
Active Learning for

Hierarchical Text Classification

Xiao Li, Da Kuang and Charles X. Ling

Department of Computer Science,
The University of Western Ontario, London, Ontario, N6A 5B7, Canada

{xli485,dkuang,cling}@csd.uwo.ca

Abstract. Hierarchical text classification plays an important role in
many real-world applications, such as webpage topic classification, prod-
uct categorization and user feedback classification. Usually a large num-
ber of training examples are needed to build an accurate hierarchical clas-
sification system. Active learning has been shown to reduce the training
examples significantly, but it has not been applied to hierarchical text
classification due to several technical challenges. In this paper, we study
active learning for hierarchical text classification. We propose a realistic
multi-oracle setting as well as a novel active learning framework, and
devise several novel leveraging strategies under this new framework. Hi-
erarchical relation between different categories has been explored and
leveraged to improve active learning further. Experiments show that our
methods are quite effective in reducing the number of oracle queries (by
74% to 90%) in building accurate hierarchical classification systems. As
far as we know, this is the first work that studies active learning in hier-
archical text classification with promising results.

1 Introduction

Hierarchical text classification plays an important role in many real-world ap-
plications, such as webpage topic classification, product categorization and user
feedback classification. Due to the rapid increase of published documents (e.g.,
articles, patents and product descriptions) online, most of the websites (from
Wikipedia and Yahoo! to the small enterprise websites) classify their documents
into a predefined hierarchy (or taxonomy) for easy browsing. As more documents
are published, more human efforts are needed to give the hierarchical labels of
the new documents. It dramatically increases the maintenance cost for those
organization or companies. To tackle this problem, machine learning techniques
such as hierarchical text classification can be utilized to automatically categorize
new documents into the predefined hierarchy.

Many approaches have been proposed to improve the performance of hier-
archical text classification. Different approaches have been proposed in terms
of how to build the classifiers [2, 19], how to construct the training sets [1, 6]
and how to choose the decision thresholds [15, 1] and so on. As a hierarchy may
contain hundreds or even tens of thousands of categories, those approaches often

2 X. Li, D. Kuang and C.X. Ling

require a large number of labeled examples for training. However, in real-world
applications, such as webpage topic classification, the labeled documents are very
limited compared to the total number of unlabeled documents. Obtaining a large
size of labeled documents for training requires great amount of human efforts.
How can we build a reliable hierarchical classifier from a relatively small number
of examples? Can we reduce the number of labeled examples significantly?

To tackle the lack of labeled examples, active learning can be a good choice
[16, 12, 18]. The idea of active learning is that, instead of passively receiving
the training examples, the learner actively selects the most “informative” exam-
ples for the current classifier and gets their labels from the oracle (i.e., human
expert). Usually, those most informative examples can benefit the classification
performance most. Several works have successfully applied active learning in text
classification [16, 5, 20]. However, to our best knowledge, no previous works have
been done in hierarchical text classification with active learning due to several
technical challenges. For example, as a large taxonomy can contain thousands of
categories, it is impossible to have one oracle to provide all labels. Thus, similar
to DMOZ1, multiple oracles are needed. What would be a realistic setting for
multiple oracles for active learning in hierarchical text classification? How can
we leverage the hierarchical relation to further improve active learning?

In this paper, we study how active learning can be effectively applied to
hierarchical text classification so that the number of labeled examples (or or-
acle queries) needed can be reduced significantly. We propose a new setting
of multiple oracles, which is currently in use in many real-world applications
(e.g., DMOZ). Based on this setting, we propose an effective framework for
active learning in hierarchical text classification. Moreover, we explore how to
utilize the hierarchical relation to further improve active learning. Accordingly,
several leveraging strategies and heuristics are devised. According to our ex-
periments, active learning under our framework significantly outperforms the
baseline learner, and the additional strategies further enhance the performance
of active learning for hierarchical text classification. Compared to the best per-
formance of the baseline hierarchical learner, our best strategy can reduce the
number of oracle queries by 74% to 90%.

