ←−γ
+

=⇒t ←−T

=⇒t

a

=⇒t ←−γ
+ =⇒¬◦

←−T

=⇒¬ ←−T
=⇒∧ ←−γ

+
=⇒t

←−T

=⇒
f

a

=⇒∧◦

←−T =⇒t

←−F

=⇒t

a

=⇒∨

←−T =⇒∧
←−F

=⇒
f+ ←−T

=⇒
f

a

=⇒
t+

←−F
=⇒t

a

=⇒s

←−T
=⇒
T

a

=⇒c

t

←−t

(a) Evaluation
case x1 = x2 = x3 = t

[(−→c
−→
∀
−→
∀
−→
∃−→s −→∨−→∧−→x −→¬−→x

−→
β −→x
−→
β
−→
β −→γ −→γ −→α−→α−→α−→z

−→
ζ
−→
ζ
−→
ζ)spawn]

Initial configuration

=⇒c , t→←−t =⇒c , f →
←−
f

−→t , ∃L,
←−t →←−t −→t ,∀L,

←−t →←−t
−→t , ∃L,

←−
f →←−t −→t ,∀L,

←−
f →

←−
f

−→
f , ∃L,

←−t →←−t
−→
f ,∀L,

←−t →
←−
f

−→
f , ∃L,

←−
f →

←−
f

−→
f ,∀L,

←−
f →

←−
f

−→f

∀ R

←−t −→f ∀ L

←−t −→t

∀ R

←−t −→f ∀ L

←−t

−→f

∀ R

←−
f −→t

∀ L

←−
f

−→f

∃ L

←−
f

←−
f

(b) Aggregation

Fig. 5. Example ∃x1∀x2∀x3 (x1 ∧ ¬x2) ∨ x3

Aggregating the results. Actual aggregation is initiated by −→c and then executes
according to the rules given in Fig 5(b). [reduce:qsat:exec] = −→c

The complete Reduce phase is implemented by [reduce:qsat(Q1x1 · · ·Qnxn)] =
[reduce:qsat:exec][reduce:qsat:init(Q1x1 · · ·Qnxn)]

5 Machines for SAT variants

Similar machines for variants of SAT can be obtained easily, typically by using
different modules for the Reduce phase.

ENUM-SAT. returning all the satisfying assignments for a propositional formula
ψ can be achieved easily by storing them as stationary beams.

[reduce:allsat(n)] = −→v [var(x1)] . . . [var(xn)]
−→v

=⇒v , t→←−v+, v −→v+,
⇐=t → t,−→v+ =⇒v , f →←−v◦ −→v◦,

⇐=t → −→v◦
−→v+,⇐=v → v −→v+,

⇐=
f → f,−→v+ −→v◦,⇐=v → −→v◦,

⇐=
f → −→v◦

#SAT. counting the number of satisfying assignments for ψ can be achieved
using signals for a binary adder. For lack of space, we cannot exhibit the rules
here, but they can be found in AppendixB.

MAX-SAT. finding the maximum number of clauses that can be satisfied by an
assignment. Here we must count the number of satisfied clauses rather than the
number of satisfying assignments, and then stack a module for computing the
max of two binary numbers.

6 Complexities

As mentioned in Sect. 1, we implement algorithms for satisfiability problems on
signal machines in order to investigate the computational power of our abstract
geometrical model of computation and to compare it to others. As we shall see,
for such comparisons to be meaningful, the way complexity is measured must be
adapted to the nature on the computing machine.

Fig. 6. The whole diagram.

Since signal machines can be regarded
as the extension of cellular automata from
discrete to continous time and space, it
might seem natural to measure the time
(resp. space) complexity of a computation
using the height (resp. width) of its space-
time diagram. But, in our applications to
SAT variants, these are bounded and in-
dependant of the formula: the Map phase
is bounded by the fractal, and, by sym-
metry, so is the Reduce phase. Indeed, in
general, by an appropriate scaling of the
initial configuration, a finite computation
could be made as small as desired. Thus,
height and width are no longer pertinent
measures of complexity.

Instead, we should regard our construction as a massively parallel computa-
tional device transforming inputs into outputs. The input is the initial config-
uration at the bottom of the diagram, and the output is the truth value signal
coming out at the top, as seen in Fig. 6 for formula ∃x1∀x2∀x3 (x1 ∧ ¬x2) ∨ x3.
The transformation is performed in parallel by many threads: a thread here is
an ascending path through the diagram from an input to the output, and the
operations executed by the thread are the collisions occurring on this path.

Formally, we view a space-time diagram as a directed acyclic graph of col-
lisions (vertices) and signals (arcs) oriented according to causality. Time com-
plexity is then defined as the maximal size of a chain of collisions i.e. the length
of the longest path, and space complexity as the maximal size of an anti-chain
i.e. the size of the maximal set of signals pairwise un-related. This model-specific
measure of time complexity is called collisions depth.

For the present construction, if s is the size of the formula and n the number
of variables, space complexity is exponential: during evaluation, 2n independent
computations are executed in parallel, each one involving approximately s sig-
nals, so that the total space complexity is in O(s.2n).

Regarding the time complexity: for each subformula, the compilation process
introduces a number of signals at most linear in s. Thus the number of signals
in the initial configuration is O(s2). The primary contribution to the number
of collisions along an ascending path comes, at each of the n levels, from the
reflected beam crossing the incoming beam. Thus a thread involves O(n.s2)
collisions, making the collision depth cubic in the size of the formula instead of
quadratic for our previous family of machines, giving us an idea of the price for
genericity.

7 Conclusion

We showed in this paper that abstract geometrical computation can solve Q-
SAT in bounded space and time by means of a single generic signal machine.
This is achieved through massive parallelism enabled by a fractal construction
that we call the fractal cloud. We adapted the Map/Reduce paradigm to this
fractal cloud, and described a modular programming approach making it easy
to assemble generic machines for SAT variants such as #SAT or MAX-SAT.

As we explained in Sect. 6, time and space are no longer appropriate mea-
sures of complexity for geometrical computations. This leads us to propose new
definitions of complexity, specific to signal machines, and taking in account the
parallelism of the model: time and space complexities are now defined respec-
tively by the maximal sizes of a chain and an anti-chain, when the diagram is
regarded as a directed acyclic graph. Time complexity thus defined is called colli-
sion depth. According to these new definitions, our construction has exponential
space complexity and cubic time complexity.

Although the model is purely theoretical and has no ambition to be physically
realizable, it is a significant and distinguishing aspect of signal machines that
they solve satifiability problems while adhering to major principles of modern
physics — finite density and speed of information, causality — that are typically
not considered by other unconventional models of computation. They do not,
however, respect the quantization hypothesis, nor the uncertainty principle.

We are know furthering our research along two axes. First, the design and
applications of other fractal structures for modular programming with fractal
parallelism. Second, the investigation of computational complexity classes, both
classical and model-specific for abstract geometrical computation.

Bibliography

Artiom Alhazov and Mario J. Pérez-Jiménez. Uniform solution of Q-SAT using polar-
izationless active membranes. In J. Durand-Lose and M. Margenstern, editors, 5th
International Conference on Machines, Computations, and Universality (MCU ’07),
number 4664 in LNCS, pages 122–133. Springer, 2007.

L. Blum, M. Shub, and S. Smale. On a theory of computation and complexity over the
real numbers: NP-completeness, recursive functions and universal machines. Bulletin
of the American Mathematical Society, 21(1):1–46, 1989.

Olivier Bournez. Some bounds on the computational power of piecewise constant
derivative systems. In ICALP ’97, number 1256 in LNCS, pages 143–153, 1997.

Stephen A. Cook. The complexity of theorem proving procedures. In 3rd Symposium
on Theory of Computing (STOC ’71), pages 151–158. ACM, 1971.

Jeffrey Dean, Sanjay Ghemawat, and Google Inc. Mapreduce: simplified data process-
ing on large clusters. In Proceedings of the 6th Conference on Symposium on Opeart-
ing Systems Design & Implementation (OSDI’ 04). USENIX Association, 2004.

Denys Duchier, Jérôme Durand-Lose, and Maxime Senot. Fractal parallelism: Solving
SAT in bounded space and time. In O. Cheong, K-Y. Chwa, and K. Park, edi-
tors, 21st International Symposium on Algorithms and Computation (ISAAC ’10),
number 6506 in LNCS, pages 279–290. Springer, 2010a.

Denys Duchier, Jérôme Durand-Lose, and Maxime Senot. Massively parallel automata
in Euclidean space-time. In J. Beal, O. Michel, and A. Spicher, editors, 3rd Inter-
national Spatial Computing Workshop (SCW ’10)(extended abstracts of unpublished
papers), 2010b. URL http://www.spatial-computing.org.

Jérôme Durand-Lose. Abstract geometrical computation: Turing computing ability
and undecidability. In B.S. Cooper, B. Löwe, and L. Torenvliet, editors, New Com-
putational Paradigms, 1st Conf. Computability in Europe (CiE ’05), number 3526
in LNCS, pages 106–116. Springer, 2005.

Jérôme Durand-Lose. Abstract geometrical computation with accumulations: Beyond
the Blum, Shub and Smale model. In Arnold Beckmann, Costas Dimitracopoulos,
and Benedikt Löwe, editors, Logic and Theory of Algorithms, 4th Conf. Computabil-
ity in Europe (CiE ’08) (abstracts and extended abstracts of unpublished papers),
pages 107–116. University of Athens, 2008.

Jérôme Durand-Lose. Abstract geometrical computation and computable analysis. In
J.F. Costa and N. Dershowitz, editors, International Conference on Unconventional
Computation 2009 (UC ’09), number 5715 in LNCS, pages 158–167. Springer, 2009.

Ulrich Huckenbeck. Euclidian geometry in terms of automata theory. Theoret. Comp.
Sci., 68(1):71–87, 1989.

Giuseppe Jacopini and Giovanna Sontacchi. Reversible parallel computation: an evolv-
ing space-model. Theoret. Comp. Sci., 73(1):1–46, 1990.

Maurice Margenstern and Kenichi Morita. NP problems are tractable in the space
of cellular automata in the hyperbolic plane. Theor. Comp. Sci., 259(1-2):99–128,
2001.

Thomas J. Naughton and Damien Woods. On the computational power of a continuous-
space optical model of computation. In M. Margenstern, editor, Machines, Compu-
tations, and Universality (MCU ’01), number 2055 in LNCS, pages 288–299, 2001.

Gheorghe Păun. P-systems with active membranes: Attacking NP-Complete problems.
Journal of Automata, Languages and Combinatorics, 6(1):75–90, 2001.

Larry J. Stockmeyer and Albert R. Meyer. Word problems requiring exponential time.
In 5th ACM Symposium on Theory of Computing (STOC ’73), volume 16, pages
1–9, 1973.

A Details of the modules

In the following, we generally define the collision rules only for one side, as the corre-
sponding rules for the other side can be deduced by symetry. We give here the rules for
all modules: first the modules for building and stopping the fractal tree, then the mod-
ules for setting and using the tree for satisfiability problems and finally the modules
specific to each variants of SAT.

All the diagrams of the paper were generated by Durand-Lose’s software, imple-
mented in Java, and corresponds to a run of our Q-SAT solver for the formula:

φ = ∃x1∀x2∀x3 (x1 ∧ ¬x2) ∨ x3 .

A.1 The fractal cloud

Constructing the fractal: [start] = −→a ,=⇒a
The following rules on the left correspond to the bounce of =⇒a and ⇐=a on the wall w.
Rules on the right are the step of induction for starting the next level: the initial signals
−→a and =⇒a are duplicated on the right and the left, and the stationary signal a is created
exactly at the middle of the previous stage. The result is given by Fig. 7.

w,⇐=a → w,=⇒a −→a ,⇐=a →⇐=a ,←−a , a,−→a ,=⇒a
=⇒a ,w→⇐=a ,w =⇒a ,←−a →⇐=a ,←−a , a,−→a ,=⇒a

Fig. 7. The fractal tree.

Stopping the fractal: [until(n+ 1)] = −→z
−→
ζ
n

The role of this module is to stop the fractal after (n + 1) levels — n levels for
assigning the n variables and 1 level for the evaluation of the ground formula. For this,
we use a stack of n signals

−→
ζ and one signal −→z . The

−→
ζ signals are used both as a

counter, one signal being killed at each level, and as inhibitors to the effect of −→z . After

n levels, only −→z remains and can stop the construction of the fractal at level n + 1.
Here are the corresponding rules:

=⇒
ζ ,←−a →←−a◦,

=⇒
ζ

=⇒
ζ , a→ a◦

=⇒
ζ , a◦ →

←−
ζ , a◦,

−→
ζ

=⇒z ,←−a →←−a◦,=⇒z =⇒z ,←−a◦ →←−a ,=⇒z =⇒z , a◦ →←−z , a,−→z
=⇒z , a→ a,=⇒z =⇒z ,−→a → −→a◦ =⇒a ,←−a◦ →

The lens effect: The general idea is that any signal
−→
i is accelerated by ⇐=a and

decelerated and split by any stationary signal s. There are some special cases to handle
for the deceleration and the split, some particular signals being stopped at this moment.
But in all cases, signals are always accelerated by ⇐=a . Figure 8 zooms on a split and
illustrates the lens effect on the beam as well as the assignment of the top-most −→x .

Fig. 8. Split and lens effect at the first level.

General case: for any stationary signal s (more exactly, s is either a, a◦, x, x◦, ∃L,
∃R, ∀L or ∀R) and for any signal

−→
i distinct of

−→
ζ and −→z , we have:

−→
i ,⇐=a →⇐=a ,

=⇒
i

=⇒
i , s→

←−
i , s,
−→
i

Case of
−→
ζ and −→z : the rules for applying the lens effect to

−→
ζ and −→z are given

previously in §.Stopping the fractal. The stationary signal involved here is a, which
kills the first

=⇒
ζ , becomes a◦ and splits and decelerates the next signals

=⇒
ζ and =⇒z , and

then becomes a again.

Case of −→α : the first −→α is stopped by the stationary signal a, which becomes x and
decelerates and splits the next coming −→α .

=⇒α , a→ x =⇒α , x→←−α , x,−→α

Case of quantifiers signals: the first quantifier signal,
=⇒
∀ or

=⇒
∃ , colliding with a

stationary x is stopped and turns x into ∀D or ∃D (D ∈ {R,L}). This is achieved by
the rules:

x,
⇐=
∃ → ∃R

=⇒
∃ , x→ ∃L x,

⇐=
∀ → ∀R

=⇒
∀ , x→ ∀L

The next quantifier signals are decelerated and split by the new stationary signal
∀D or ∃D. In the following rules, we have D ∈ {R,L}:

=⇒
∃ ,∃D →

←−
∃ , ∃D,

−→
∃

=⇒
∃ , ∀D →

←−
∃ , ∀D,

−→
∃

=⇒
∀ , ∃D →

←−
∀ , ∃D,

−→
∀

=⇒
∀ , ∀D →

←−
∀ , ∀D,

−→
∀

A.2 The tree for satisfiabilty problems

Activation of the decision tree: [init(n)] = −→α n

=⇒α , a→ x =⇒α , x→←−α , x,−→α

Representation of a variable: [var(xi)] = −→x
−→
β
i−1

As we explained in the paper, the variable xi is represented by a stack of i signals:
one signal −→x and i−1 signals

−→
β . The role of the signals

−→
β is to protect −→x from being

assigned before the ith level. The first signal
−→
β of the stack is stopped at the next

split, so that i− 1 signals have disappeared just before the ith stage. This is illustrated
in Fig. 8 and modelised by the following rules:

=⇒
β , x→ x◦

=⇒
β , x◦ →

←−
β , x◦,

−→
β

=⇒x , x→
←−
f , x,−→t =⇒x , x◦ →←−x , x,−→x

Compilation of the formula: We propose here a recursive algorithm which takes as
input an unquantified formula — a SAT-formula — and outputs the part of the initial
configuration corresponding to the formula. In the following schemes of compilation,
‖ φ ‖ designates the number of occurences of Boolean connectives in formula φ.

C[[φ]] = C[[φ]]0

C[[φ1 ∧ φ2]]
k =
−→∧ −→γ k C[[φ1]]

0 C[[φ2]]
‖φ1‖

C[[φ1 ∨ φ2]]
k =
−→∨ −→γ k C[[φ1]]

0 C[[φ2]]
‖φ1‖

C[[¬φ]]k = −→¬ −→γ k C[[φ]]

C[[xi]]
k = −→x

−→
β
i−1 −→γ k

Evaluation: The rules for the evaluation follow the classical Boolean operations. We
explained earlier that some inhibiting signals — the −→γ — are needed to allow the result
of the first evaluated argument of a binary connective to traverse the beam of the other,
as yet unevaluated, argument without reacting with the connectives contained therein,
and only interact with its actual syntactical parent connective. Figure 9 displays the
evaluation of the formula φ = ∃x1∀x2∀x3 (x1∧¬x2)∨x3 for the case x1 = x2 = x3 = t.

=⇒t , a→
←−
T , a

=⇒
f , a→

←−
F , a =⇒γ , a→←−γ+, a

=⇒∧ ,
←−
T → =⇒∧+

=⇒
f+,
←−
T →

=⇒
f =⇒∧+,

←−
T → =⇒t

=⇒∧ ,
←−
F →

=⇒
f+

=⇒
f+,
←−
F →

=⇒
f =⇒∧+,

←−
F →

=⇒
f

=⇒∨ ,
←−
T → =⇒t+

=⇒t+,
←−
T → =⇒t =⇒∨+,

←−
T → =⇒t

=⇒∨ ,
←−
F → =⇒∨+

=⇒t+,
←−
F → =⇒t =⇒∨+,

←−
F →

=⇒
f

=⇒¬ ,
←−
T →

=⇒
f

=⇒¬ ,
←−
F → =⇒t

=⇒∧ ,←−γ+ → =⇒∧◦ =⇒∨ ,←−γ+ → =⇒∨◦ =⇒¬ ,←−γ+ → =⇒¬◦

=⇒∧◦,
←−
T →

←−
T ,=⇒∧ =⇒∨◦,

←−
T →

←−
T ,=⇒∨ =⇒¬◦,

←−
T →

←−
T ,=⇒¬

=⇒∧◦,
←−
F →

←−
F ,=⇒∧ =⇒∨◦,

←−
F →

←−
F ,=⇒∨ =⇒¬◦,

←−
F →

←−
F ,=⇒¬

Storing the results: [store] = −→s
=⇒s ,
←−
T →

=⇒
T

=⇒
T , a→ t

=⇒s ,
←−
F →

=⇒
F

=⇒
F , a→ f

B Modularity and satifiability variants

B.1 Q-SAT

To proceed to the aggregation process, we join the results coming from right and left
two-by-two. This is done with a stationary signal indicating the type of operation to
perform — a conjunction for ∀ and a disjunction for ∃ — and the direction of the
resulting signal — left or right. The whole process is displayed in Fig. 10.

Setting up the reduce stage:

[reduce:qsat:init(Q1x1 · · ·Qnxn)] =
−→
Qn . . .

−→
Q1

x,
⇐=
∃ → ∃R

=⇒
∃ , x→ ∃L

x,
⇐=
∀ → ∀R

=⇒
∀ , x→ ∀L

=⇒γ a

=⇒γ

←−γ
+

=⇒γ

a

=⇒t
←−γ
+

=⇒t

←−γ
+

=⇒t

a

=⇒t ←−γ
+

=⇒t
←−γ
+

=⇒¬ ←−γ
+

=⇒¬◦ ←−γ
+

=⇒t ←−T

=⇒t
a

=⇒t ←−γ
+ =⇒¬◦

←−T

=⇒¬ ←−T
=⇒∧ ←−γ

+
=⇒t

←−T

=⇒
f

a

=⇒∧◦

←−T =⇒t

←−F

=⇒t

a

=⇒∨

←−T =⇒∧
←−F

=⇒
f+ ←−T

=⇒
f

a

=⇒
t+

←−F
=⇒t

a

=⇒s

←−T
=⇒
T

a

=⇒c

t

←−t

Fig. 9. Evaluation for x1 = x2 = x3 = t in ∃x1∀x2∀x3 (x1 ∧ ¬x2) ∨ x3.

−→f

∀ R

←−t −→f ∀ L

←−t −→t

∀ R

←−t −→f ∀ L

←−t

−→f

∀ R

←−
f −→t

∀ L

←−
f

−→f

∃ L

←−
f

←−
f

Fig. 10. Aggregation process.

Executing the reduce stage: [reduce:qsat:exec] = −→c

Initiation:
=⇒c , t→←−t =⇒c , f →

←−
f

Performing the disjunction:
−→t , ∃L,

←−t →←−t −→t , ∃L,
←−
f →←−t

−→
f , ∃L,

←−t →←−t
−→
f ,∃L,

←−
f →

←−
f

−→t ,∃R,
←−t → −→t −→t , ∃R,

←−
f → −→t

−→
f , ∃R,

←−t → −→t
−→
f , ∃R,

←−
f →

−→
f

Performing the conjunction:
−→t , ∀L,

←−t →←−t −→t , ∀L,
←−
f →

←−
f

−→
f , ∀L,

←−t →
←−
f

−→
f ,∀L,

←−
f →

←−
f

−→t ,∀R,
−→t → −→t −→t , ∀R,

−→
f →

−→
f

−→
f , ∀R,

−→t →
−→
f

−→
f , ∀R,

−→
f →

−→
f

Putting all the modules together, we obtain for the running example the initial
configuration shown by Fig. 11.

The global construction is displayed by Fig. 12

Fig. 11. Initial configuration.

Fig. 12. The whole diagram.

B.2 #SAT

#SAT is the problem of counting the number of solutions of SAT. We recall that this
problem is complete for the class #P i.e. the class of NP-problems for which their
solutions can be counted is polynomial time.

To solve #SAT, as a SAT-formula is a special instance of a Q-SAT formula in
which all quantifiers are existential, we can use our Q-SAT solver and we add a special
module for counting the truth evalution of the formula during the aggregation process.
The counting is performed by a binary adder.

Setting up the reduce stage: [reduce:#sat:init] =
−→
+
n

−→
+ , x→ +0

L x,←−+ → +0
R

Executing the reduce stage: [reduce:#sat:exec] = −→ε◦
−→
δ◦
−→
0◦

−→
δ◦ , t→

←−
δ −→ε◦ , t→←−ε

−→
0◦, t→

←−
1

−→
δ◦ , f →

←−
δ −→ε◦ , f →←−ε

−→
0◦, f →

←−
0

Rules for the binary adder (for the R subscript, the rules for the L are similar, but
with the output going to the left):

−→
0 ,+0

R,
←−
0 → +0

R,
−→
0

−→
0 ,+1

R,
←−
0 → +0

R,
−→
1

−→
1 ,+0

R,
←−
0 → +0

R,
−→
1

−→
1 ,+1

R,
←−
0 → +1

R,
−→
0

−→
0 ,+0

R,
←−
1 → +0

R,
−→
1

−→
0 ,+1

R,
←−
1 → +1

R,
−→
0

−→
1 ,+0

R,
←−
1 → +1

R,
−→
0

−→
1 ,+1

R,
←−
1 → +1

R,
−→
1

−→
0 ,+0

R,
←−
δ → +0

R,
−→
0

−→
0 ,+1

R,
←−
δ → +0

R,
−→
1

−→
1 ,+0

R,
←−
δ → +0

R,
−→
1

−→
1 ,+1

R,
←−
δ → +1

R,
−→
0

−→
0 ,+0

R → +0
R,
−→
0

−→
0 ,+1

R → +0
R,
−→
1

−→
1 ,+0

R → +0
R,
−→
1

−→
1 ,+1

R → +1
R,
−→
0

−→
δ ,+0

R,
←−
δ → +0

R,
−→
δ

−→
δ ,+1

R,
←−
δ → +0

R,
−→
1 ,

=⇒
δ

−→
δ ,+0

R → +0
R,
−→
δ

−→
δ ,+1

R → +0
R,
−→
1 ,

=⇒
δ

=⇒
δ ,←−ε →←−ε ,

−→
δ −→ε ,+0

R → −→ε

−→
1

−→
1

−→
A

−→
B

←−
1

←−
A

←−
B−→

0

−→
0

−→
1

−→
A

−→
B

−→
C

+0
R

+1
R

+1
R

+0
R

Fig. 13. Computing 3 + 1

B.3 ENUM-SAT

ENUM-SAT is the problem of enumerating all the solutions for an instance of SAT: we
want to know all the truth assignements of variables for which the formula is satisfiable.
We can also consider a particular case of ENUM-SAT: the problem ONESOL-SAT,
which consists in returning only one valuation satifying the formula, when the formula
is satisfiable.

Reduce stage: [reduce:enumsat(x1 . . . xn)] = −→v [var(x1)] . . . [var(xn)]−→v
=⇒v , t→←−v , v −→v ,⇐=t → t,−→v =⇒v , f →←−v◦ −→v◦,

⇐=t → −→v◦
−→v ,⇐=v → v −→v ,

⇐=
f → f,−→v −→v◦,⇐=v → −→v◦,

⇐=
f → −→v◦

B.4 MAX-SAT

The problem MAX-SAT consists in, given k SAT-formulae, finding the maximum num-
ber of formulae satisfiable by the same valuation. This problem is NP-hard and is com-
plete for the class APX — the class of problems approximable in polynomial time with
a constant factor of approximation. The problem MAX-SAT can be extended by re-
turning the valuation of variables that satisfies the greater number of formulae amoung
the k ones.

We do not give the corresponding rules for solving MAX-SAT, we just describe the
concerned modules. Each formula amoung the k formulae given in the input is compiled
by the same method used previously, and the resulting arrangement of signals for each
formula are placed end-to-end. This results in a beam of formulae composed by k sub-
beam, one for each formula. The evaluation process is then the same as seen previously.

To compare the number of satisfiable formulae for each valuation, we used the
binary adder introduced for #SAT, that we combine with a module comparing two
binary number. The reduce phase follows the same idea that for the other variants,
except that after comparing two-by-two the number of formulae satisfiable, the greater
number is transmitted to the next level of agregation for the next comparison. Then,
at the top of the construction, we can read in the binary representation of the maximal
number of satisfiable formulae.

If we also want the truth assignement that satisfies the greater number of formulae,
we can easily devise a new module on the basis of the one used for ENUM-SAT.

