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Abstract. In many fields of application, the choice of proximity measure directly
affects the results of data mining methods, whatever the task might be: clustering,
comparing or structuring of a set of objects. Generally, in such fields of appli-
cation, the user is obliged to choose one proximity measure from many possible
alternatives. According to the notion of equivalence, such as the one based on pre-
ordering, certain proximity measures are more or less equivalent, which means
that they should produce almost the same results. This information on equiva-
lence might be helpful for choosing one such measure. However, the complexity
O(n*) of this approach makes it intractable when the size n of the sample exceeds
a few hundred. To cope with this limitation, we propose a new approach with less
complexity O(nz). This is based on topological equivalence and it exploits the
concept of local neighbors. It defines equivalence between two proximity mea-
sures as having the same neighborhood structure on the objects. We illustrate our
approach by considering 13 proximity measures used on datasets with continuous
attributes.

Keywords - proximity measure; pre-ordering; topological equivalence.

1 Introduction

In order to understand and act on situations that are represented by a set of objects,
very often we are required to compare them. Humans perform this comparison subcon-
sciously using the brain. In the context of artificial intelligence, however, we should be
able to describe how the machine might perform this comparison. In this context, one
of the basic elements that must be specified is the proximity measure between objects.

Certainly, application context, prior knowledge, data type and many other factors
can help in identifying of the appropriate measure. For instance, if the objects to be
compared are described by boolean vectors, we can restrict our comparisons to a class
of measures specifically devoted to this data type. However, the number of candidate
measures might still remain quite large. Can we consider that all those remaining are
equivalent and just pick one of them at random? Or are there some that are equivalent
and, if so, to what extent? This information might interest a user when seeking a specific
measure. For instance, in information retrieval, choosing a given proximity measure is
an important issue. We effectively know that the result of a query depends on the mea-
sure used. For this reason, users may wonder which one more useful? Very often, users



try many of them, randomly or sequentially, seeking a “’suitable” measure. If we could
provide a framework that allows the user to compare proximity measures and therefore
identify those that are similar, they would no longer need to try out all measures.

The present study proposes a new framework for comparing proximity measures.
We deliberately ignore the issue of the appropriateness of the proximity measure as it
is still an open and challenging question currently being studied. Comparing proximity
measures can be analyzed from different angles:

— Axiomatically, as in the works of [1], [2] and [7], where two measures are consid-
ered equivalent if they possess the same mathematical properties.

— Analytically, as in the works of [2], [3] and [7], where two measures are considered
equivalent if one can be expressed as a function of the other.

— Emperically, as in [20], where two proximity measures are considered similar if,
for a given set of objects, the proximity matrices brought about over the objects
are somewhat similar. This can be achieved by means of statistical tests such as
the Mantel test [13]. We can also deal with this issue using an approach based on
preordonance [7][8][18], in which the common idea is based on a principle which
says that two proximity measures are closer if the preorder induced in pairs of
objects does not change. We will provide details of this approach later on.

Nevertheless, these approaches can be unified depending on the extent to which they
allow the categorization of proximity measures. Thus, the user can identify measures
that are equivalent from those that are less so [3][8].

In this paper, we present a new approach for assessing the similarity between prox-
imity measures. Our approach is based on proximity matrices and hence belongs to
empirical methods. We introduce this approach by using a neighborhood structure of
objects. This neighborhood structure is what we refer to as the topology induced by the
proximity measures. For two proximity measures u; and u;, if the topological graphs
produced by both of them are identical, then this means that they have the same neigh-
borhood graph and consequently, the proximity measures u; and u; are in topological
equivalence. In this paper, we will refer to the degree of equivalence between proxim-
ity measures. In this way, we can calculate a value of topological equivalence between
pairs of proximity measures which would be equal to 1 for perfect equivalence and O
for total mismatch. According to these values of similarity, we can visualize how close
the proximity measures are to each other. This visualization can be achieved by any
clustering algorithm. We will introduce this new approach more formally and show the
principal links identified between our approach and that based on preordonnance. So
far, we have not found any publication that deals with the problem in the same way as
we do here.

The present paper is organized as follows. In Section 2, we describe more pre-
cisely the theoretical framework and we recall the basic definitions for the approach
based on induced preordonnance. In Section 3, we introduce our approach, topological
equivalence. In section 4, we provide some results of the comparison between the two
approaches, and highlight possible links between them. Further work and new lines of
inquiry provided by our approach are detailed in Section 5, the conclusion. We also
make some remarks on how this work could be extended to all kinds of proximity



measures, regardless of the representation space: binary [2][7][8][26], fuzzy [3][28] or
symbolic, [11][12].

2 Proximity measures and Preordonnance

2.1 Proximity measures

In this article we limit our work to proximity measures built on Rp. Nevertheless, the
approach could easily be extended to all kinds of data: quantitative or qualitative. Let
us consider a sample of n individuals x,y,... in a space of p dimensions. Individuals
are described by continuous variables: x = (xi,...,x,). A proximity measure u between
two individual points x and y is defined as follows:

u:RP xR’ +——R

(x,y) — u(x,y)

with the following properties, V(x,y) € R” X RP:
Pl: u(x,y) = u(y,x).

P2: u(x,x) <u(x,y) ,  P2:u(x,x)>u(x,y).
P3: Ja € R: u(x,x) = a.

We can also define d: 6(x,y) = u(x,y) — o a proximity measure that satisfies the
following properties, V(x,y) € RP x RP:

T1: 6(x,y) > 0. T6: 8(x,y) < 0(x,z) +6(z,y).

T S = $(e) T7: 5(x.y) < max(8(x.2).5(2.5)).
T4: 8(x,y) =0=Vz 8(x,2) = 6(y,2). T8: &(x,y) + 6(z,1) < max(6(x,z) +
T5:8(x,y) =0=>x=y. S(y,1),6(x,1) +6(1,2)).

A proximity measure that verifies properties T1, T2 and T3 is a dissimilarity mea-
sure. If it satisfies the properties TS and T6 it becomes a distance. As shown in [1], there
are some implications between these properties: T7 = T6 < T8

In Table 1, we give a list of 13 conventional proximity measures.

For our experiments and comparisons, we took many datasets from the UCI-repository
and we carried out a lot of sub sampling on individuals and variables. Table 4 shows the
datasets used in this work.

2.2 Preorder equivalence

Two proximity measures, u; and u; generally lead to different proximity matrices. Can
we say that these two proximity measures are different just because the resulting matri-
ces have different numerical values? To answer this question, many authors,[7][8][18],
have proposed approaches based on preordonnance defined as follows:



Table 1. Some proximity measures.

MEASURE SHORT FORMULA
EUCLIDEAN EuC  ug(x,y) = \/25:1 (xj —y;)?
MAHALANOBIS MAH  upan(%,y) =/ (x=y) L (x—)
MANHATTAN MAN  uptan(x,y) = L5 [xj =yl
) 1
MINKOWSKI MIN  upgin, (x,y) = (L, |xj —y;|")7
TCHEBYTCHEV TCH  upen(x,y) = maxi<j<p |x; —yjl
COSINE DISSIMILARITY ~ COS  ucys(x,y) =1— m
CANBERRA CAN  ucan(x,y) =X2_, el
[7]7 ‘le""y/l 5
SQUARED CHORD SC  usc(x,y) = XI_ (/% — 7))
WEIGHTED EUCLIDEAN ~ WE g (x,y) = /Ef_, 0i(xj —y))?
—m:)?
CHI-SQUARE X wpy)=xh %
J= J ) -
JEFFREY DIVERGENCE ID  up(x,y) :Z?Zl(x]-log%+yjlog )
N J J
PEARSON’S CORRELATION p up(x,y) =1—|p(x,y)|
NORMALIZED EUCLIDEAN NE  uyg(x,y) = 57,1(%)2
- J

Where p is the dimension of space, x = (x;)j=1,.., and y = (y;)j=1,...,, tWo points in RP,

yerey

mj= % and p(x,y) denotes the linear correlation coefficient of Bravais-Pearson.

Definition 1. Equivalence in preordonnance: Let us consider two proximity measures
u; and u;j to be compared. If for any quadruple (x,y,z,t), we have: u;j(x,y) < u;i(z,t) =
uj(x,y) <uj(z,t), then, the two measures are considered equivalent.

This definition has since reproduced in many papers such as [2], [3], [8] and [28].
This definition leads to an interesting theorem which is demonstrated in [2].

Theorem 1. Eguivalence in preordonnance: with two proximity measures u; and uj,
if there is a strictly monotonic function f such that for every pair of objects (x,y) we
have: uj(x,y) = f(u;(x,y)), then u; and u; induce identical preorder and therefore they
are equivalent. The converse is also true.

In order to compare proximity measures u; and u;, we need to define an index that
could be used as a similarity value between them. We denote this by S(u;,u;). For
example, we can use the following similarity index which is based on preordonnance.

S(uivuj) = nithnyzzZt 5ij(x7y7z7t)
1if [ui(x7y) - I/t,'(Z,t)] X [M](x7y) - Mj(zat)] >0
where 6;(x,y,z,t) = or uj(x,y) = ui(z,1) and u;(x,y) = u;(z,1)
0 otherwise
S varies in the range [0, 1]. Hence, for two proximity measures u; and u;, a value

of 1 means that the preorder induced by the two proximity measures is the same and
therefore the two proximity matrices of u; and u; are equivalent.



The workflow in Fig 1 summarizes the process that leads to the similarity matrix

between proximity measures.

Qn,p)
matrix of
dataset

proximity

matrix

similarity
matrix

Fig. 1. Workflow of preorder equivalence

As an example, in Table 2 we show the similarity matrix between the 13 proximity
measures. This is the result of the work flow on the iris dataset.

Table 2. Preordonnance similarities: S(u;,u )

S

UE UMah UMan UMin, UTch UCos UCan USC UWE Uy2 UJD Up UNE

Uug
UMah
UMan
UMin,
UTch
UCos
UCan

usc
UWE

MX2

ujp

Up

UNE

1

713
.966
987
954
.860
.889
947

1

951
.949
.857
911

1

709
712
.694
.698
.678
703
713
705
704
.682
751

1
955
927
.848
.888
935
.966
939
937
.845
915

1

965
.864
.886
946
987
950
947
.862
905

1
.857
.869
926
954
930
928
.856
.882

1

.861
.880
.860
.881
.880
.940
.838

1

932
.889
930
931
.839
872

1
947 1
995 951 1
2998 .949 997 1
.865 .857 .866 .865 1
.898 911 .901 .899 .830 1

The comparison between indices of proximity measures has also been studied by
[19], [20] from a statistical perspective. The authors proposed an approach that com-
pares similarity matrices, obtained by each proximity measure, using Mantel’s test [13],
in a pairwise manner.

3 Topological equivalence

This approach is based on the concept of a topological graph which uses a neighborhood
graph. The basic idea is quite simple: we can associate a neighborhood graph to each
proximity measure ( this is -our topological graph- ) from which we can say that two
proximity measures are equivalent if the topological graphs induced are the same. To
evaluate the similarity between proximity measures, we compare neighborhood graphs
and quantify to what extent they are equivalent.



3.1 Topological graphs

For a proximity measure u, we can build a neighborhood graph on a set of individuals
where the vertices are the individuals and the edges are defined by a neighborhood rela-
tionship property. We thus simplify have to define the neighborhood binary relationship
between all couples of individuals. We have plenty of possibilities for defining this re-
lationship. For instance, we can use the definition of the Relative Neighborhood Graph
[16], where two individuals are related if they satisfy the following property:

If u(x,y) < max(u(x,z),u(y,z)); Vz # x, # y then, V,,(x,y) = 1 otherwise V,,(x,y) =0.

Geometrically, this property means that the hyper-lunula (the intersection of the
two hyper-spheres centered on two points) is empty. The set of couples that satisfy
this property result in a related graph such as that shown in Figure 2. For the example
shown, the proximity measure used is the Euclidean distance. The topological graph is
fully defined by the adjacency matrix as in Figure 2.

X, Vil..Xyztu...

s+ N < x>
o .
—
—_
o
—_

Fig. 2. Topological graph built on RNG property.

In order to use the topological approach, the property of the relationship must lead
to a related graph. Of the various possibilities for defining the binary relationship, we
can use the properties in a Gabriel Graph or any other algorithm that leads to a related
graph such as the Minimal Spanning Tree, MST. For our work, we use only the Relative
Neighborhood Graph, RNG, because of the relationship there is between those graphs
[16].

3.2 Similarity between proximity measures in topological frameworks

From the previous material, using topological graphs (represented by an adjacency ma-
trix), we can evaluate the similarity between two proximity measures via the similarity
between the topological graphs each one produces. To do so, we just need the adjacency
matrix associated with each graph. The workflow is represented in Figure 3.

Note that V,,, and V,; are the two adjacency matrices associated with both proximity
measures. To measure the degree of similarity between the two proximity measures, we
just count the number of discordances between the two adjacency matrices. The value
is computed as:

Lif V. (x,y) =V,.(x,y)
1 IR y
SV Vuy) = 5 Lxe Lyea 0ij(x,y)  where §;j(x,y) = { N EA

0 otherwise
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Fig. 3. Workflow of topological equivalence

S is the measure of similarity which varies in the range [0,1]. A value of 1 means
that the two adjacency matrices are identical and therefore the topological structure in-
duced by the two proximity measures in the same, meaning that the proximity measures
considered are equivalent. A value of 0 means that there is a full discordance between
the two matrices ( V,, (x,y) # Vi; (x,y) Vo € ©?). S is thus the extent of agreement be-
tween the adjacency matrices. The similarity values between the 13 proximity measures
in the topological framework for iris are given in Table 3.

Table 3. Topology similarities: S(u;,u;)

S | uE Umah UMan UMin, UTch UCos UCan USC UWE Uyz UJD Up UNE
Ug 1

Upan |-978 1

Upman | 988 974 1

UMin,|-998 977 987 1

urey 980 966 971 982 1

ucos |-973 972 968 973 959 1

Ucgn |-982 975 984 981 967 971 1

usc |.989 979 984 987 973 974 988 1

uwg | 1978 988 998 980 .973 .982 989 1

uy> |.989 979 984 987 973 974 988 1 989 1

up |.989 979 984 987 973 974 988 1 989 1 1

up 971 971 967 .970 .958 .980 .969 .971 .971 971 971 1
unyg |985 979 984 984 971 972 983 985 .985 .985 985 970 1

4 Relationship between topological and preordonnance
equivalences

4.1 Theoretical results

We have found some theoretical results that establish a relationship between topolog-
ical and preordonnance approaches. For example, from Theorem 1 of preordonnance
equivalence we can deduce the following property, which states that in the case where
f is strictly monotonic then if the preorder is preserved this implies that the topology is
preserved and vice versa. This property can be formulated as follows:

Property 1. Let f be a strictly monotonic function of R in R™, u; and u; two proximity
measures such that: u;(x,y) — f(ui(x,y)) = u;j(x,y) then,
ui(x,y) < max(ui(x,2), ui(y,2)) < uj(x,y) < max(u;(x,2), u;(y,z)).



Proof. Let us assume that max(u;(x,z) , ui(y,2)) = ui(x,2),
by Theorem 1, we provide u;(x,y) < ui(x,z) = f(ui(x,y)) <
again, ui(y,2) <ui(x,2) = fui(y,2)) < f(ui(x,z))
= Flui(x,2)) < max(f(ui(x,2)), F(ui(2.2))s
hence the result, uj(x,y) < max(uj(x,z),uj(y,z)).
The reciprocal implication is true, because if f is continuous and strictly monotonic
then its inverse f~! is continuous in the same direction of variation as f. a

Proposition 1. In the context of topological structures induced by the relative neigh-
bors graph, if two proximity measures u; and uj are equivalent in preordonnance, they
are necessarily topologically equivalent.

Proof. 1f u; = u; (preordonnance equivalence) then,
ui(x,y) <ui(z,t) = uj(x,y) <uj(z,t) Vx,y,z,t €RP.
We have, especially fort =x =y and 7 #1¢,
ui(x,y) < ui(z,x) = uj(x,y) <uj(z,x)
ui(x,y) <ui(z,y) = uj(x,y) <u;(z,y)
we deduce, u;(x,y) < max(ui(z,x),u;i(z,y)) = uj(x,y) < max(u;(z,x),u;(z,y))
using symmetry property P1,
ui(xay) < max(ui(xvz)vui(y’z)) = uj(xay) < max(uj(x,z),uj(y,z))
hence, u; = u; (topological equivalence). a

It is easy to show the following theorem from the proof of property 1.

Theorem 2. Equivalence in topology. Let u; and uj be two proximity measures, if there
is a strictly monotonic function f such that for every pair of objects (x,y) we have:
ui(x,y) = f(uj(x,y)) then, u; and u; induce identical topological graphs and therefore
they are equivalent.

The converse is also true, i.e. two proximity measures which are dependent on each
other induce the same topology and are therefore equivalent.

4.2 Empirical comparisons

Comparison of proximity measures We want to visualize the similarities between
the proximity measures in order to see which measures are close to one another. As we
already have a similarity matrix between proximity measures, we can use any classic
visualization techniques to achieve this. For example, we can build a dendrogram of
hierarchical clustering of the proximity measures. We can also use Multidimensional
scaling or any other technique such as Laplacian projection to map the 13 proximity
measures into a two dimensional space. As an illustration we show (Figure 4) the results
of the Hierarchical Clustering Algorithm, HCA, on the iris dataset according to the two
similarity matrices (Table 2 and Table 3) associated with each approach.

Now the user has two approaches, topological and preordonnance, to assess the
closeness between proximity measures relative to a given dataset. This assessment
might be helpful for choosing suitable proximity measures for a specific problem. Of
course, there are still many questions. For instance, does the clustering of proximity
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Fig. 4. Comparison of hierarchical trees

measures remain identical when the data set changes? What is the sensitivity of the
empirical results when we vary the number of variables or samples within the same
dataset? To answer these questions we carried out a series of experiments. The core
idea of these experiments was to study whether proximity measures are clustered in the
same way regardless of the dataset used. To this end, given a dataset with N individuals
and P variables, we verified the effect of varying the sample size, N, and dimension, P,
within a given dataset and using different datasets. All datasets in our experiments were
taken from the UCI repository, [24], as shown in Table 4.

Table 4. Datasets used in our experiments.

Dataset Id Name Dimension
1 Breast Tissue 106 x 9
2 Connectionist Bench 208 x 60
3 Iris 150 x 4
4 Libras movement 360 x 91
5 Parkinsons 195 x 23
6 Waveform Database Generator (Version 2)5000 x 40
7 Wine 178 x 13
8 Yeast 1484 x 8

— Sensitivity to change in dimension: To examine the effect of changing the dimen-
sion within a given dataset, the wave form data setwas used. 4 samples were gener-
ated by taking 10, 20, 30, and 40 variables from the dataset with 2000 individuals
for the topological approach and 200 samples for the preorder approach. The re-
sults given in Tables 5 and 6 respectively show that there was a slight change in the
clustering but that we could observe some stability.

— Sensitivity to change in sample size: To examine the influence of changing the num-
ber of individuals, we generated five samples from the waveform dataset varying



Table 5. The influence of varying number of variables in a data set, topological

Expt Data set Cluster of Proximity Measures

1 |wave form[2000, 10][{Tch}, {Man, Can}, {Cos, Pir}, {chSqr, Sc, JD, Euc, EucW, Min, NEuc, Mah}
2 |wave form[2000, 20]|{Tch}, {Man, Can}, {chSqr, Sc, JD, NEuc}, {Euc, EucW, Min, Cos, Pir, Mah}
3 [wave form[2000, 30][{Tch}, {Man, Can}, {chSqr, Sc, D, NEuc, Mah}, {Euc, EucW, Min, Cos, Pir}
4 [wave form[2000, 40][{Tch}, {Man, Can}, {chSqr, Sc, JD, NEuc, Mah}, {Euc, EucW, Min, Cos, Pir}

Table 6. The influence of varying number of variables in a data set, preorder

Expt Data set Cluster of Proximity Measures

1 |wave form[200, 10]| {Cos, Pir}, {Mah, NEuc}, {chSqr, Sc, JD, Man, Can}, {Tch, Min, Euc, EucW
wave form[200, 20]| {Tch}, {Mah}, {chSqr, Sc, JD, NEuc, Man, Can}, {Pir, Cos, Min, Euc, EucW
wave form[200, 30]| {Tch}, {Mah}, {chSqr, Sc, JD, NEuc, Man, Can}, {Pir, Cos, Min, Euc, EucW
wave form[200, 40]|{Tch}, {Mah}, {ChSqr, Sc, JD, NEuc, Man, Can}, {Pir, Cos, Min, Euc, EucW}

W N

IS

the sample size from 1000 to 5000 for the topological approach and 100 to 400
for the preorder approach because of the complexity of the algorithm. The number
of variables, 40, was the same for all experiments. The results of HCA clustering
using each approach are shown in Tables 7 and 8 respectively. Clearly, there was a
slight change in the clustering but it seems there was a relative stability.

Table 7. The influence of varying size of individuals in a data set, topological

Expt|Data set Cluster of Proximity Measures
1 |wave form[1000, 40]|{Tch}, {Mah}, {Man, Can}, {Euc, EucW, Cos, Min, Pir, ChSqr, Sc, JD, NEuc
2 |wave form[2000, 40][{Tch}, {Mah, Man, Can}, {Euc, EucW, Cos, Min, Pir}, {ChSqr, Sc, JD, NEuc
3 |wave form[3000, 40][{Tch}, {Man, Can}, {Euc, EucW, Cos, Min, Pir}, {ChSqr, Sc, JD, NEuc, Mah
4 |wave form[4000, 40]|{Tch}, {Man, Can}, {Euc, EucW, Cos, Min, Pir}, {ChSqr, Sc, JD, NEuc, Mah
5 |wave form[5000, 40]|{Tch}, {Man, Can}, {Euc, EucW, Cos, Min, Pir}, {ChSqr, Sc, JD, NEuc, Mah
Table 8. The influence of varying size of individuals in a data set, preorder
Expt|Data set Cluster of Proximity Measures

1 |wave form[100, 40][{Tch}, {Mah}, {Pir, Min, Cos, Euc, EucW }, {ChSqr, Sc, JD, NEuc, Man, Can
wave form[200, 40][{Tch}, {Mah}, {Pir, Min, Cos, Euc, EucW }, {ChSqr, Sc, JD, NEuc, Man, Can
wave form[300, 40]|{Can}, {Man, Tch, Pir}, {Euc, EucW, Cos, Min}, {ChSqr, Sc, JD, NEuc, Mah
wave form[400, 40]{{Min, ChSqr}, {Man, JD, Mah, Sc, NEuc}, {Cos, Pir}, {Tch, Can, Euc, EucW}

| W

— Sensitivity to varying data sets: To examine the effect of changing the data sets, the
two approaches were tested with various datasets. The results are shown in Tables
9 and 10. In the topological approach, regularity {chSqr, SC, JD} and {Euc, EucW,
Min} was observed regardless of the change in individuals and variables within the
same dataset or across different datasets.

Table 9. The influence of varying datasets, topological

Expt|Data set Cluster of Proximity Measures
1 |Iris [150, 4] {Pir, Cos}, {Mah}, {Euc, EucW, Min, Tch} , {chSqr, Sc, JD, NEuc, Man, Can}

2 |Breast Tissue[106, 9] |{Sc, D}, {Euc, EucW, Min, Tch, Man, chSqr}, {Cos, Pir}, {Mah, Can, NEuc}
3 [Parkinsons [195, 23] [{chSqr, Sc, ID }, {Euc, EucW, Min, Man, Tch}, {Pir, Cos}, {NEuc, Can, Mah}
4 |[C.Bench [208, 60] chSqr, Sc, ID }, {Tch}, {Can, NEuc}, {Euc, EucW, Min, Cos, Pir, Man, Mah
5 |Wine [178, 13] chSqr, Sc, ID}, {Euc, EucW, Min, Man, Tch}, {Cos, Pir}, {Mah, Can, NEuc
6 |Yeast [1484, 8] chSqr}, {JD}, {Tch}, {Cos, Pir, Sc, Euc, EucW, Min, Mah, NEuc, Man, Can
7 |L.Movement [360, 91]| {JD}, {Mah}, {Cos, Pir, Tch}, {Euc, EucW, Min, NEuc, chSqr, Sc, Man, Can
8

wave form[5000, 40] [{Tch}, {Man, Can}, {Euc, EucW, Cos, Min, Pir}, {ChSqr, Sc, JD, NEuc, Mah}




Table 10. The influence of varying datasets, preorder

Expt|Data set Cluster of Proximity Measures

1 |Iris [150, 4] {Mah}, {Cos, Pir}, {Euc, EucW, Min, Man, Tch, NEuc} , {Can, chSqr, Sc, JD}
2 |Breast Tissue[106, 9] | {Cos, Pir}, {Sc,JD}, {Mah, Can, NEuc}, {Euc, EucW, Min, Tch, Man, chSqr}
3 |Parkinsons [195, 23] | {Mah}, {Can, NEuc}, {Cos, Pir}, {chSqr, Sc, JD ,Euc, EucW, Min, Man, Tch}
4 |Wine [178, 13] {Mah}, {Can, NEuc}, {Cos, Pir}, {chSqr, Sc, ID, Euc, EucW, Min, Man, Tch}
5 |L.Movement [360, 91]|{Can, NEuc, WEuc, Euc, Pir}, {Man, Min}, {Mah, Tch, Sc}, {JD, Cos, ChSqr}

5 Conclusion

In this paper, we have proposed a new approach for comparing proximity measures
with complexity O(n?). This approach produces results that are not totally identical to
those produced by former methods. One might wonder which approach is the best. We
believe that this question is not relevant. The topological approach described here has
some connections with preordonnance, but proposes another point of view for compar-
ison. The topological approach has a lower time complexity. From theoretical analysis,
when a proximity measure is a function of another proximity measure then we have
shown that the two proximity measures are identical for both approaches. When this is
not the case, the experimental analysis showed that there is sensitivity to sample size,
dimensionality and the dataset used.
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