2 A Novel Multi-Oracle Setting

When active learning is applied to text classification, as far as we know, all
previous works (e.g., [5, 20]) explicitly or implicitly assume that given a document
that might be associated with multiple labels, there always exist oracles who can
perfectly answer all labels. In hierarchical text classification, it is very common
that the target hierarchy has a large number of categories (e.g., DMOZ has
over one million categories) across various domains, and thus it is unrealistic for
one oracle (expert) to be “omniscient” in everything. For example, an expert
in “Business” may have less confidence about “Computer”, and even less about

1 It is often called Open Directory Project (http://www.dmoz.org).

Active Learning for Hierarchical Text Classification 3

“Programming”. If the expert in “Business” has to label “Programming”, errors
can occur. Such error introduces noise to the learner.

Therefore, it is more reasonable to assume that there are multiple oracles
who are experts in different domains. Each oracle only gives the label(s) related
to his or her own domains. Thus, the labels provided by multiple oracles will be
more accurate and reliable than the labels given by only one oracle. Although
previous works have studied active learning with multiple oracles [4, 10], as far
as we know, their settings are quite different from ours as their oracles provide
labels for all examples for only one category, while in our case, different oracles
provide labels for examples in different categories in the hierarchy.

Our setting of multiple oracles is actually implemented in DMOZ. As far as
we know, DMOZ holds a large number of categories. Each category is gener-
ally maintained by at least one human editor whose responsibility is to decide
whether or not a submitted website belongs to that category.2 We adopt the
similar setting of DMOZ. In our setting, each category in the hierarchy has
one oracle, who decides solely if the selected document belongs to the current
category or not (by answer “Yes” or “No”).

3 A New Framework of Hierarchical Active Learning

In this paper, we mainly discuss pool-based active learning where a large pool
of unlabeled examples is available for querying oracles. Figure 1 shows the basic
idea of our hierarchical active learning framework. Simply speaking, at each
iteration of active learning, classifiers on different categories independently and
simultaneously select the most informative examples from the unlabeled pool for
themselves, and ask the oracles on the corresponding categories for the labels.
The major steps of our hierarchical active learning algorithm are as follows:

1. We first train a binary classifier (C) on each category to distinguish it from its
sibling categories. The training set (DL) is constructed by using the positive
examples from the training set of the parent category [14].3

2. Then, we construct the local unlabeled pool (DU) for each classifier (see
Section 3.1), select the most informative examples from the local unlabeled
pool for that classifier, and query the corresponding oracle for the labels.

3. For each query, the oracle returns “Yes” or “No” to indicate whether the
queried example belongs to that category or not. Based on the answers, the
classifier updates its classification model (see Section 3.2).

4. This process is executed simultaneously on all categories at each iteration
and repeats until the terminal condition is satisfied.

There are two key steps (step two and three) in the algorithm. In step two,
we introduce the local unlabeled pool to avoid selecting out-of-scope (we will
define it later) examples. In step three, we tackle how to leverage the oracle
answers in the hierarchy. We will discuss them in the following subsections.

2 See http://www.dmoz.org/erz/ for DMOZ editing guidelines.
3 On the root of hierarchy tree, every example is positive.

4 X. Li, D. Kuang and C.X. Ling

Fig. 1. The hierarchical active learning framework. The typical active learning steps
are numbered 1, 2, 3 in the figure.

3.1 Unlabeled Pool Building Policy

From step one of our algorithm, we know that the training examples for a deep
category (say c) must belong to its ancestor categories. However, it is likely
that many unlabeled examples do not belong to the ancestor categories of c. We
define those examples as out-of-scope examples. If those out-of-scope examples
are selected by c, we may waste a lot of queries. Thus, instead of using one shared
unlabeled pool [5] for all categories, we construct a local unlabeled pool on each
of the categories. To filter out these out-of-scope examples, we use the predictions
of the ancestor classifiers to build the local unlabeled pool. Specifically, given
an unlabeled example x and a category c, only if all the ancestor classifiers of c
predict x as positive, then we will place x into the local unlabeled pool of c.

3.2 Leveraging Oracle Answers

For the two answers (“Yes” or “No”) from oracles, there are several possible
ways to handle them. We give a brief overview here and discuss the detailed
strategies in Section 5.

If the answer is “Yes”, we can simply update the training set by directly
including the queried example as a positive example. To better leverage the hi-
erarchical relation, we can even add the positive example to all the ancestor
categories. Furthermore, since the positive example is possibly a negative exam-
ple on some of the sibling categories, we may consider including it as a negative
example to the sibling categories.

If the answer is “No”, we can not simply add the example as a negative ex-
ample, since we don’t know whether the queried example actually belongs to the
ancestor categories. Thus, we could simply discard the example. Alternatively,
we can also query the oracle on the parent category to see if the example belongs
to the parent category, but the extra query may be wasted if the answer is “No”.

In the following parts, we will first present our experimental configuration,
and then empirically explore whether our framework can be effectively applied

Active Learning for Hierarchical Text Classification 5

to hierarchical classification and whether different strategies described above can
indeed improve active learning.

4 Experimental Configuration

4.1 Datasets

We utilize four real-world hierarchical text datasets (20 Newsgroups, OHSUMED,
RCV1 and DMOZ) in our experiments. They are common benchmark datasets
for evaluation of text classification methods. We give a brief introduction of the
datasets. The statistic information of the four datasets is shown in Table 1.

Table 1. The statistic information of the four datasets. Cardinality is the average
number of categories per example (i.e., multi-label datasets).

Dataset Features Examples Categories Levels Cardinality

20 Newsgroups 61,188 18,774 27 3 2.202
OHSUMED 12,427 16,074 86 4 1.916

RCV1 47,236 23,049 96 4 3.182
DMOZ 92,262 12,735 91 3 2.464

The first dataset is 20 Newsgroups4. It is a collection of newsgroup docu-
ments partitioned evenly across 20 different newsgroups. We group these cate-
gories based on subject matter into a three-level topic hierarchy which has 27
categories. The second dataset is OHSUMED5. It is a clinically-oriented MED-
LINE dataset with a hierarchy of twelve levels. In our experiments, we only use
the sub-hierarchy under subcategory “heart diseases” which is well-studied and
usually taken as a benchmark dataset for text classification [8, 13]. The third
dataset is RCV1 [9]. It includes three classification tasks: topic, industrial and
regional classification. In our experiments, we focus on the topic classification
task.6 The last dataset is DMOZ. It is a human-edited web directory with web-
pages manually organized into a complex hierarchy. DMOZ is extracted from a
sub collection rooted at “Science” and it has three-level category hierarchy.7

4.2 Performance Measure

To evaluate the performance in hierarchical classification, we adopt the hierar-
chical F-measure, which has been widely used in hierarchical classification for
evaluation [17, 3, 14]. The definition the hierarchical F-measure is as follows,

hF =
2× hP × hR

hP + hR
where hP =

∑
i
|P̂i

⋂
T̂i|

∑
i
|P̂i|

hR =

∑
i
|P̂i

⋂
T̂i|

∑
i
|T̂i|

(1)

4 http://people.csail.mit.edu/jrennie/20Newsgroups/
5 http://ir.ohsu.edu/ohsumed/
6 http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
7 http://olc.ijs.si/dmozReadme.html

6 X. Li, D. Kuang and C.X. Ling

where hP and hR are the hierarchical precision and the hierarchical recall, P̂i

is the set consisting of the most specific categories predicted for test example i

and all its (their) ancestor categories and T̂i is the set consisting of the true most
specific categories of test example i and all its (their) ancestor categories.[14]

4.3 Active Learning Setup

In our experiment, linear Support Vector Machine (SVM) is used as the base
classifier on each category in the hierarchy, since the high dimensionality of text
data usually results in the dataset being linearly separable [16]. Specifically,
LIBLINEAR [7] package is used as the implementation of linear SVM. For LI-
BLINEAR, there are primarily two parameters C and W that will affect the
performance. C is the penalty coefficient for training errors and W balances the
penalty on the two classes. In our experiment, we set C = 1000 and W as the
negative class proportion. For example, if the class ratio of positive and negative
class in the training set is 1:9, then W = 0.9. The purpose is to give more penalty
to the error on the minority class.

For active learning, due to the simplicity and effectiveness of Uncertainty
Sampling8, we adopt uncertainty sampling as the strategy to select the informa-
tive examples from the unlabeled pool. It should be noted that our hierarchical
active learning framework is independent of the specific active learning strat-
egy. Other strategies, such as expected error reduction [12] and representative
sampling [18] can also be used. We will study them in the future.

We split all the four datasets into labeled (1%), unlabeled (89%) and testing
(10%) parts. As we already know the labels of unlabeled examples, we will use
the simulating oracles instead of the real human oracles (experts). We set a query
limit (see Section 5.1). The training process is decomposed into a sequence of
iterations. In each iteration, each category simultaneously selects a fixed number
of examples9 from its local unlabeled pool and queries the oracles (one query will
be consumed when we ask one oracle for one label). After each category updates
its training set, we recompute the parameter W and update the classification
model. The entire training process terminates when the number of queries con-
sumed exceeds the query limit. To reduce the randomness impact of the dataset
split, we repeat this active learning process for 10 times. All the results (curves)
in the following experiments are averaged over the 10 independent runs and
accompanied by error bars indicating the 95% confidence interval.

5 Empirical Study

In this section, we will first experimentally study the standard version of our
active learning framework for hierarchical text classification, then propose several
improved versions and compare them with the previous version.

8 Uncertain sampling in active learning selects the unlabeled example that is closest
to the decision boundary of the classifier.

9 We heuristically use logarithm of the unlabeled pool size to calculate the number of
selected examples for each category.

Active Learning for Hierarchical Text Classification 7

5.1 Standard Hierarchical Active Learner

In order to validate our active learning framework, we will first compare its stan-
dard version (we call it standard hierarchical active learner) with the baseline
learner. The standard hierarchical active learner uses intuitive strategies to han-
dle oracle answers (see Section 3.2) in deep categories. If the oracle answer is
“Yes”, the standard hierarchical active learner directly includes the example as
a positive example; if “No”, it simply discards the example. On the other hand,
the baseline learner is actually the non-active version of the standard hierarchi-
cal active learner. Instead of selecting the most informative examples, it selects
unlabeled examples randomly on each category.

Empirical Comparison: We set the query limit as 50× |C| where |C| is the
total umber of categories in the hierarchy. Thus, in our experiments the query
limits for the four datasets are 1,350, 4,300, 4,800 and 4,850 respectively. We
denote the standard hierarchical active learner as AC and the baseline learner
as RD. Figure 2 plots the average learning curves for AC and RD on the four
datasets. As we can see, on all the datasets AC performs significantly better
than RD. This result is reasonable since the unlabeled examples selected by AC

are more informative than RD on all the categories in the hierarchy. From the
curves, it is apparent that to achieve the best performance of RD, AC needs
significantly fewer queries (approximately 43% to 82% queries can be saved)10.

0 0.5k 1k 1.5k
Queris

0.38

0.41

0.45

0.48

0.51

H
ie
r
F-
m
e
a
su
re

20 Newsgroups

0 1.5k 3k 4.5k
Queris

0.47

0.51

0.54

0.58

0.62
OHSUMED

0 1k 2k 3k 4k 5k
Queris

0.60

0.62

0.65

0.68

0.70
RCV1

0 1k 2k 3k 4k 5k
Queris

0.57

0.59

0.60

0.62

0.64
DMOZ

AC RD

Fig. 2. Comparison between AC and RD in terms of the hierarchical F-measure. X
axis is the number of queries consumed and Y axis is the hierarchical F-measure.

Although the standard hierarchical active learner (AC) significantly reduces
the number of oracle queries compared to the baseline learner (RD), we should
note that there is no interaction between categories in the hierarchy (e.g., each
category independently selects examples and queries oracle). Our question is:
can we further improve the performance of the standard active learner by taking

10 In 20 Newsgroups, RD uses 1,350 queries to achieve 0.46 in terms of the hierarchical
F-measure, while AC only uses 750 queries. Thus, (1350−750)/1350 = 44.4% of the
total queries are saved. The savings for other datasets are 82.5%, 72.9% and 43.3%.

8 X. Li, D. Kuang and C.X. Ling

into account the hierarchical relation of different categories? We will explore
several leveraging strategies in the following subsections.

5.2 Leveraging Positive Examples in Hierarchy

As mentioned in Section 3.2, when the oracle on a category answers “Yes” for
an example, we can directly include the example into the training set on that
category as a positive example. Furthermore, according to the category relation
in a hierarchy, if an example belongs to a category, it will definitely belong to
all the ancestor categories. Thus, we can propagate the example (as a positive
example) to all its ancestor categories. In such cases, the ancestor classifiers can
obtain free positive examples for training without any query. It coincides with
the goal of active learning: reducing the human labeling cost!

Based on the intuition, we propose a new strategy Propagate to propagate the
examples to the ancestor classifiers when the answer from oracle is “Yes”. The
basic idea is as follows. In each iteration of the active learning process, after we
query an oracle for each selected example, if the answer from the oracle is “Yes”,
we propagate this example to the training sets of all the ancestor categories as
positive. At the end of the iteration, each category combines all the propagated
positive examples and the examples selected by itself to update its classifier.

0 0.5k 1k 1.5k
0.38

0.41

0.45

0.49

0.52

H
ie
r
F-
m
e
a
su
re

20 Newsgroups

0 0.5k 1k 1.5k
0.29

0.36

0.43

0.50

0.56

H
ie
r
R
e
ca
ll

0 0.5k 1k 1.5k
Queris

0.46

0.48

0.50

0.52

0.54

H
ie
r
P
re
ci
si
o
n

0 1.5k 3k 4.5k
0.47

0.51

0.55

0.59

0.63
OHSUMED

0 1.5k 3k 4.5k
0.34

0.40

0.47

0.54

0.61

0 1.5k 3k 4.5k
Queris

0.64

0.67

0.70

0.73

0.77

0 1k 2k 3k 4k 5k
0.60

0.63

0.65

0.68

0.71
RCV1

0 1k 2k 3k 4k 5k
0.46

0.53

0.59

0.65

0.71

0 1k 2k 3k 4k 5k
Queris

0.69

0.73

0.77

0.81

0.85

0 1k 2k 3k 4k 5k
0.57

0.59

0.60

0.62

0.64
DMOZ

0 1k 2k 3k 4k 5k
0.47

0.53

0.59

0.66

0.72

0 1k 2k 3k 4k 5k
Queris

0.54

0.59

0.64

0.69

0.74

AC+ AC

Fig. 3. Comparison between AC+ and AC in terms of the hierarchical F-measure (first
row), recall (second row) and precision (third row).

Active Learning for Hierarchical Text Classification 9

Empirical Comparison: We integrate Propagate to the standard hierarchical
active learner (we name the integrated version as AC+) and then compare it with
the original AC. The first row of Figure 3 shows the learning curves of AC+ and
AC on the four datasets in terms of the hierarchical F-measure. Overall, the
performance of AC+ is slightly better than that of AC. By propagating positive
examples, the top-level classifiers of AC+ can receive a large number of positive
examples and thus the (hierarchical) recall of AC+ increases faster than AC as
shown in the second row. This is the reason why AC+ can defeat AC on the first
three datasets. However, from the third row, we can see the hierarchical precision
of AC+ actually degrades very sharply since the class distribution of the training
set has been altered by the propagated positive examples. It thus weakens the
boosting effect in the hierarchical recall and hinders the improvement of overall
performance in the hierarchical F-measure.

Since positive examples can benefit the hierarchical recall, can we leverage
negative examples to help maintain the hierarchical precision so as to further
improve AC+? We will propose two possible solutions in the following.

5.3 Leveraging Negative Examples in Hierarchy

We introduce two strategies to leverage negative examples. One is to query parent
oracles when the oracle answers “No”; the other is to predict the negative labels
for sibling categories when the oracle answers “Yes”.

Querying Negative Examples: For deep categories, when the oracle answers
“No”, we actually discard the selected example in AC+ (as well as in AC, see
Section 5.1). However, in this case, the training set may miss a negative example
and also possibly an informative example. Furthermore, if we keep throwing away
those examples whenever oracle says “No”, the classifiers may not have chance
to learn negative examples. On the other hand, if we include this example, we
may introduce noise to the training set, since the example may not belong to
the parent category, thus an out-of-scope example (see Section 3.1).

How can we deal with the two cases? We introduce a complementary strategy
called Query. In fact, the parent oracle can help us decide between the two cases.
We only need to issue another query to the parent oracle on whether this example
belongs to it. If the answer from the parent oracle is “Yes”, we can safely include
this example as a negative example to the current category. If the answer is “No”,
we can directly discard it. Here, we do not need to further query all the ancestor
oracles, since the example is already out of scope of the current category and
thus can not be included into its training set. There is a trade-off. As one more
query is asked, we may obtain an informative negative example, but we may also
waste a query. Therefore, it is non-trivial if this strategy works or not.

Predicting Negative Labels: When the oracle on a category (say “Astron-
omy”) answers “Yes” for an example, it is very likely that this example may not
belong to its sibling categories such as “Chemistry” and “Social Science”. In this

10 X. Li, D. Kuang and C.X. Ling

case, can we add this example as a negative example to its sibling categories?
In those datasets where each example only belongs to one single category path,
we can safely do so. It is because for the categories under the same parent, the
example can only belong to at most one category. However, in most of the hi-
erarchical datasets, the example belongs to multiple paths. In this case, it may
be positive on some sibling categories. If we include this example as negative to
the sibling categories, we may introduce noise.

To decide which sibling categories an example can be included as negative, we
adopt a conservative heuristic strategy called Predict. Basically, when a positive
example is included into a category, we add this example as negative to those
sibling categories that the example is least likely to belong to. Specifically, if
we know a queried example x is positive on a category c, we choose m sibling
categories with the minimum probabilities (estimated by Platts Calibration [11]).
We set

m = n− max
x∈DL

Ψ↑c(x), (2)

where DL is the labeled set, ↑ c is the parent category of c, n is the number of
children categories of ↑ c, Ψ↑c(x) is the number of categories under ↑ c that the
example x belongs to.

0 0.5k 1k 1.5k
0.38

0.43

0.48

0.54

0.59

H
ie
r
F-
m
e
a
su
re

20 Newsgroups

0 0.5k 1k 1.5k
Queris

0.46

0.52

0.57

0.63

0.69

H
ie
r
P
re
ci
si
o
n

0 1.5k 3k 4.5k
0.47

0.52

0.57

0.61

0.66
OHSUMED

0 1.5k 3k 4.5k
Queris

0.64

0.67

0.70

0.74

0.77
0 1k 2k 3k 4k 5k

0.60

0.63

0.66

0.70

0.73
RCV1

0 1k 2k 3k 4k 5k
Queris

0.69

0.73

0.77

0.81

0.85
0 1k 2k 3k 4k 5k

0.57

0.61

0.65

0.69

0.73
DMOZ

0 1k 2k 3k 4k 5k
Queris

0.54

0.60

0.66

0.72

0.78

AC+P AC+Q AC+

Fig. 4. Comparison between AC+P, AC+Q and AC+ in terms of the hierarchical
F-measure (upper row) and precision (bottom row).

Empirical Comparison: We integrate the two strategies Query and Predict

discussed above into AC+ and then compare the two integrated versions (AC+Q

and AC+P) with the original AC+. Since in AC+ positive examples are propa-
gated, we can use this feature to further boost AC+Q and AC+P. For AC+Q,
when the parent oracle answers “Yes”, besides obtaining a negative example, we

Active Learning for Hierarchical Text Classification 11

can also propagate this example as a positive example to all the ancestor cate-
gories. For AC+P, as a positive example is propagated, we can actually apply
Predict to all the ancestor categories.

We plot their learning curves for the hierarchical F-measure and the hierarchi-
cal precision on the four datasets in Figure 4. As we can see in the figure, both
AC+Q and AC+P achieve better performance of the hierarchical F-measure
than AC+. By introducing more negative examples, both methods maintain or
even increase the hierarchical precision (see the bottom row of Figure 4). As
we mentioned before, AC+Q may waste queries when the parent oracle answers
“No”. However, we discover that the average number of informative examples
obtained per query for AC+Q is much larger than AC+ (at least 0.2 higher per
query). It means that it is actually worthwhile to issue another query in AC+Q.
Another question is whether AC+P introduces noise to the training sets. Ac-
cording to our calculation, the noise rate is at most 5% on all the four datasets.
Hence, it is reasonable that AC+Q and AC+P can further improve AC+.

However, between AC+Q and AC+P, there is no consistent winner on all
the four datasets. On 20 Newsgroup and DMOZ, AC+P achieves higher per-
formance, while on OHSUMED and RCV1, AC+Q is more promising. We also
try to make a simple combination of Query and Predict with AC+ (we call
it AC+QP), but the performance is not significantly better than AC+Q and
AC+P. We will explore a smarter way to combine them in our future work.

Finally, we compare the improved versions AC+Q and AC+P with the non-
active version RD. We find that AC+Q and AC+P can save approximately 74%
to 90% of the total queries. The savings for the four datasets are 74.1%, 88.4%,
83.3% and 90% respectively (these numbers are derived from Figures 2 and 4).

To summarize, we propose several improved versions (AC+, AC+Q and
AC+P) in addition to the standard version (AC) of our hierarchical active learn-
ing framework. According to our empirical studies, we discover that in terms
of the hierarchical F-measure, AC+Q and AC+P are significantly better than
AC+, which in turn is slightly better than AC, which in turn outperforms RD

significantly. In terms of query savings, our best versions AC+Q and AC+P

need significantly fewer queries than the baseline learner RD.

6 Conclusion

We propose a new multi-oracle setting for active learning in hierarchical text
classification as well as an effective active learning framework for this setting.
We explore different solutions which attempt to utilize the hierarchical relation
between categories to improve active learning. We also discover that propagating
positive examples to the ancestor categories can improve the overall performance
of hierarchical active learning. However, it also decreases the precision. To handle
this problem, we propose two additional strategies to leverage negative examples
in the hierarchy. Our empirical study shows both of them can further boost the
performance. Our best strategy proposed can save a considerable number of
queries (74% to 90%) compared to the baseline learner. In our future work,

12 X. Li, D. Kuang and C.X. Ling

we will extend our hierarchical active learning algorithms with more advanced
strategies to reduce queries further.

References

1. Ceci, M., Malerba, D.: Classifying web documents in a hierarchy of categories: a
comprehensive study. J. Intell. Inf. Syst. 28, 37–78 (2007)

2. DAlessio, S., Murray, K., Schiaffino, R., Kershenbaum, A.: The effect of using
hierarchical classifiers in text categorization. In: RIAO ’00. pp. 302–313 (2000)

3. Daraselia, N., Yuryev, A., Egorov, S., Mazo, I., Ispolatov, I.: Automatic extraction
of gene ontology annotation and its correlation with clusters in protein networks.
BMC Bioinformatics 8(1), 243 (Jul 2007)

4. Donmez, P., Carbonell, J.G.: Proactive learning: cost-sensitive active learning with
multiple imperfect oracles. In: CIKM ’08. pp. 619–628 (2008)

5. Esuli, A., Sebastiani, F.: Active learning strategies for multi-label text classifica-
tion. In: ECIR ’09. pp. 102–113 (2009)

6. Fagni, T., Sebastiani, F.: Selecting negative examples for hierarchical text classifi-
cation: An experimental comparison. J. Am. Soc. Inf. Sci. Technol. 61, 2256–2265
(2010)

7. Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: Liblinear: A library
for large linear classification. J. Mach. Learn. Res. 9, 1871–1874 (2008)

8. Lam, W., Ho, C.Y.: Using a generalized instance set for automatic text categoriza-
tion. In: SIGIR ’98. pp. 81–89 (1998)

9. Lewis, D.D., Yang, Y., Rose, T.G., Li, F.: Rcv1: A new benchmark collection for
text categorization research. J. Mach. Learn. Res. 5, 361–397 (2004)

10. Nowak, S., Rüger, S.: How reliable are annotations via crowdsourcing: a study
about inter-annotator agreement for multi-label image annotation. In: MIR ’10.
pp. 557–566 (2010)

11. Platt, J.C.: Probabilistic outputs for support vector machines. Advances in Large
Margin Classifiers pp. 61–74 (1999)

12. Roy, N., McCallum, A.: Toward optimal active learning through sampling estima-
tion of error reduction. In: ICML ’01. pp. 441–448 (2001)

13. Ruiz, M.E., Srinivasan, P.: Hierarchical neural networks for text categorization
(poster abstract). In: SIGIR ’99. pp. 281–282 (1999)

14. Silla, Jr., C.N., Freitas, A.A.: A survey of hierarchical classification across different
application domains. Data Min. Knowl. Discov. 22, 31–72 (2011)

15. Sun, A., Lim, E.P.: Hierarchical text classification and evaluation. In: ICDM ’01.
pp. 521–528 (2001)

16. Tong, S., Koller, D.: Support vector machine active learning with applications to
text classification. J. Mach. Learn. Res. 2, 45–66 (2002)

17. Verspoor, K., Cohn, J., Mniszewski, S., Joslyn, C.: Categorization approach to
automated ontological function annotation. In: Protein Science. pp. 1544–1549
(2006)

18. Xu, Z., Yu, K., Tresp, V., Xu, X., Wang, J.: Representative sampling for text
classification using support vector machines. In: ECIR ’03. pp. 393–407 (2003)

19. Xue, G.R., Xing, D., Yang, Q., Yu, Y.: Deep classification in large-scale text hier-
archies. In: SIGIR ’08. pp. 619–626 (2008)

20. Yang, B., Sun, J.T., Wang, T., Chen, Z.: Effective multi-label active learning for
text classification. In: KDD ’09. pp. 917–926 (2009)

