Skip to main content

MURPAR: A Fast Heuristic for Inferring Parsimonious Phylogenetic Networks from Multiple Gene Trees

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 7292))

Abstract

Phylogenetic networks provide a graphical representation of evolutionary histories that involve non-treelike evolutionary events, such as horizontal gene transfer (HGT). One approach for inferring phylogenetic networks is based on reconciling gene trees, assuming all incongruence among the gene trees is due to HGT. Several mathematical results and algorithms, both exact and heuristic, have been introduced to construct and analyze phylogenetic networks. Here, we address the computational problem of inferring phylogenetic networks with minimum reticulations from a collection of gene trees. As this problem is known to be NP-hard even for a pair of gene trees, the problem at hand is very hard. In this paper, we present an efficient heuristic, MURPAR, for inferring a phylogenetic network from a collection of gene trees by using pairwise reconciliations of trees in the collection. Given the development of efficient and accurate methods for pairwise gene tree reconciliations, MURPAR inherits this efficiency and accuracy. Further, the method includes a formulation for combining pairwise reconciliations that is naturally amenable to an efficient integer linear programming (ILP) solution. We show that MURPAR produces more accurate results than other methods and is at least as fast, when run on synthetic and biological data. We believe that our method is especially important for rapidly obtaining estimates of genome-scale evolutionary histories that can be further refined by more detailed and compute-intensive methods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Addario-Berry, L., Hallett, M., Lagergren, J.: Towards identifying lateral gene transfer events. In: Proc. Eighth Pacific Symp. Biocomputing (PSB 2003), pp. 279–290 (2003)

    Google Scholar 

  2. Semple, C., Baroni, M., Steel, M.: A framework for representing reticulate evolution. Annals of Combinatorics 8, 391–408 (2004)

    MathSciNet  MATH  Google Scholar 

  3. Beiko, R.G., Hamilton, N.: Phylogenetic identification of lateral genetic transfer events. BMC Evolutionary Biology 6, 15+ (2006)

    Article  Google Scholar 

  4. Beiko, R.G., Ragan, M.A.: Untangling hybrid phylogenetic signals: Horizontal gene transfer and artifacts of phylogenetic reconstruction. Methods Mol. Biol. 532, 241–256 (2009)

    Article  Google Scholar 

  5. Bordewich, M., Linz, S., John, K.S., Semple, C.: A reduction algorithm for computing the hybridization number of two trees. Evolutionary Bioinformatics 3, 86–98 (2007)

    Google Scholar 

  6. Bordewich, M., Semple, C.: On the computational complexity of the rooted subtree prune and regraft distance. Annals of Combinatorics 8, 409–423 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Galtier, N.: A model of horizontal gene transfer and the bacterial phylogeny problem. Systematic Biology 56(4), 633–642 (2007)

    Article  Google Scholar 

  8. Goloboff, P.A.: Calculating SPR distances between trees. Cladistics 24, 591–597 (2007)

    Article  Google Scholar 

  9. Hallett, M.T., Lagergren, J.: Efficient algorithms for lateral gene transfer problems. In: Proc. 5th Ann. Int’l Conf. Comput. Mol. Biol. (RECOMB 2001), pp. 149–156. ACM Press, New York (2001)

    Google Scholar 

  10. Hill, T., Nordstrom, K., Thollesson, M., Safstrom, T., Vernersson, A., Fredriksson, R., Schioth, H.: Sprit: Identifying horizontal gene transfer in rooted phylogenetic trees. BMC Evolutionary Biology 10(1), 42+ (2010)

    Article  Google Scholar 

  11. Huson, D.H., Bryant, D.: Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution 23(2), 254–267 (2006)

    Article  Google Scholar 

  12. Huson, D.H., Rupp, R.: Summarizing Multiple Gene Trees Using Cluster Networks. In: Crandall, K.A., Lagergren, J. (eds.) WABI 2008. LNCS (LNBI), vol. 5251, pp. 296–305. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  13. Linz, S., Semple, C.: A cluster reduction for computing the subtree distance between phylogenies. Annals of Combinatorics 15, 465–484 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. MacLeod, D., Charlebois, R.L., Doolittle, F., Bapteste, E.: Deduction of probable events of lateral gene transfer through comparison of phylogenetic trees by recursive consolidation and rearrangement. BMC Evolutionary Biology 5 (2005)

    Google Scholar 

  15. Nakhleh, L.: Evolutionary phylogenetic networks: models and issues. In: Heath, L., Ramakrishnan, N. (eds.) The Problem Solving Handbook for Computational Biology and Bioinformatics, pp. 125–158. Springer, New York (2010)

    Chapter  Google Scholar 

  16. Nakhleh, L., Ruths, D., Wang, L.-S.: RIATA-HGT: A Fast and Accurate Heuristic for Reconstructing Horizontal Gene Transfer. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 84–93. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  17. Park, H.J., Jin, G., Nakhleh, L.: Algorithmic strategies for estimating the amount of reticulation from a collection of gene trees. In: Proceedings of the 9th Annual International Conference on Computational Systems Biology, pp. 114–123 (2010)

    Google Scholar 

  18. Rambaut, A.: Phylogen: Phylogenetic tree simulator package (2002), http://evolve.zoo.ox.ac.uk/software/PhyloGen/main.html

  19. Schmidt, H., Martin, W.: Phylogenetic Trees from Large Datasets Inaugural–Dissertation zur. PhD thesis, Heinrich-Heine-Universitt, Dsseldorf (2003)

    Google Scholar 

  20. Than, C., Nakhleh, L.: SPR-based tree reconciliation: Non-binary trees and multiple solutions. In: Proceedings of the Sixth Asia Pacific Bioinformatics Conference, pp. 251–260 (2008)

    Google Scholar 

  21. Than, C., Ruths, D., Innan, H., Nakhleh, L.: Confounding factors in HGT detection: Statistical error, coalescent effects, and multiple solutions. Journal of Computational Biology 14(4), 517–535 (2007)

    Article  MathSciNet  Google Scholar 

  22. Than, C., Ruths, D., Nakhleh, L.: PhyloNet: a software package for analyzing and reconstructing reticulate evolutionary relationships. BMC Bioinformatics 9, 322 (2008)

    Article  Google Scholar 

  23. Tofigh, A., Hallett, M., Lagergren, J.: Simultaneous identification of duplications and lateral gene transfers. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 1–19 (January 2011)

    Google Scholar 

  24. van Iersel, L., Kelk, S., Rupp, R., Huson, D.H.: Phylogenetic networks do not need to be complex: using fewer reticulations to represent conflicting clusters. Bioinformatics [ISMB] 26(12), i124–i131 (2010)

    Article  Google Scholar 

  25. Wu, Y., Wang, J.: Fast Computation of the Exact Hybridization Number of Two Phylogenetic Trees. In: Borodovsky, M., Gogarten, J.P., Przytycka, T.M., Rajasekaran, S. (eds.) ISBRA 2010. LNCS, vol. 6053, pp. 203–214. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  26. Whidden, C., Beiko, R.G., Zeh, N.: Fast FPT Algorithms for Computing Rooted Agreement Forests: Theory and Experiments. In: Festa, P. (ed.) SEA 2010. LNCS, vol. 6049, pp. 141–153. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  27. Wu, Y.: Close lower and upper bounds for the minimum reticulate network of multiple phylogenetic trees. Bioinformatics [ISMB] 26(12), 140–148 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Park, H.J., Nakhleh, L. (2012). MURPAR: A Fast Heuristic for Inferring Parsimonious Phylogenetic Networks from Multiple Gene Trees. In: Bleris, L., Măndoiu, I., Schwartz, R., Wang, J. (eds) Bioinformatics Research and Applications. ISBRA 2012. Lecture Notes in Computer Science(), vol 7292. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30191-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30191-9_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30190-2

  • Online ISBN: 978-3-642-30191-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics