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Abstract. WS-BPEL is de-facto industry standard for business pro-
cesses. One of its major shortcomings is lack of temporal management
capabilities. WS-BPEL offers no possibility for definition, calculation
and monitoring of temporal values such as activity duration and dead-
lines as well as checking the temporal conformance of processes. This
paper tackles temporal management of WS-BPEL based on two different
techniques: interval-based and probabilistic. This paper describes tem-
poral management of cooperating WS-BPEL abstract and executable
processes. We have implemented a temporal management prototype as
a WS-BPEL extension.
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1 Introduction

Temporal conformance and compliance are important quality criteria for busi-
ness processes and interorganizational workflows. Processes may have deadlines.
The assigned deadlines may be part of the service level agreement between part-
ners or enforced by law or organizational policies. It must be ensured that the
right information is delivered to the right activity at the right time and the
process executes in a timely manner in order to be able to hold the deadlines.
Temporal conformance on the one hand increases the QoS and on the other hand
reduces the cost of process execution as costly exception handling mechanisms
can be avoided. Temporal management can be used for three different purposes
[14]:

– Predictive time management: to predict the possible temporal behavior of the
system and pre-calculate future possible violations of temporal constraints.

– Pro-active time management: to detect potential future violations and raise
alarm in these cases such that counter-measure mechanisms can be triggered
early enough.
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– Reactive time management: to react and trigger exception handling mecha-
nisms if a temporal failure has already occurred.

Web Services and SOA offer several advantages for implementation of busi-
ness processes such as interoperability, loosely coupling and composition. WS-
BPEL has become the accepted standard for description end execution of busi-
ness processes based on Web Services. In the realm of web services we mainly
talk about two concepts: choreographies and orchestrations or in the WS-BPEL
notation, abstract and executable processes.

A WS-BPEL executable process or orchestration is controlled and run by
one partner. A partner’s internal logic and business know-how are contained in
his executable process. Other tasks such as data transformations, data handling,
arithmetic operations and the actual performed work are as well contained in this
process. An executable process is solely visible to its owner and other external
partners have no view on and knowledge about it. An executable process is a
process viewed only from the perspective of its owner.

On the other hand, a choreography, which is called abstract process in WS-
BPEL, describes business protocols. An abstract process may be used to describe
observable message exchange behavior of each of the parties involved, without
revealing their internal implementation [12]. An abstract process can use all the
construct of an executable process and have the same expressive power but it is
not intended to be executed. It has merely a descriptive role. An abstract process
defines a collaboration among involved partners to reach an overall business
goal. It contains only visible exchanged messages between partners in course of
a business process.

In order to ensure that cooperating business processes are temporally compli-
ant, it must be guaranteed that both the tasks performed in executable processes
and the protocols described in abstract processes have a compliant temporal be-
havior. In our previous work [15] we have implemented a time management
extension for WS-BPEL, called BPEL-TIME. In this work we describe how
BPEL-TIME handles temporal management of a set of cooperating WS-BPEL
abstract and executable processes. BPEL-TIME consists of two components, a
design time component and a run time component. The design time component
allows the definition of temporal constraints. At design time it is checked if the
model is temporally feasible, i.e. if there is a solution that satisfies all the tem-
poral constraints. If the system is temporally not feasible, it can be detected at
design time and necessary modifications performed. We calculate a valid tempo-
ral window for each activity in this phase. If an activity executes within its valid
temporal window it is guaranteed that the whole process terminates successfully.
The run time component monitors the execution of the process and informs the
process manager if any deviation from valid temporal windows is detected. Based
on the calculations at design time, the run time component predicts the future
temporal behavior of the flow and informs the process manager about its status.
Our approach is based on prevention of errors rather than repairing them after
their occurrence. By predicting the behavior of a flow appropriate measures can
be triggered in order to guarantee its successful execution. BPEL-TIME offers
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two different possibilities: an interval-based and a probabilistic approach, The
interval-based approach allows the definition of fixed and/or variable temporal
constraints such as deadlines and durations. The probabilistic approach enables
a probabilistic representation of temporal constraints and takes also branching
probabilities into account.

2 Model Description

For modeling and calculation of temporal plans of WS-BPEL executable and
abstract processes three types of constraints have to be considered:

– Implicit constraints are derived implicitly from the structure of a process,
e.g. an activity can start execution if and only if all of its predecessors have
finished execution.

– Explicit constraints, e.g. assigned deadlines, can be set explicitly by the
process designer or enforced by law, regulations or business rules.

– Dependencies with other processes may impose a temporal restriction
on a process. It is not enough to perform a temporal analysis in isolation.

The first two constraints are needed to calculate the temporal plan of one
single process. Note that abstract and executable processes are both handled
uniformly. From the point of view of temporal management it makes no difference
if the WS-BPEL process is abstract or executable. The third constraint must
be considered in order to check the temporal conformance and calculate the
temporal plans of a set cooperating processes. We model the first two constraints
using two different modeling approaches: the interval-based and the probabilistic
approach.

2.1 Interval-Based Approach

As the basic modeling language, we adapt the model presented in [14]. It is a
timed graph augmented with start and end events for activities. Timed graphs
are familiar workflow graphs where nodes correspond to activities and edges to
the dependencies between activities, enriched with temporal information. Fig. 1
shows an example of the model. All activities have a unique name, duration
and two corresponding events: start and end event. a.d denotes the duration of
an activity a and as and ae its start event and end event respectively. Because
BPEL-processes are full-blocked [2], in this work we restrict the graphs to full-
blocked ones, i.e. each split node has a counterpart join node and vice versa.

The interval-based approach allows modeling of fixed and variable durations
of activities. The duration of an activity can take any value within an inter-
val bounded by minimum and maximum durations, e.g. a.d = [a.dmin, a.dmax],
where a.d refers to duration of an activity a. We use upper-bound and lower-
bound constraints [7] to model this interval. Let a be the source event and b the
destination event.
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Fig. 1. An example of a timed graph with deadline= 50

Lower-bound constraint identifies the minimum temporal distance between two
events. lbc(a, b, δ) denotes that between a and b at least δ time points must
pass.

Upper-bound constraint identifies the maximum temporal distance between two
events. ubc(a, b, δ) denotes that between a and b at most δ time points can
pass.

a.dmin and a.dmax can be modeled by defining the minimum and maximum
allowed time points between start event and end event of an activity respectively.
This scenario as depicted in fig. 2, where a.d = [2, 7]. Obviously an activity can
also be assigned a fixed value, if a.dmin = a.dmax. Note that in the rest of this
paper, for the sake of brevity, we do not illustrate lbc and ubc as well as start
and end events in the graphs, unless it contributes to a better understanding. lbc
and ubc are not only used for modeling dmin and dmax of activities. They can
also be used for modeling temporal constraints between different activities. For
example to model requirements such as approval or rejection of an application
may take at most one week after its receipt and sending a notification to the
applicant takes at least three days.

For calculation of temporal values, we extend the algorithms developed in
our previous works [11, 10]. An interval in which an activity may execute is
calculated. This interval is delimited by earliest possible start (eps-value) and
latest allowed end (lae-value). a.eps denotes the eps-value of an activity a and is
the earliest point in time in which the activity a can start execution. eps-values
reflect the implicit constraints of a flow. a.lae represents the latest point in time
in which an activity a can finish execution in order to hold the assigned deadline.
lae-values reflect the explicit constraints of a flow. Both eps and lae values are
calculated for best case and worst case. Best case and worst case identifies the
execution of the shortest and longest path of a flow respectively. a.bc.eps refers
to best case eps and a.wc.eps refers to worst case eps of an activity a. The same
applies to lae-values. Temporal values of a simple graph are depicted in fig. 1.
The algorithms and techniques for calculation of the interval-based temporal
values are described in our previous works [14, 11, 15] and omitted here.
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Fig. 2. Modeling dmin and dmax by lbc and ubc

Given known activity durations, in addition we can calculate earliest possible
end (epe-values) and latest allowed start (las-values) for an activity, using the
following formulas: a.epe = a.eps + a.d and a.las = a.lae − a.d. We refer to
eps-values and epe-values as e-values and to lae-values and las-values as l-values.
In this approach we handle loops as complex activities. For calculation of the
temporal plan at design time we consider only one iteration. Because the actual
iterations of a loop is not known at design time, its execution is monitored at
run time and process manager receives notifications about the temporal status
of the process.

2.2 Probabilistic Approach

In some use cases one may need to consider branching probabilities. The prob-
abilistic approach described in this subsection caters for probabilistic represen-
tation of temporal constraints.

In order to express variable duration of activities, the notion of time his-
tograms [13, 9] is used. A duration histogram is a data structure for representa-
tion of the (probabilistic and variable) duration of basic activities, complex ac-
tivities, subworkflows and workflow itself. A duration histogram is a tuple (p, d),
where p is a probability and d a duration. For example the probabilistic dura-
tion of an activity can be represented as {(0.1, 10), (0.25, 12), (0.32, 15), (0.33, 20)}.
This duration can be interpreted as follows: the duration of this activity is with
the probability 10%, 10 time points, with the probability 25%, 12 time points,
with the probability 32%, 15 time points and with the probability 33%, 20 time
points. If a duration histogram contains any tuples whose time values are the
same, these tuples must be merged by adding the probabilities of tuples with
the same duration. A workflow graph augmented with probabilistic temporal
information for activities and nodes is referred to as probabilistic timed graph
(PTG). Fig. 3 illustrates an example of such a probabilistic timed graph. The
duration of activities are given in the table above the graph.
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The deadline of the workflow is also given in form of a (probability, du-
ration) tuple. Analogous to duration histograms (d-histograms), [13] defines
e-histograms for presentation of e-values and l-histograms for presentation of
l-values. Note that for probabilistic calculations we do not consider best and
worst case or lbc and ubc. The calculation of the probabilistic temporal values
has been described in [15] and hence omitted here.

Fig. 3. A sample probabilistic timed graph (PTG)

3 Temporal Management of WS-BPEL Executable and
Abstract processes

The interval-based and the probabilistic approach can be used to calculate the
temporal plan of one single process in isolation. However, in order to calculate
the temporal plans of a set of cooperating processes and check their temporal
conformance, it is necessary to consider the dependencies between them. Pro-
cesses may be linked in several ways. As a generic architecture we use the model
described in [5, 17, 16]. This architecture (see fig. 4) is generic enough for mod-
eling different relationships between executable and abstract processes. It covers
scenarios as e.g. described in [3, 4], one shared abstract process among a set of
executable processes. This scenario is depicted in fig. 5. The generic architecture
in fig. 4 covers also other scenarios as depicted in fig. 6

The architecture in fig. 4 is a two layered model. The first layer consists of
abstract processes. An abstract process may support another abstract process.
This means the former contributes to the latter and partially elaborates it. The
first abstract process may describe the business process in details needed for a
specific group of partners and the second abstract process describes the same
process in more details for another group of partners involved in the process. In
this way different groups of partners can have different views on the same pro-
cess. The second layer consists of executable processes that realize the abstract
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Fig. 4. A Generic architecture for abstract and executable processes

processes. The presented approach is fully distributed and there is no need for
central coordination.

The most important issue to consider regarding the dependency between two
nodes (abstract and/or executable processes) is the greatest common divisor
(GCD) of their activities. GCD identifies the set of common activities in two
nodes. A dependency between two nodes implies that GCD of activities of two
nodes is not empty, i.e. these two nodes have at least one activity in common.
Dependencies between activities are depicted using links between them as in
fig. 4 and fig. 6. Fig. 8 depicts the abstract process C and the executable process
O1 in fig. 5. The GCD of two graphs include the activities Receive request and
Reply request. For the sake of brevity the the executable process O2 is omitted.
Note that even if O1 and O2 has no direct link with each other, through their
common activities with C they may affect each other indirectly. This is due to
the fact that O1 may affect C and change its temporal value and this change
may in turn affect O2 or vice versa.
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Fig. 5. A typical scenario of Web Service composition

Fig. 6. A special case of the generic architecture in fig. 4

If two nodes have no common activities, these two nodes are temporally
independent and their temporal plans can be calculated in isolation. If GCD of
two nodes is not empty these two nodes affect each other through the common
activities. In this case a cycle of calculation-assignment-recalculation must be
repeated. In the assignment phase, temporal values of the activities of GCD
are assigned from the source node to the target node. The assignment is only
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performed if e-values of the source node are greater than e-values of the target
node. l-values are assigned if l-values of the source node are smaller than those
of the target node. In other words an assignment is only allowed if the current
valid execution interval of an activity in the target node becomes tighter. The
idea of assignment is depicted in fig. 7. The assignment uses the concept of event
correspondence. Event correspondence describes if different events in different
graphs are actually the same. e1 ≡ e2 denotes that event e1 corresponds to
event e2. Note that e1 and e2 may belong to different abstract and/or executable
processes. In the top part of the fig. 7 (case a), event correspondence is used
for propagation of the temporal values of a complex activity a. Start of the
complex activity a corresponds to the start of the first activity i and its end to
the activity j. Case b shows how event correspondence is used for propagation
of the temporal values of the same activity in different abstract and executable
processes.

If any temporal value changes after the assignment, the temporal plan of
the graph must be recalculated. Again here, current values can be overwritten if
newly calculated e-values are greater than current values and newly calculated l-
values are smaller than current l-values. How the cycle of calculation-assignment-
recalculation works can be seen in fig. 8. The dependency between these processes
is illustrated in fig. 5. The top part of the fig. 8 illustrates the graphs after
calculation of C and O1 and assignment of values from C to O1. The bottom
part of the figure illustrates the values after recalculation at O1, assignment of
the values from O1 to C. A recalculation at C does not change the values at
C and hence these values are final values. As you can see the same activities
in different graphs have the same final temporal values. The arrows only shows
the assigned values. For example in the top part of the figure the e-values of
the activity Receive request in the abstract process C are equal to those in the
executable process O1 and hence not assigned.

Calculation of a set of cooperating abstract and executable processes consists
of two phases: the initialization and precalculation phase and the recalculation
and conformance checking phase. In the following we refer to the abstract process
with no outgoing links, the global abstract process (e.g. abstract process 1 in
fig. 4).

In the initialization and precalculation phase after initialization of the global
abstract process, its graph is calculated without considering other nodes. That
means only implicit and explicit constraints are considered. If there is more
than one global abstract process present in the model, any of them can be
chosen randomly for beginning the calculations. The temporal graphs are ini-
tialized by setting e-values to 0 and l-values to ∞. Maximum duration d.max is
considered for calculating the deadline of other nodes than the global abstract
process. Analogous to the maximum duration of activities, maximum duration
of the whole process identifies the maximum duration during which a process
can execute whereas a deadline denotes a point in time. Like deadlines, d.max
is given a priori. It suffices in this phase to assign the values to each node only
once. These values just serve as initial values for further calculations. A variable
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Fig. 7. Assignment of values using event correspondence

change indicates the change of a graph, i.e. if any temporal value in a graph
is changed due to assignment and/or recalculation. If change becomes true all
incoming and outgoing links of the corresponding node are marked. Start and
target node of each marked link must be revisited and recalculated if any value
is changed. Multiple marks on an edge has no additional effect.

The recalculation and conformance checking phase consists of recalculation of
the precalculated graphs in the previous phase. For all marked edges, the cycle
of assignment-recalculation is repeated until a stable state is reached or the
conformance condition is violated. A stable state is reached if all marked edges
are unmarked. The conformance condition is violated if e-value of an activity
(no matter in which process) becomes greater that its corresponding l-value. .

The probabilistic approach, as well, uses the same concept for assignment
and calculation of temporal plans. Due to the presence of probabilities in this
approach an additional parameter certainty must be considered for comparison
of nodes and propagation of values. A detailed discussion can be found in [15].
Note that in addition to temporal conformance, other conformance issues of
processes may also be verified. Structural conformance has been studies in [6].

4 Prototypical Implementation

Our prototype has been implemented based on the open source softwares Eclipse
BPEL designer and Apache ODE (Orchestration Director Engine). The proto-
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Fig. 8. Propagation of values for the same activity in different graphs

type consists of two components: A design time component that allows the def-
inition of cooperating processes, their dependencies and temporal constraints
(deadline, activity durations, lower and upper bound constraints between activ-
ities). The design time component also checks the temporal satisfiability of the
model. It checks if there exists a solution that satisfies temporal constraints of
all processes. If such a solution does not exist the user will be informed which
part of the process has temporal conflicts. In this case process structure or tem-
poral constraints should be redefined such that the temporal constraints can be
satisfied. Design time component calculates a valid temporal window for each
activity. If activities execute within their valid temporal window it can be guar-
anteed that all cooperating processes execute and terminate in a temporally
compliant way. The run time component monitors the execution of each activity
and checks if it executes within its valid temporal window. If any deviation is
found the user receives an alarm about the process status. We use the traffic
light model presented in [7]. If all activities executes within their valid temporal
window the traffic light is green and everything is ok. If some activities deviate
from their precalculated valid temporal window but it is still possible to hold
the deadline and satisfy the temporal constraints (e.g. by executing the shortest
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path of a conditional structure) the traffic light turns to yellow. If some activities
took longer than expected and in any case, even in best case scenario, temporal
constraints will be violated, the traffic light turns to red. In this case the process
manager can decide to cancel the execution prematurely or skip some activities.
The prototype, an installation and troubleshooting guide and an introduction
how to perform basic tasks such as defining BPEL-process, preparing wsdl-files
and setting up variables can be found on our homepage [1].

4.1 Design Time Component

The design time component is prototyped under Eclipse Helios. The required
functionalities are implemented under properties as depicted in fig. 9. After def-
inition of the structure of the processes, the dependencies between processes can
be defined using the property choreography. A supported process can be chosen
using Select Process. A supported process identifies processes that have a link to
this process, i.e. their GCD is not empty. This can be an executable process or
another abstract process. The combo box beneath allows for choosing processes
that support this process. Dependencies can be added or removed. The result is
written in an XML-file called dependencies.xml.

Temporal constraints can be set under Constraints (see fig. 10). It is possible
to set minimum and maximum duration of activities and the deadline for the
process. Further it is possible to add and remove optional lower and upper bound
constraints between activities. The right part of the fig. 10 shows the temporal
values of each activity after calculation.

Certainty allows the definition of probabilistic values: durations of activi-
ties and their probabilities as well as the deadline of the whole process. The
probabilistic temporal values can be calculated by the Calculate button.

4.2 Run Time Component

The run time component is implemented in Apache ODE 1.3.4. It monitors the
process execution and checks if activities are executed within their valid temporal
interval. At process instantiation time, an actual calendar is used in order to
transform all time information which was computed relative to the start of the
flow to absolute time points [8]. For every instantiated activity, the calendar
e-value is compared with the start date of the instantiated activity. In the same
way, the mapped calendar l-value is also compared with the end date of the
instantiated activity. The traffic light model [7] provides an overview for process
manager. If activities execute within their calculated interval at design time it
is guaranteed that all processes remain temporally compliant. If some activities
are delayed and deviate from their valid temporal window, it is possible that a
deadline be violated. In this case the traffic light turns to yellow indicating that
some activities are delayed but it is still possible to finish the execution in time.
The process manager may decide to force the process to execute the shortest
path in order to guarantee the temporal compliance. If activities are delayed



WS-BPEL Temporal Management 13

Fig. 9. Definition of dependencies between processes

to the extent that future execution in any case leads to temporal violation, the
traffic light turns to red. In this case, the process manager may want to cancel
execution prematurely in order to reduce the process execution costs. Fig. 12
shows a screen shot of the run time component.

5 Conclusions

Temporal management and consistency are important quality criteria for busi-
ness processes. They improve QoS and reduce costs. WS-BPEL lacks sufficient
time management capabilities. In this work we introduced an extension of WS-
BPEL that makes business processes time aware and overcomes this shortcoming.
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Fig. 10. Definition and calculation of interval-based temporal values

Fig. 11. Definition and calculation of probabilistic temporal values

The user can define different temporal constraints, check temporal feasibility and
monitor the execution. The two considered techniques, interval-based and prob-
abilistic, caters for different needs of the users in different scenarios. We have
described how we handle temporal management of a set of cooperating abstract
and executable processes.
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