Skip to main content

Phylogenetic Tree Reconstruction with Protein Linkage

  • Conference paper
  • 984 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 7292))

Abstract

When reconstructing a phylogenetic tree, one common representation for a species is a binary string indicating the existence of some selected genes/proteins. Up until now, all existing methods have assumed the existence of these genes/proteins to be independent. However, in most cases, this assumption is not valid. In this paper, we consider the reconstruction problem by taking into account the dependency of proteins, i.e. protein linkage. We assume that the tree structure and leaf sequences are given, so we need only to find an optimal assignment to the ancestral nodes. We prove that the Phylogenetic Tree Reconstruction with Protein Linkage (PTRPL) problem for three different versions of linkage distance is NP-complete. We provide an efficient dynamic programming algorithm to solve the general problem in O(4m ·n)4 and O(4m ·(m + n)) time (compared to the straight-forward O(4m ·m ·n) and O(4m ·m 2 ·n) time algorithm), depending on the versions of linkage distance used, where .. stands for the number of species and .. for the number of proteins, i.e. length of binary string. We also argue, by experiments, that trees with higher accuracy can be constructed by using linkage information than by using only hamming distance to measure the differences between the binary strings, thus validating the significance of linkage information.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wang, L.-S., Leebens-Mack, J., Wall, P.K., Beckmann, K., Pamphilis, C.W., Warnow, T.: The Impact of Multiple Protein Sequence Alignment on Phylogenetic Estimation. Computational Biology and Bioinformatics 8, 1108–1119 (2011)

    Article  Google Scholar 

  2. Zhou, Y., Wang, R., Li, L., Xia, X., Sun, Z.: Inferring Functional Linkages between Proteins from Evolutionary Scenarios. Journal of Molecular Biology 359 (2006)

    Google Scholar 

  3. Saitou, N., Nei, M.: The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4, 406–425 (1987)

    Google Scholar 

  4. Elias, I., Lagergren, J.: Fast neighbor joining. Theoretical Computer Science (2008)

    Google Scholar 

  5. Wolf, M., Ruderisch1, B., Dandekar1, T., Schultz1, J., Müller, T.: ProfDistS (profile-) distance based phylogeny on sequence-structure alignments. Bioinformatics 24 (2008)

    Google Scholar 

  6. Muller, T., Rahmann, S., Dandekar, T., Wolf, M.: Accurate and robust phylogeny estimation based on profile distances: a study of the Chlorophyceae (Chlorophyta). BMC (2004)

    Google Scholar 

  7. Bruno, W.J., et al.: Weighted Neighbor Joining: A Likelihood-Based Approach to Distance-Based Phylogeny Reconstruction. Molecular Biology and Evolution (2000)

    Google Scholar 

  8. Foulds, L.R., Graham, R.L.: The Steiner Problem in Phylogeny is NP-Complete. Advances in Applied Mathematics 3, 43–49 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ribeiro, C.C., Vianna, D.S.: A hybrid genetic algorithm for the phylogeny problem using path-relinking as a progressive crossover strategy. International Transactions in Operational Research (2009)

    Google Scholar 

  10. Lin, Y.-M., Fang, S.-C., Thorne, J.L.: A tabu search algorithm for maximum parsimony phylogeny inference. European Journal of Operational Research 176 (2007)

    Google Scholar 

  11. Lin, Y.-M.: Tabu search and genetic algorithm for phylogeny inference (2008)

    Google Scholar 

  12. Swofford, D.L.: PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods) Version 4 (1998)

    Google Scholar 

  13. Hartigan, J.A.: Minimum mutation fits to a given tree. Biometrics 29 (1973)

    Google Scholar 

  14. Sankoff, D.: Minimal Mutation Trees of Sequences. SIAM on Applied Mathematics (1975)

    Google Scholar 

  15. Arvestad, L., Lagergren, J., Sennblad, B.: The gene evolution model and computing its associated probabilities. J. ACM 56, 1–44 (2009)

    Article  MathSciNet  Google Scholar 

  16. Kimura, M.: A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution (1980)

    Google Scholar 

  17. Guindon, S., et al.: New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0. Systematic Biology (2010)

    Google Scholar 

  18. Guindon, S., Delsuc, F., Dufayard, J.F., Gascuel, O.: Estimating maximum likelihood phylogenies with PhyML. Methods Mol. Biol. 537, 113–137 (2009)

    Article  Google Scholar 

  19. Ronquist, F., Huelsenbeck, J.P.: MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574 (2003)

    Article  Google Scholar 

  20. Steel, M.: The complexity of reconstructing trees from qualitative characters and subtrees. Journal of Classification 9, 91–116 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  21. Cilibrasi, R., Vitany, P.M.B.: A New Quartet Tree Heuristic for Hierarchical Clustering. Presented at the Theory of Evolutionary Algorithms, Dagstuhl, Germany (2006)

    Google Scholar 

  22. Schmidt, H.A., Strimmer, K., Vingron, M., Haeseler, A.: TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. BMC 18 (2002)

    Google Scholar 

  23. Snir, S., Yuster, R.: Reconstructing approximate phylogenetic trees from quartet samples. In: The 21 Annual ACM-SIAM Symposium on Discrete Algorithms, Texas (2010)

    Google Scholar 

  24. Tao, J., Kearney, P., Li, M.: Orchestrating quartets: approximation and data correction. In: Proceedings of 39th Annual Symposium on Foundations of Computer Science (1998)

    Google Scholar 

  25. G. E. M. L. E., Lupo, P.: Gene-Gene Interactions in the Folate Metabolic Pathway and the Risk of Conotruncal Heart Defects. Journal of Biomedicine and Biotechnology (2010)

    Google Scholar 

  26. Pereira-Leal, J., Levy, E.D., Teichmann, S.A.: The origins and evolution of functional modules: lessons from protein complexes. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 361, 507–517 (2006)

    Article  Google Scholar 

  27. Lu, Y.-C., Yec, W.C., Ohashi, P.S.: LPS/TLR4 signal transduction pathway. Cytokine (2008)

    Google Scholar 

  28. Uetz, P., et al.: A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403, 623–627 (2000)

    Article  Google Scholar 

  29. Craig, T.: A simplified NP-complete satisfiability problem. Discrete Applied Mathematics (1984)

    Google Scholar 

  30. Berman, P., Alex, M.K., Scott, E.D.: Computational complexity of some restricted instances of 3-SAT. Discrete Applied Mathematics 155, 649–653 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Doran, R.W.: The Gray Code. Journal of Universal Computer Science 13 (2007)

    Google Scholar 

  32. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Series of Books in the Mathematical Sciences. W. H. Freeman (1979)

    Google Scholar 

  33. Day, W.H.E.: Properties of the nearest neighbor interchange metric for trees of small size. Journal of Theoretical Biology 101, 275–288 (1983)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yu, J. et al. (2012). Phylogenetic Tree Reconstruction with Protein Linkage. In: Bleris, L., Măndoiu, I., Schwartz, R., Wang, J. (eds) Bioinformatics Research and Applications. ISBRA 2012. Lecture Notes in Computer Science(), vol 7292. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30191-9_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30191-9_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30190-2

  • Online ISBN: 978-3-642-30191-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics