Skip to main content

Distributed Consequence Finding: Partition-Based and Cooperative Approaches

  • Conference paper
Agents and Artificial Intelligence (ICAART 2011)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 271))

Included in the following conference series:

  • 913 Accesses

Abstract

When knowledge is physically distributed, information and knowledge of individual agents may not be collected to one agent because they should not be known to others for security and privacy reasons. We thus assume the situation that individual agents cooperate with each other to find useful information from a distributed system to which they belong, without supposing any master or mediate agent who collects all necessary information from the agents. Then we propose two complete algorithms for distributed consequence finding. The first one extends a technique of theorem proving in partition-based knowledge bases. The second one is a more cooperative method than the first one. We compare these two methods and other related approaches in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adjiman, P., Chatalic, P., Goasdoué, F., Rousset, M.-C., Simon, L.: Scalability study of peer-to-peer consequence finding. In: Proc. IJCAI 2005, pp. 351–356 (2005)

    Google Scholar 

  2. Adjiman, P., Chatalic, P., Goasdoué, F., Rousset, M.-C., Simon, L.: Distributed reasoning in a peer-to-peer setting: Application to the semantic web. J. Artif. Intell. Res. 25, 269–314 (2006)

    MATH  Google Scholar 

  3. Amir, A., McIlraith, S.: Partition-based logical reasoning for first-order and propositional theories. Artif. Intell. 162, 49–88 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bourgne, G., Maudet, N., Inoue, K.: Abduction of distributed theories through local interactions. In: Proc. ECAI 2010 (2010)

    Google Scholar 

  5. Ciampolini, A., Lamma, E., Mello, P., Toni, F., Torroni, P.: Cooperation and competition in ALIAS: A logic framework for agents that negotiate. Ann. Math. Artif. Intell. 37(1-2), 65–91 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Craig, W.: Linear reasoning: A new form of the Herbrand-Gentzen theorem. J. Symbolic Logic 22, 250–268 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dechter, R., Pearl, J.: Tree clustering for constraint networks. Artif. Intell. 38, 353–366 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  8. del Val, A.: A new method for consequence finding and compilation in restricted languages. In: Proc. AAAI 1999, pp. 259–264 (1999)

    Google Scholar 

  9. Fisher, M.: Characterizing simple negotiation as distributed agent-based theorem-proving—a preliminary report. In: Proc. 4th Int’l Conf. on Multi-Agent Systems, pp. 127–134 (2000)

    Google Scholar 

  10. Greco, G.: Solving abduction by computing joint explanations. Ann. Math. Artif. Intell. 50(1-2), 143–194 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hirayama, K., Yokoo, M.: The distributed breakout algorithms. Artif. Intell. 161, 89–115 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Inoue, K.: Linear resolution for consequence finding. Artif. Intell. 56, 301–353 (1992)

    Article  MATH  Google Scholar 

  13. Inoue, K.: Induction as consequence finding. Machine Learning 55, 109–135 (2004)

    Article  MATH  Google Scholar 

  14. Inoue, K., Iwanuma, K.: Speculative computation through consequence-finding in multi-agent environments. Ann. Math. Artif. Intell. 42(1-3), 255–291 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Inoue, K., Iwanuma, K., Nabeshima, H.: Consequence finding and computing answers with defaults. J. Intell. Inform. Systems 26, 41–58 (2006)

    Article  Google Scholar 

  16. Inoue, K., Sato, T., Ishihata, M., Kameya, Y., Nabeshima, H.: Evaluating abductive hypotheses using an EM algorithm on BDDs. In: Proc. IJCAI 2009, pp. 810–815 (2009)

    Google Scholar 

  17. Iwanuma, K., Inoue, K.: Minimal Answer Computation and SOL. In: Flesca, S., Greco, S., Leone, N., Ianni, G. (eds.) JELIA 2002. LNCS (LNAI), vol. 2424, pp. 245–257. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  18. Lee, C.T.: A completeness theorem and computer program for finding theorems derivable from given axioms, Ph.D. thesis, Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA (1967)

    Google Scholar 

  19. Ma, J., Russo, A., Broda, K., Clark, K.: DARE: A system for distributed abductive reasoning. Autonomous Agents and Multi-Agent Systems 16(3), 271–297 (2008)

    Article  Google Scholar 

  20. Marquis, P.: Consequence finding algorithms. In: Handbook for Defeasible Reasoning and Uncertain Management Systems, vol. 5, pp. 41–145. Kluwer (2000)

    Google Scholar 

  21. Nabeshima, H., Iwanuma, K., Inoue, K.: SOLAR: A Consequence Finding System for Advanced Reasoning. In: Cialdea Mayer, M., Pirri, F. (eds.) TABLEAUX 2003. LNCS, vol. 2796, pp. 257–263. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  22. Nabeshima, H., Iwanuma, K., Inoue, K., Ray, O.: SOLAR: An automated deduction system for consequence finding. AI Communications 23(2-3), 183–203 (2010)

    MathSciNet  MATH  Google Scholar 

  23. Nienhuys-Cheng, S.-H., de Wolf, R.: Foundations of Inductive Logic Programming. LNCS, vol. 1228. Springer, Heidelberg (1997)

    Book  Google Scholar 

  24. Slagle, J.R.: Interpolation theorems for resolution in lower predicate calculus. J. ACM 17(3), 535–542 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  25. Yokoo, M., Durfee, E.H., Ishida, T., Kuwabara, K.: The distributed constraint satisfaction problem: Formalization and algorithms. IEEE Trans. Know. & Data Eng. 10(5), 673–685 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Inoue, K., Bourgne, G., Okamoto, T. (2013). Distributed Consequence Finding: Partition-Based and Cooperative Approaches. In: Filipe, J., Fred, A. (eds) Agents and Artificial Intelligence. ICAART 2011. Communications in Computer and Information Science, vol 271. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29966-7_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29966-7_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29965-0

  • Online ISBN: 978-3-642-29966-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics