
Spanning trees and the complexity of flood-filling

games

Kitty Meeks and Alexander Scott
Mathematical Institute, University of Oxford, 24-29 St Giles, Oxford OX1 3LB, UK

{meeks,scott}@maths.ox.ac.uk

March 30, 2012

Abstract

We consider problems related to the combinatorial game (Free-)
Flood-It, in which players aim to make a coloured graph monochro-
matic with the minimum possible number of flooding operations. We
show that the minimum number of moves required to flood any given
graph G is equal to the minimum, taken over all spanning trees T of
G, of the number of moves required to flood T . This result is then ap-
plied to give two polynomial-time algorithms for flood-filling problems.
Firstly, we can compute in polynomial time the minimum number of
moves required to flood a graph with only a polynomial number of con-
nected subgraphs. Secondly, given any coloured connected graph and
a subset of the vertices of bounded size, the number of moves required
to connect this subset can be computed in polynomial time.

1 Introduction

In this paper we consider several problems related to the one-player combi-
natorial game (Free-)Flood-It, introduced as a topic for theoretical research
by Arthur, Clifford, Jalsenius, Montanaro and Sach at FUN 2010 [5]. The
game is played on a coloured graph, and the goal is to make the entire graph
monochromatic with as few moves as possible. A move involves picking a
vertex v and a colour d, and giving all vertices in the same monochromatic
component as v colour d.

When the game is played on a planar graph, it can be regarded as mod-
elling repeated use of the flood-fill tool in Microsoft Paint. Implementations
of the game, played on a square grid, are widely available online, and include
a flash game [1] as well as popular smartphone apps [2, 3]. Mad Virus [4]

1

is a version of the same game played on a hexagonal grid, while the Honey
Bee Game [6] is a two player variant played on a triangular grid, analysed
by Fleischer and Woeginger at FUN 2010 [9].

For any coloured graph, we define the following problems.

• Free-Flood-It is the problem of determining the minimum number
of moves required to flood the coloured graph. The number of colours
may be unbounded.

• c-Free-Flood-It is the variant of Free-Flood-It in which only
colours from some fixed set of size c are used.

A related problem which naturally arises when considering algorithms for
Flood-It is to consider the number of moves required to connect a given set
of vertices.

• k-Linking Flood-It is the problem, given a subset U of at most
k vertices, of determining the minimum number of moves required
to create a monochromatic component containing U . The number of
colours may be unbounded.

The implementations of the game mentioned above are in fact of a variant
in which all moves must be played at some fixed root vertex; we refer to the
problem of determining the minimum number of moves required to flood the
board in this case as Fixed-Flood-It.1

In [5], Arthur, Clifford, Jalsenius, Montanaro and Sach proved that c-
Free-Flood-It is NP-hard in the case of an n×n grid, for every c ≥ 3, and
that this result also holds for the fixed variant. Lagoutte, Noual and Thierry
[11, 12] showed that the same result holds when the game is played instead
on a hexagonal or triangluar grid, as in Mad Virus or a one-player version
of the Honey Bee Game respectively. Lagoutte et. al. [11, 12] and Fukui,
Nakanishi, Uehara, Uno and Uno [10] also proved that c-Free-Flood-It
remains NP-hard when restricted to trees, for every c ≥ 3.

A few positive results are known, however. 2-Free-Flood-It is solvable
in polynomial time on arbitrary graphs, a result shown independently by
Clifford et. al. [7], Lagoutte [11] and Meeks and Scott [13]. It is also known
that Free-Flood-It is solvable in polynomial time on paths [7, 13, 10] and
cycles [10]. Although c-Free-Flood-It is NP-hard on rectangular 3 × n
boards for any c ≥ 4 [13], c-Free-Flood-It is fixed parameter tractable

1Fixed Flood It is often referred to as simply Flood-It, but we use the longer name
to avoid confusion with the free version.

2

with parameter c when restricted to 2×n boards (Meeks and Scott [14]), and
the fixed variant can be solved in linear time in this situation [7]. Meeks and
Scott [13] also show that 2-Linking Flood-It can be solved in polynomial
time for arbitrary graphs, even when the number of colours is unbounded.

In this paper we give some more general tractability results, which do not
require the number of colours to be bounded. Our first such result is that
Free-Flood-It can be solved in polynomial time on the class of graphs
which have only a polynomial number of connected subgraphs. This class
includes a number of interesting families of graphs, and the result implies a
conjecture from [13] that the problem can be solved in polynomial time on
subdivisions of any fixed graph. This substantially extends a result of Fukui,
Nakanishi, Uehara, Uno and Uno [10], that the problem is polynomially
solvable on cycles.

We then go on to consider k-Linking-Flood-It. We prove that, for
any fixed k, it is possible to solve k-Linking-Flood-It in polynomial time,
without imposing any restrictions on the underlying graph or initial colour-
ing.

The key tool we use to prove these tractability results is a result which
allows us to consider only spanning trees of the graph G in order to deter-
mine the minimum number of moves required to flood it. Clearly this does
not immediately allow us to solve Free-Flood-It, as the problem remains
hard even on trees, and a graph will in general have an exponential number
of subgraphs. However, the result does provide a very useful method for rea-
soning about the behaviour of sequences of flooding operations on arbitrary
graphs.

We begin in Sect. 2 with some notation and definitions, then in Sect. 3
we outline the proof of our result about spanning trees, and give a number
of corollaries. Section 4 is concerned with the complexity of Free-Flood-
It and the fixed variant on graphs containing only a polynomial number
of connected subgraphs, and in Sect. 5 we consider the complexity of k-
Linking-Flood-It.

2 Notation and Definitions

Suppose the game is played on a graph G = (V,E), with an initial colouring
ω (not necessarily proper) using colours from the colour-set C. Each move
m = (v, d) then involves choosing some vertex v ∈ V and a colour d ∈ C, and
assigning colour d to all vertices in the same monochromatic component as v.
The goal is to make every vertex in G the same colour, using as few moves

3

as possible. We define mG(G,ω, d) to be the minimum number of moves
required in the free variant to give all its vertices colour d, and mG(G,ω) to
be mind∈C m(G,ω, d).

Let A be any subset of V . We set mG(A,ω, d) to be the minimum
number of moves we must play in G (with initial colouring ω) to give every
vertex in A colour d, and mG(A,ω) = mind∈C mG(A,ω, d). We write ω|A
for the colouring ω restricted to the subset A (and use the same notation
ω|H for the restriction of ω to the vertices of a subgraph H). We say a move
m = (v, d) is played in A if v ∈ A, and that A is linked if it is contained in
a single monochromatic component. Subsets A,B ⊆ V are adjacent if there
exists ab ∈ E with a ∈ A and b ∈ B.

For any vertex v ∈ V , we write compG(v, ω) to denote the monochro-
matic component of G, with respect to ω, that contains v. Given any se-
quence of moves S on a graph G with initial colouring ω, we denote by
S(ω,G) (or simply S(ω) if G is clear from the context) the new colouring
obtained by playing S in G.

3 Spanning Trees

In this section we investigate the relationship between the number of moves
required to flood a connected graph G and the number of moves required to
flood spanning trees of G. For any connected graph G, let T (G) denote the
set of all spanning trees of G. We prove the following result.

Theorem 3.1. Let G be a connected graph with colouring ω from colour-set
C. Then, for any d ∈ C,

mG(G,ω, d) = min
T∈T (G)

mT (T, ω, d).

Since it remains hard to solve 3-Free-Flood-It on trees, this result
does not imply that the number of moves required to flood a graph with only
a polynomial number of spanning trees can be computed in polynomial time.
However, this equality gives rise to a number of corollaries, proved later in
this section, which are then applied to give polynomial-time algorithms for
various flood-filling problems in Sects 4 and 5.

We now outline the proof of Theorem 3.1. Our strategy is to prove both
the inequalities minT∈T (G)mT (T, ω, d) ≤ mG(G,ω, d) and mG(G,ω, d) ≤
minT∈T (G)mT (T, ω, d), giving the result. Due to space constraints, details

4

of the proofs are omitted in this section and are left for the journal version
[15].

The key step in proving that minT∈T (G)mT (T, ω, d) ≤ mG(G,ω, d) is
the following lemma, which allows us to consider independently optimal
sequences to flood disjoint subtrees of a tree.

Lemma 3.2. Let T be a tree, with colouring ω from colour-set C, and let A
and B be disjoint subsets of V (T) such that V (T) = A ∪ B and T [A], T [B]
are connected. Then, for any d ∈ C,

mT (T, ω, d) ≤ mT [A](A,ω|A, d) +mT [B](B,ω|B, d).

We use this result to argue that, given an optimal sequence of moves S
to flood a graph G, we can construct inductively a spanning tree T for G
such that playing S in T will flood the tree.

We also make use of Lemma 3.2 in the proof of the reverse inequality.
First, we introduce some further notation. We call a spanning tree T of
G d-minimal (with respect to ω) if mT (T, ω, d) = minT ′∈T (G)mT ′(T ′, ω, d),
and say that a spanning tree T preserves monochromatic components of G
(with respect to ω) if T and G have the same monochromatic components,
i.e. compG(v, ω) = compT (v, ω) for all v ∈ V (G).

Our first step is to show that, given any tree T and an edge e /∈ E(T),
we can replace T by another tree T ′ that contains e, without increasing the
number of moves we need to flood the tree. The proof of this lemma relies
heavily on Lemma 3.2.

Lemma 3.3. Let T be a tree with colouring ω from colour-set C, and suppose
e = uv /∈ E(T). Then, for any d ∈ C, there exists a spanning tree T ′ of
T ∪ {e}, with e ∈ E(T ′), such that mT ′(T ′, ω, d) ≤ mT (T, ω, d).

We then proceed to show that every coloured graph has a d-minimal
spanning tree that preserves monochromatic components.

Lemma 3.4. Let G = (V,E) be a connected graph with colouring ω from
colour-set C. Then, for any d ∈ C, there exists a d-minimal spanning tree
for G that preserves monochromatic components of G with respect to ω.

To complete the proof that mG(G,ω, d) ≤ minT∈T (G)mT (T, ω, d), we
argue that, if T is a d-minimal spanning tree for G (with colouring ω), then
mG(G,ω, d) ≤ mT (T, ω, d). This completes our proof of Theorem 3.1.

5

By exploiting Theorem 3.1, it is possible to generalise Lemma 3.2 very
substantially: note that this extends Lemma 3.2 from trees to arbitrary
graphs, and that we do not require A and B to be disjoint.

Corollary 3.5. Let G be a connected graph, with colouring ω from colour-
set C, and let A and B be subsets of V (G) such that V (G) = A ∪ B and
G[A], G[B] are connected. Then, for any d ∈ C,

mG(G,ω, d) ≤ mG[A](A,ω|A, d) +mG[B](B,ω|B, d).

Theorem 3.1 also allows us show that, if H is a subgraph of G, the
number of moves we must play in G to link the vertices of H is at most the
number required to flood the isolated subgraph H.

Corollary 3.6. Let G be a connected graph with colouring ω from colour-set
C, and H a connected subgraph of G. Then, for any d ∈ C,

mG(V (H), ω, d) ≤ mH(H,ω|H , d).

Finally, we consider the number of moves required to connect a given
subset of the vertices of G. For any U ⊆ V (G), let T (U,G) be the set of all
subtrees T of G such that U ⊆ V (T). We then characterise the number of
moves required to link U in terms of the number of moves required to flood
elements of T (U,G). The following result then follows easily from Theorem
3.1 and Corollary 3.6.

Lemma 3.7. Let G be a connected graph with colouring ω from colour-set
C, and let U ⊆ V (G). Then, for any d ∈ C,

mG(U, ω, d) = min
T∈T (U,G)

mT (T, ω|T , d).

4 Graphs with Polynomial Bounds on the Num-
bers of Connected Subgraphs

Given a vertex v in an arbitrary graph G, the number of possible values of
compG(v, ω), as ω ranges over all possible colourings of G, will in general

6

be exponential. However, it is clear that compG(v, ω) must be a connected
subgraph of G containing v, and in some interesting classes of graphs the
number of connected subgraphs containing any given vertex is bounded by a
polynomial function of |G|. In this section we apply corollaries of Theorem
3.1 to show that Free-Flood-It can be solved in polynomial time in this
situation. Fixed-Flood-It is also polynomially solvable on this class of
graphs, a result proved directly in the journal version [15].

It should be noted, however, that this condition is not necessary for a
graph to admit a polynomial-time algorithm to solve Free-Flood-It. Kn

has Θ(2n) connected induced subgraphs, but the number of moves required
to flood the graph in either version of the game is always one fewer than
the number of colours used in the initial colouring. Graphs corresponding
to rectangular 2 × n boards give another such example for the fixed case,
as there are Ω(2n) connected subgraphs containing any given vertex but
Fixed-Flood-It can be solved in linear time in this setting [7].

4.1 The FREE-FLOOD-IT Case

In this section we prove the following theorem.

Theorem 4.1. Let p be a polynomial, and let Gp be the class of graphs such
that, for any G ∈ Gp, the number of connected subgraphs of G is at most
p(|G|). Suppose G ∈ Gp has colouring ω from colour-set C. Then, for any
d ∈ C, we can compute m(G,ω, d) in polynomial time, and hence we can
also compute m(G,ω) in polynomial time.

It is easy to check that, if G is a subdivision of some fixed graph H, the
number of connected subgraphs of G is bounded by a polynomial function
of |G|, and so Theorem 4.1 implies a conjecture of Meeks and Scott [13].

Corollary 4.2. Free-Flood-It is solvable in polynomial time on subdivi-
sions of any fixed graph H.

In the next theorem, we give an explicit bound on the time taken to
solve Free-Flood-It in terms of the number of connected subgraphs in
the graph we are considering. The proof relies on Corollary 3.5, which
allows us to consider optimal sequences in distinct components of the graph
independently. Theorem 4.1 follows immediately from this result.

Theorem 4.3. Let G be a connected graph with colouring ω from colour-set
C, and suppose G has at most N connected subgraphs. Then we can compute
mG(G,ω, d) for each d ∈ C, and hence mG(G,ω), in time O(|C|3 ·N3).

7

Proof. Note that we may assume without loss of generality that ω is a proper
colouring of G, otherwise we can contract monochromatic components to ob-
tain an equivalent coloured graph. Let H be the set of connected subgraphs
of G. We compute mH(H,ω|H , d1) recursively, for each H ∈ H and d1 ∈ C.
For any H ∈ H we write (A,B) ∈ split(H) if A and B are connected proper
subgraphs of H such that V (A) ∪ V (B) = V (H), and V (A) ∩ V (B) = ∅.

We define a function m∗(H,ω|H , d1), and claim that for any H ∈ H and
d1 ∈ C, we have mH(H,ω|H , d1) = m∗(H,ω|H , d1). We first define

m∗({v}, ω|v, d1) =

{
0 if ω(v) = d1

1 otherwise.

and observe that this gives mH(H,ω|H , d1) = m∗(H,ω|H , d1) whenever
|H| = 1. Further values of m∗ are defined recursively using as follows:

m∗(H,ω|H , d1) =

min{ min
(A,B)∈split(H)

{mA(A,ω|A, d1) +mB(B,ω|B, d1)},

1 + min
(A,B)∈split(H)

d2∈C

{mA(A,ω|A, d2) +mB(B,ωB, d2)}}, (1)

The fact that mH(H,ω|H , d1) ≤ m∗(H,ω|H , d1) follows from Corol-
lary 3.5. To see the reverse inequality in the case that |H| > 1 (and
so by assumption H is not monochromatic under ω), we consider the fi-
nal move α in an optimal sequence to flood H with colour d1: either α
changes the colour of some monochromatic area X, linking it to monochro-
matic areas Y1, . . . , Yr which already have colour d1, or else H is already
monochromatic in some colour d2 before the final move, and α simply
changes its colour to d1. In the first case, we set A = Y1 and B =
X ∪ Y2 ∪ . . . ∪ Yr, and note that the disjoint subsequences of S consist-
ing of moves played in A and B respectively flood the relevant subgraphs
with colour d1. Hence |S| ≥ mA(A,ω|A, d1) + mB(B,ω|B, d1). In the case
that H is monochromatic before α, we observe that H cannot be monochro-
matic before the penultimate move of S (otherwise S would not be optimal)
and apply the reasoning above to the initial segment S′ of S in which the
final move is omitted, a sequence which floods H with colour d2: there ex-
ists (A,B) ∈ split(H) such that |S′| ≥ mA(A,ω|A, d2)+mB(B,ω|B, d2), and
hence |S| ≥ 1 + mA(A,ω|A, d2) + mB(B,ω|B, d2). Thus in either case we
have m∗(H,ω|H , d1) ≤ mH(H,ω|H , d1).

Observe that every subgraph on the right hand side of (1) is strictly
smaller than H, and so a recursion based on this relationship will terminate.

8

Thus it remains to show that we can calculate m∗(H,ω|H , d1) for all H ∈ H
and d1 ∈ C in time O(|C|3 ·N3).

First we need to construct a list of all connected subgraphs of G. Clearly
each vertex in the graph is a connected subgraph of order one, and given all
connected subgraphs of order k we can construct all connected subgraphs
of order k + 1 by considering all possible ways of adding a vertex. Thus,
if Ni denotes the number of connected subgraphs of order i in G, we can
construct the list in time

n+

n−1∑
i=1

Ni(n− i) ≤ n ·N = O(N2).

To compute m∗, we begin by initialising the table in time O(|G|), then all
further values of m∗ are then calculated as the minimum over combinations
of two other entries. As our table has N · |C| entries, there are at most
N2 · |C|2 combinations we need to consider, and so we can compute all
entries in time at most O(N3 · |C|3). This immediately gives mG(G,ω, d1)
for each d1 ∈ C, and to compute mG(G,ω) we simply take the minimum
over |C| entries. Thus we can compute both mG(G,ω, d) and mG(G,ω) in
time O(N3 · |C|3).

5 The Complexity of k-LINKING FLOOD IT

In this section we use results from Sect. 3 to show that k-Linking-Flood-
It, the problem of determining the minimum number of moves required to
link some given set of k points (when moves can be played at any vertex),
is solvable in polynomial time for any fixed k. Some details of the proof are
omitted here due to space constraints; a full proof can be found in [15].

We begin with some additional notation. Let U be a subset of V (G).
We will say (U1, U2) ∈ part(U) if U1 and U2 are disjoint nonempty subsets
of U such that U = U1 ∪U2. Recall that T (U,G) is the set of all subtrees T
of G such that U ⊆ V (T). For 1 ≤ i ≤ |G|, set Ti(U,G) = {T ∈ T (U,G) :
|T | ≤ i}.

Theorem 5.1. Let G = (V,E) be a connected graph of order n, with proper
colouring ω from colour-set C, and let U ⊆ V with |U | = k. Then, for any
d ∈ C, we can compute mG(U, ω, d) in time O(nk+3 · |E| · |C|2 · 2k).

Proof. We demonstrate a dynamic programming algorithm to compute val-
ues of a function f , taking as arguments a nonempty subset W ⊂ V of at

9

most k vertices, the initial colouring ω of the graph, a colour d1 ∈ C, and
an index i ∈ {1, . . . , n}. We show that, for any values of these arguments,
we have

f(W,ω, d1, i) =

{
minT∈Ti(W,G)mT (T, ω|T , d1) if Ti(W,G) 6= ∅
∞ otherwise.

Thus, as Tn(U,G) 6= ∅, we see by Lemma 3.7 that

mG(U, ω, d) = min
T∈T (U,G)

mT (T, ω|T , d)

= min
T∈Tn(W,G)

mT (T, ω|T , d)

=f(U, ω, d, n).

We initialise our table by setting

f(W,ω, d1, 1) =

∞ if |W | ≥ 2

1 if W = {w} and ω(w) 6= d1

0 if W = {w} and ω(w) = d1,

and observe that this gives the desired value of f(W,ω, d1, 1) for all choices
of W and d1.

We define further values of f inductively. First, for any W , ω, d1 and i,
we set

poss(W,ω, d1, i) = {((W1 ∪ {x1}, ω, d1, j1), (W2 ∪ {x2}, ω, d1, j2)) :

(W1,W2) ∈ part(W), x1x2 ∈ E, x1 /∈W2, x2 /∈W1,

j1 + j2 = i, j1, j2 > 0},

so there is an element of poss(W,ω, d1, i) corresponding to each way of par-
titioning W into two non-empty subsets, and each pair of positive integers
summing to i. We then define

f1(W,ω, d1, i) ={
min(z1,z2)∈poss(W,ω,d1,i){f(z1) + f(z2)} if poss(W,ω, d1, i) 6= ∅
∞ otherwise,

and
f2(W,ω, d1, i) = 1 + min

d2∈C
{f1(W,ω, d2, i)}.

10

Finally we set

f(W,ω, d1, i) = min{f1(W,ω, d1, i), f2(W,ω, d1, i), f(W,ω, d1, i− 1)}. (2)

To show that f has the required properties, we first prove by induction on
i that we have f(W,ω, d1, i) ≤ minT∈Ti(W,G)mT (T, ω|T , d1) for each choice
of W and d1, if Ti(W,G) 6= ∅. The base case follows from the definitions
above, and the inductive step can be proved by fixing T ∈ Ti(W,G) such
that mT (T, ω|T , d1) = minT ′∈Ti(W,G)mT ′(T ′, ω|T ′ , d1) and |T | is minimal,
and applying case analysis to the final move of an optimal sequence to flood
T with colour d1.

The reverse inequality is also proved by induction on i, and again the
base case follows from the definition of f . The proof of the inductive step
in this case relies on Theorem 3.1 and Corollary 3.5.

It remains only to bound the time taken to compute f(U, ω, d, n). Note
that each value f(W,ω, d1, 1) (for any W ⊂ V of size at most k and d1 ∈ C)
can be computed in constant time.

Suppose we have computed the value of f(W,ω, d1, i) for each W ⊂ V of
size at most k and d1 ∈ C. To compute f1(W

′, ω, d2, i+ 1) for any W ′ and
d2, we take the minimum over at most 2k ways to partition a set of up to k
points, the |E| edges in the graph, the |C| colours in the initial colouring,
and the 2(i − 1) ordered pairs of positive integers that sum to i. Thus we
take the minimum over a set of O(2k ·|E|·|C|·n) values, each of which can be
computed in time O(n) by adding a pair of existing values in the table, and
so compute f1(W

′, ω, d2, i+1) in time O(2k ·|E|·|C|·i·n) = O(2k ·|E|·|C|·n2).
Once we have computed the value of f1 for all entries with index i + 1,

we can compute f2 for each such entry in time O(|C|). Given the values of
f1 and f2 for each entry with index i+1, and the values of f for entries with
index i, we can compute f for any entry with index i+ 1 in constant time.

Thus in total we require time at most O(2k · |E| · |C| ·n2) to compute the
value of f for each entry in the table. In total, the table contains O(nk+1·|C|)
entries (as there are O(nk) subsets of size at most k, a choice of |C| colours,
and i takes integer values in the range [1, n]), so we can compute all entries,
and hence determine f(U, ω, d, n), in time O(nk+3 · |E| · |C|2 · 2k).

6 Conclusions and Open Problems

We have shown that, for any connected graph G, the minimum number of
moves required in the free variant of Flood-It to make G monochromatic in

11

colour d is equal to the minimum, taken over all spanning trees T of G, of
the number of moves required to flood T with colour d.

Using this result, we saw that Free-Flood-It, and the fixed variant,
are solvable in polynomial time on graphs with only a polynomial number
of connected subgraphs. This proves a conjecture of Meeks and Scott [13]:
Free-Flood-It is solvable in polynomial time on subdivisions of any fixed
graph. This in turn implies that both Free-Flood-It is polynomially
solvable on trees with bounded degree and a bounded number of vertices
of degree at least three, although the problem is known to be NP-hard on
arbitrary trees. It would be interesting to investigate other minor-closed
classes of trees on which the problem can be solved in polynomial time.

Finally, we applied the result on spanning trees to the problem of k-
Linking-Flood-It, demonstrating an algorithm to solve the problem in
time nO(k). There is potential for further investigation of the parameterised
complexity of this problem, with parameter k: can k-Linking-Flood-It be
shown to be W[1]-hard, or is there another approach to the problem which
might yield a fixed-parameter algorithm? Such an investigation could also
consider a “fixed” variant of k-Linking-Flood-It, in which all moves must
be played at some fixed vertex.

References

[1] Flood It Game, http://floodit.appspot.com.

[2] Flood It! 2, available at http://itunes.apple.com.

[3] Flood It!, available at https://market.android.com.

[4] Mad Virus, http://www.bubblebox.com/play/puzzle/539.htm.

[5] David Arthur, Raphaël Clifford, Markus Jalsenius, Ashley Montanaro,
and Benjamin Sach, The Complexity of Flood Filling Games, in Paolo
Boldi and Luisa Gargano, editors, FUN, volume 6099 of Lecture Notes
in Computer Science, Springer, ISBN 978-3-642-13121-9, 2010, pages
307-318.

[6] A. Born, Flash application for the computer game
Biene (Honey-Bee), 2009. http://www.ursulinen.asn-
graz.ac.at/Bugs/htm/games/biene.htm.

12

[7] Raphaël Clifford, Markus Jalsenius, Ashley Montanaro, and Benjamin
Sach, The Complexity of Flood Filling Games, arXiv.1001.4420v2
[cs.DS], August 2010.

[8] Thomas H. Cormen, Charles E. Leiserson and Ronald L. Rivest, Intro-
duction to Algorithms, MIT Press and McGraw-Hill, 1990.

[9] Rudolf Fleischer and Gerard J. Woeginger, An Algorithmic Analysis of
the Honey-Bee Game, in Paolo Boldi and Luisa Gargano, editors, FUN,
volume 6099 of Lecture Notes in Computer Science, Springer, ISBN 978-
3-642-13121-9, 2010, pages 178-189.

[10] H. Fukui, A. Nakanishi, R. Uehara, T. Uno, Y. Uno, The complexity
of free flooding games, Information Processing Society of Jamap (IPSG)
SIG Notes 2011 (August 2011), 1-5.

[11] Aurélie Lagoutte, Jeux d’inondation dans les graphes, Technical report,
ENS Lyon, HAL: hal-00509488, August 2010.

[12] A. Lagoutte, M. Noual, E. Thierry, Flooding games on graphs, HAL:
hal-00653714, December 2011.

[13] Kitty Meeks and Alexander Scott, The complexity of flood-
filling games on graphs, Discrete Applied Mathematics (2011),
doi:10.1016/j.dam.2011.09.001.

[14] Kitty Meeks and Alexander Scott, The complexity of Free-Flood-It on
2× n boards, arxiv.1101.5518v1 [cs.DS], January 2011.

[15] Kitty Meeks and Alexander Scott, Spanning trees and the complexity
of flood-filling games, arXiv:1203.2538v1 [cs.DS], March 2012.

13

