Skip to main content

POPE: Pipeline of Parentally-Biased Expression

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 7292))

Abstract

While one might expect the phenotypes of progeny to be an additive combination of the parents, Mendelian analysis reveals that this is not always the case. Deviations from additive expectation are observable even at the level of gene expression, and identifying such instances is a prerequisite to the understanding of gene regulation and networks. Many biological studies employ mRNA-seq to identify instances where the overall and allelic expression in hybrids deviates from expectation. We describe a pipeline, POPE (Pipeline of Parentally-biased Expression), that is capable of detecting these instances, building off of a linear model of gene expression in terms of regulatory sequence strength and concentration of synergistic transcriptional regulators. We illustrate the performance of POPE on an existing mRNA-seq data set. POPE is implemented entirely in shell, python, and R, and it is designed for unix-based platforms. The code can be found at http://www.cs.ucdavis. edu/~filkov/POPE/ .

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anders, S., Huber, W.: Differential expression analysis for sequence count data. Genome Biol. 11(10), R106 (2010)

    Article  Google Scholar 

  2. Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. 57(1), 289–300 (1995)

    MathSciNet  MATH  Google Scholar 

  3. Bullard, J.H., Purdom, E., Hansen, K.D., Dudoit, S.: Evaluation of statistical methods for normalization and differential expression in mrna-seq experiments. BMC Bioinformatics 11, 94 (2010)

    Article  Google Scholar 

  4. Carey, M., Lin, Y.S., Green, M.R., Ptashne, M.: A mechanism for synergistic activation of a mammalian gene by gal4 derivatives. Letters to Nature 345, 361–364 (1990)

    Article  Google Scholar 

  5. Cumbie, J.S., et al.: Gene-counter: A computational pipeline for the analysis of rna-seq data for gene expression differences. PLoS ONE 6(10), e25279 (2011)

    Article  Google Scholar 

  6. Emerson, J.J., Li, W.H.: The genetic basis of evolutionary change in gene expression levels. Phil. Trans. R. Soc. B 365(1552), 2581–2590 (2010)

    Article  Google Scholar 

  7. Filichkin, S.A., et al.: Global profiling of rice and poplar transcriptomes highlights key conserved circadian-controlled pathways and cis-regulatory modules. PLoS ONE 6(6), e16907 (2011)

    Article  Google Scholar 

  8. Groszmann, M., et al.: Changes in 24-nt sirna levels in arabidopsis hybrids suggest an epigenetic contribution to hybrid vigor. Proc. Natl. Acad. Sci. USA 108(6), 2617–2622 (2011)

    Article  Google Scholar 

  9. Hardcastle, T.J., Kelly, K.A.: bayseq: Empirical bayesian methods for identifying differential expression in sequence count data. BMC Bioinformatics 11, 422 (2010)

    Article  Google Scholar 

  10. He, G., et al.: Global epigenetic and transcriptional trends among two rice subspecies and their reciprocal hybrids. Plant Cell 22(1), 17–33 (2010)

    Article  Google Scholar 

  11. Langmead, B., Hansen, K.D., Leek, J.T.: Cloud-scale rna-sequencing differential expression analysis with myrna. Genome Biol. 11(8), R83 (2010)

    Article  Google Scholar 

  12. Langmead, B., Trapnell, C., Pop, M., Salzberg, S.L.: Ultrafast and memory-efficient alignment of short dna sequences to the human genome. Genome Biol. 10(3), R25 (2009)

    Article  Google Scholar 

  13. Li, H.: Improving snp discovery by base alignment quality. Bioinformatics 27(8), 1157–1158 (2011)

    Article  Google Scholar 

  14. Li, H., Durbin, R.: Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics 25(14), 1754–1760 (2009)

    Article  Google Scholar 

  15. Li, R., et al.: Soap2: an improved ultrafast tool for short read alignment. Bioinformatics 25(15), 1966–1967 (2009)

    Article  Google Scholar 

  16. Lin, Y.S., Carey, M., Ptashne, M., Green, M.R.: How different eukaryotic transcriptional activators can cooperate promiscuously. Letters to Nature 345, 359–361 (1990)

    Article  Google Scholar 

  17. McManus, C.J., et al.: Regulatory divergence in drosophila revealed by mrna-seq. Genome Res. 20(6), 816–825 (2010)

    Article  Google Scholar 

  18. Ni, Z., et al.: Altered circadian rhythms regulate growth vigour in hybrids and allopolyploids. Nature 457(7227), 327–331 (2009)

    Article  Google Scholar 

  19. Oshlack, A., Robinson, M.D., Young, M.D.: From rna-seq reads to differential expression results. Genome Biol. 11(12), 220 (2010)

    Article  Google Scholar 

  20. Ouyang, S., et al.: The tigr rice genome annotation resource: improvements and new features. Nucleic Acids Res. 35(suppl.1), D883–D887 (2007)

    Article  Google Scholar 

  21. Robinson, M.D., McCarthy, D.J., Smyth, G.K.: edger: A bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1), 139–140 (2010)

    Article  Google Scholar 

  22. Tirosh, I., Reikhav, S., Levy, A.A., Barkai, N.: A yeast hybrid provides insight into the evolution of gene expression regulation. Science 324(5927), 659–662 (2009)

    Article  Google Scholar 

  23. Trapnell, C., Pachter, L., Salzberg, S.L.: Tophat: discovering splice junctions with rna-seq. Bioinformatics 25(9), 1105–1111 (2009)

    Article  Google Scholar 

  24. Turro, E., et al.: Haplotype and isoform specific expression estimation using multi-mapping rna-seq reads. Genome Biology 12(2), R13 (2011)

    Article  Google Scholar 

  25. Zhang, H.Y., et al.: A genome-wide transcription analysis reveals a close correlation of promoter indel polymorphism and heterotic gene expression in rice hybrids. Molecular Plant 1(5), 720–731 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Missirian, V., Henry, I., Comai, L., Filkov, V. (2012). POPE: Pipeline of Parentally-Biased Expression. In: Bleris, L., Măndoiu, I., Schwartz, R., Wang, J. (eds) Bioinformatics Research and Applications. ISBRA 2012. Lecture Notes in Computer Science(), vol 7292. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30191-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30191-9_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30190-2

  • Online ISBN: 978-3-642-30191-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics