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Abstract—A network of cognitive transmitters is considered.
Each transmitter has to decide his power control policy in order
to maximize energy-efficiency of his transmission. For this, a
transmitter has two actions to take. He has to decide whetherto
sense the power levels of the others or not (which corresponds
to a finite sensing game), and to choose his transmit power level
for each block (which corresponds to a compact power control
game). The sensing game is shown to be a weighted potential
game and its set of correlated equilibria is studied. Interestingly,
it is shown that the general hybrid game where each transmitter
can jointly choose the hybrid pair of actions (to sense or notto
sense, transmit power level) leads to an outcome which is worse
than the one obtained by playing the sensing game first, and then
playing the power control game. This is an interesting Braess-
type paradox to be aware of for energy-efficient power control
in cognitive networks.

I. I NTRODUCTION

In fixed communication networks, the paradigm of peer-to-
peer communications has known a powerful surge of interest
during the the two past decades with applications such as the
Internet. Remarkably, this paradigm has also been found to be
very useful for wireless networks. Wireless ad hoc and sensor
networks are two illustrative examples of this. One important
typical feature of these networks is that the terminals have
to take some decisions in an autonomous (quasi-autonomous)
manner. Typically, they have to choose their power control
and resources allocation policy. The corresponding framework,
which is the one of this paper, is the one of distributed
power control or resources allocation. More specifically, the
scenario of interest is the case of power control in cognitive
networks. Transmitters are assumed to be able to sense the
power levels of neighboring transmitters and adapt their power
level accordingly. The performance metric for a transmitter
is the energy-efficiency of the transmission [6] that is, the
number of bits successfully decoded by the receiver per Joule
consumed at the transmitter.

The model of multiuser networks which is considered is
a multiple access channel with time-selective non-frequency
selective links. Therefore, the focus is not on the problem of
resources allocation but only on the problem of controllingthe
transmit power over quasi-static channels. The approach ofthe
paper is related to the one of [8][7] where some hierarchy is

present in the network in the sense that some transmitters can
observe the others or not; also the problem is modeled by a
game where the players are the transmitters and the strategies
are the power control policies. One the differences with [8][7]
is thateverytransmitter can be cognitive and sense the others
but observing/sensing the others has a cost. Additionally,a
new type of power control games is introduced (called hybrid
power control games) in which an action for a player has a
discrete component namely, to sense or not to sense, and a
compact component namely, the transmit power level. There
are no general results for equilibrium analysis in the game-
theoretic literature. This is a reason why some results are
given in the 2-player case only, as a starting point for other
studies. In particular, it is shown that it is more beneficial
for every transmitter to choose his discrete action first and
then his power level. The (finite) sensing game is therefore
introduced here for the first time and an equilibrium analysis is
conducted for it. Correlated equilibria are considered because
they allow the network designer to play with fairness, which
is not possible with pure or mixed Nash equilibria.

This paper is structured as follows. A review of the previous
results regarding the one-shot energy efficient power control
game is presented in Sec. 2. The sensing game is formally
defined and some equilibrium results are stated in Sec. 3. A
detailed analysis of the 2-players sensing is provided in Sec.
4 and the conclusion appears in Sec. 5.

II. REVIEW OF KNOWN RESULTS

A. Review of the one-shot energy-efficient power control game
(without sensing)

We review a few key results from [5] concerning the static
non-cooperative PC game. In order to define the static PC
game some notations need to be introduced. We denote by
Ri the transmission information rate (in bps) for useri and
f an efficiency function representing the block success rate,
which is assumed to be sigmoidal and identical for all the
users; the sigmoidness assumption is a reasonable assumption,
which is well justified in [11][4]. Recently, [3] has shown that
this assumption is also justified from an information-theoretic
standpoint. At a given instant, the SINR at receiveri ∈ K
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writes as:

SINRi =
pi|gi|

2

∑
j 6=i pj|gj |

2 + σ2
(1)

wherepi is the power level for transmitteri, gi the channel
gain of the link between transmitteri and the receiver,σ2

the noise level at the receiver, andf is a sigmodial efficiency
function corresponding to the block success rate. With these
notations, the static PC game, calledG, is defined in its normal
form as follows.

Definition 2.1 (Static PC game): The static PC game is a
triplet G = (K, {Ai}i∈K, {ui}i∈K) where K is the set of
players, A1, ...,AK are the corresponding sets of actions,
Ai = [0, Pmax

i ], Pmax
i is the maximum transmit power for

player i, andu1, ..., uk are the utilities of the different players
which are defined by:

ui(p1, ..., pK) =
Rif(SINRi)

pi
[bit/J]. (2)

In this game with complete information (G is known to every
player) and rational players (every player does the best for
himself and knows the others do so and so on), an important
game solution concept is the NE (i.e., a point from which no
player has interest in unilaterally deviating). When it exists,
the non-saturated NE of this game can by obtained by setting
∂ui

∂pi
to zero, which gives an equivalent condition on the SINR:

the best SINR in terms of energy-efficiency for transmitteri
has to be a solution ofxf ′(x) − f(x) = 0 (this solution is
independent of the player index since a common efficiency
function is assumed, see [4] for more details). This leads to:

∀i ∈ {1, ...,K}, p∗i =
σ2

|gi|2
β∗

1− (K − 1)β∗
(3)

where β∗ is the unique solution of the equationxf ′(x) −
f(x) = 0. By using the term “non-saturated NE” we mean
that the maximum transmit power for each user, denoted by
Pmax
i , is assumed to be sufficiently high not to be reached at

the equilibrium i.e., each user maximizes his energy-efficiency
for a value less thanPmax

i (see [8] for more details). An
important property of the NE given by (3) is that transmitters
only need to know their individual channel gain|gi| to play
their equilibrium strategy. One of the interesting resultsof this
paper is that it is possible to obtain a more efficient equilibrium
point by repeating the gameG while keeping this key property.

B. Review of the Stackelberg energy-efficient power control
game (with sensing)

Here we review a few key results from [7]. The framework
addressed in [7] is that the existence of two classes of trans-
mitters are considered: those who can sense and observe the
others and those who cannot observe. This establishes a certain
hierarchy between the transmitters in terms of observation.
A suited model to study this is the Stackelberg game model
[13]: some players choose their transmit power level (these
are the leaders of the power control game) and the others
observe the played action and react accordingly (these are the
followers of the game). Note that the leaders know they are

observed and take this into account for deciding. This leads
to a game outcome (namely a Stackelberg equilibrium) which
Pareto-dominates the one-shot game Nash equilibrium (given
by (3)) when there is no cost for sensing [8]. However, when
the fraction of time to sense is taken to beα > 0, the data rate
is weighted by(1 − α) and it is not always beneficial for a
transmitter to sense [7]. The equilibrium action and utility for
player i when he is a game leader (L) are respectively given
by

pLi =
σ2

|gi|2
γ∗(1 + β∗)

1− (K − 1)γ∗β∗ − (K − 2)β∗
(4)

where γ∗ is the unique solution of
x
[
1− (K−1)β∗

1−(K−2)β∗
x
]
f ′(x)− f(x) = 0 and

uL
i =

|gi|
2

σ2

1− (K − 1)γ∗β∗ − (K − 2)β∗

γ∗(1 + β∗)
f(γ∗). (5)

On the other hand, if playeri is a follower (F) we have that:

pFi =
σ2

|gi|2
β∗(1 + γ∗)

1− (K − 1)γ∗β∗ − (K − 2)β∗
(6)

and

uF
i = (1− α)

|gi|
2

σ2

1− (K − 1)γ∗β∗ − (K − 2)β∗

β∗(1 + γ∗)
f(β∗).

(7)

III. A NEW GAME: THE K−PLAYER SENSING GAME

A. Sensing game description

In the two hierarchical power control described above, the
transmitter is, by construction, either a cognitive transmitter
or a non-cognitive one and the action of a player consists in
choosing a power level. Here, we consider that all transmitters
can sense, the power level to be the one at the Stackelberg
equilibrium, and the action for a player consists in choosing
to sense (S) or not to sense (NS). This game is well defined
only if at least one player is a follower (i.e., he senses) and
one other is the leader (i.e., he does not sense). We assume in
the following that the total number of transmitters isK + 2,
whereK transmitters are considered as usual players and the
two last are a follower and a leader. Define theK−player
sensing game as a triplet:

G = (K, (S)i∈K , (Ui)i∈K) (8)

where the actions set are the same for each playeri ∈ K,
sense or not sense:S = (S,NS). The utility function of
each playeri ∈ K depends on his own channel stategi and
transmission rateRi but also on the total number of players
F playing the sensing action and the number of players that
non sense denotedL. DenoteUS

i (F,L) the utility of playeri
when playing action sensingS whereasF − 1 other players
are also sensing andL other players are non-sensing. The total
number of player isF + L = K.



US
i (F,L) =

giRi

σ2

f(β∗)

Nβ⋆(N + γ⋆
L+1)(

N2−Nβ⋆ − [(N+β⋆)L+ (F + 1)β⋆] γ⋆
L+1

)

UNS
i (F,L) =

giRi

σ2

f(γ∗
L)

Nγ⋆
L+1(N + β⋆)

(
N2−Nβ⋆ − [(N+β⋆)L+ (F + 1)β⋆] γ⋆

L+1

)

with γ∗
L solution ofx(1 − ǫLx)f

′(x) = f(x) with:

ǫL =
(K + 2− L)β⋆

N2 −N(K + 1− L)β⋆
. (9)

B. The sensing game is a weighted potential game

The purpose of this section is to show that the sensing game
may be an exact potential game. However, this holds under
restrictive assumptions on the channel gains. It is then shown,
as a second step, that the game is a weighted potential game.
For making this paper sufficiently self-containing we review
important definitions to know on potential games.

Definition 3.1 (Monderer and Shapley 1996 [9]):The nor-
mal form gameG is a potential game ) if there is a potential
functionV : S −→ R such that

Ui(si, s−i)− Ui(ti, s−i) = V (si, s−i)− V (ti, s−i), (10)

∀i ∈ K, si, ti ∈ S〉 (11)

Theorem 3.2:The sensing game G =
(K, (S)i∈K , (Ui)i∈K) is an exact potential game if and
only if one of the two following conditions is satisfied.

1) ∀i, j ∈ K Rigi = Rjgj

2) ∀i, j ∈ K, si, ti ∈ Si, ∀sj , tj ∈ Sj , ∀sk ∈ SK\{i,j}

UT (ti, sj , sk)− US(si, sj, sk)

+US(si, tj , sk)− UT (ti, tj , sk) = 0

The Proof is given in the Appendix 4.
The potential functions of our game depends on which

condition is satisfied in the above theorem. Suppose that the
first condition is satisfied∀i, j ∈ K Rigi = Rjgj . Then the
Rosenthal’s potential function writes :

Φ(F,L) =

F∑

i=1

US(i,K − i) +

L∑

j=1

UNS(K − j, j)

Theorem 3.3 (Potential Game [9]):Every finite potential
game is isomorphic to a congestion game.

Definition 3.4 (Monderer and Shapley 1996 [9]):The nor-
mal form gameG is a weighted potential game if there is a
vector (wi)i∈K and a potential functionV : S −→ R such
that:

Ui(si, s−i)− Ui(ti, s−i) = wi(V (si, s−i)− V (ti, s−i)),

∀i ∈ K, si, ti ∈ Si

Theorem 3.5:The sensing game G =
(K, (Si)i∈K , (Ui)i∈K) is a weighted potential game with the
weight vector:

∀i ∈ K wi =
Rigi
σ2

(12)

The Proof is given in the Appendix 5.

C. Equilibrium analysis

First of all, note that since the game is finite (i.e., both
the number of players and the sets of actions are finite), the
existence of at least one mixed Nash equilibrium is guaranteed
[10]. Now, since we know that the game is weighted potential
we know that there is at least one pure Nash equilibrium [9].
Indeed, the following theorem holds.

Theorem 3.6:The equilibria of the above potential game is
the set of maximizers of the Rosenthal potential function [12].

{S = (S1, . . . , SK)|S ∈ NE} = argmax
(F,L)

Φ(F,L)

= arg max
(F,L)




F∑

i=1

U(S, i,K − i) +
L∑

j=1

U(NS,K − j, j)




The proof follows directly the one of Rosenthal’s theorem [12].
We may restrict our attention to pure and mixed Nash

equilibria. However, as it will be clearly seen in the 2-player
case study (Sec. IV-B), this may pose a problem of fairness.
This is the main reason why we study the set of correlated
equilibria of the sensing game. We introduce the concept
of correlated equilibrium [1] in order to enlarge the set of
equilibrium utilities. Every utility vector inside the convex
hull of the equilibrium utilities is a correlated equilibrium.
The convexification property of the correlated equilibrium
allow the system to better chose an optimal sensing. The
concept of correlated equilibrium is a generalization of the
Nash equilibrium. It consist in the stage gameG extended
with a signalling structureΓ. A correlated equilibrium (CE)
of a stage game correspond to a Nash equilibrium (NE) of the
same game extended with an adequate signalling structureΓ.
A canonical correlated equilibrium is a probability distribution
Q ∈ ∆(A), A = A1 × ...×AK over the action product of the
players that satisfy some incentives conditions.

Definition 3.7: A probability distributionQ ∈ ∆(A) is a
canonical correlated equilibrium if for each playeri, for each
actionai ∈ Ai that satisfiesQ(ai) > 0 we have:

∑

a−i∈A−i

Q(a−i | ai)ui(ai, a−i)

≥
∑

a−i∈A−i

Q(a−i | ai)ui(bi, a−i),

∀bi ∈ Ai

The result of Aumann 1987 [2] states that for any correlated
equilibrium, it correspond a canonical correlated equilibrium.

Theorem 3.8 (Aumann 1987, prop. 2.3 [2]):The utility
vectoru is a correlated equilibrium utility if and only if there



exists a distributionQ ∈ ∆(A) satisfying the linear inequality
contraint 13 withu = EQU .

The convexification property of the correlated equilibrium
allow the system to better chose an optimal sensing. Denote
E the set of pure or mixed equilibrium utility vectors and
ConvE the convex hull of the setE.

Theorem 3.9:Every utility vectoru ∈ ConvE is a corre-
lated equilibrium utility of the sensing game.

Any convex combination of Nash equilibria is a correlated
equilibrium. As example, let(U j)j∈J a family of equilibrium
utilities and (λj)j∈J a family of positive parameters with∑

j∈J λj = 1 such that:

U =
∑

j∈J

λjU j (13)

ThenU is a correlated equilibrium utility vector.

IV. D ETAILED ANALYSIS FOR THE 2-PLAYER CASE

A. The 2-player hybrid power control game

In the previous section, we consider the sensing game as
if the players do not chose their own power control policy.
Indeed, when a player chooses to sense, he cannot choose its
own power control because, it would depend on whether the
other transmitters sense or not. We investigate the case where
the players are choosing their sensing and power control policy
in a joint manner. It enlarges the set of actions of the sensing
game and it turns that, as a Braess-type paradox, that the set
of equilibria is dramatically reduced. The sensing game with
power control has a stricly dominated strategy: the sensing
strategy. It implies that the equilibria of such a game boils
down to the Nash equilibrium without sensing.

We consider that the action set for playeri consists in
choosing to sense or not and the transmit power level. The
action set of playeri writes :

Ai = {Si, NSi} × [0, P̄i] (14)

Before to characterize the set of equilibria of such a game,
remark that the two pure equilibria of the previous matrix
game are no longer equilibria. Indeed, assume that player 2
will not sense its environment and transmit using the leading
powerpL2 . Then player 1 best response would be to play the
following transmit powerpF1 as for the classical Stackelberg
equilibrium. Nevertheless in the above formulation, the player
1 has a sensing costα that correspond to the fraction of time
to sense its environment. In this context, player 1 is incited
to play the following transition power without sensing. The
strategy(S1, p

F
1 ) and (NS2, p

L
1 ) is not an equilibrium of the

game with Discrete and Compact Action Set.
Theorem 4.1:The unique Nash equilibrium of the Power

Control and Sensing Game is the Nash equilibrium without
sensing.

Proof: This result comes from the cost of sensing activity.
Indeed, the strategy(S1, p1) is always dominated by the
strategy(NS1, p1). It turns out that the sensing is a dominated
actions for both players 1 and 2. Thus every equilibria is of

the form(NS1, p1), (NS2, p2) with the reduced action spaces
p1 ∈ [0, P̄1] and p2 ∈ [0, P̄2]. The previous analysis applies
in that case, showing that the unique Nash equilibrium of the
Power Control and Sensing Game is the Nash of the game
without sensing(p∗1, p

∗
2).

As a conclusion, we see that letting the choice to the trans-
mitters to choose jointly their discrete and continuous actions
lead to a performance which is less than the one obtained
by choosing his discrete action first, and then choosing his
continuous action. This is the reason why we assume, from
now on, the existence of a mechanism imposing this order in
the decision taking.

B. The 2-player sensing game

We consider the following two players-two strategies matrix
game where players 1 and 2 choose to sense the channel
(action S) or not (actionNS) before transmitting his data.
We denote byxi the mixed strategy of useri, that is the
probability that useri takes actionS (sense the channel).
Sensing activity provide the possibility to play as a follower,
knowing in advance the action of the leaders. Letα denote
the sensing cost, we compare the strategic behavior of sensing
by considering the equilibrium utilities at the Nash and at the
Stackelberg equilibria as payoff functions.

R1g1f(β∗)(1−β∗)

σ2β∗
,

R2g2f(β∗)(1−β∗)

σ2β∗

R1g1f(γ∗)(1−γ∗β∗)

σ2γ∗(1+β∗)
,

(1 − α)
R2g2f(β∗)(1−γ∗β∗)

σ2β∗(1+γ∗)

(1 − α)
R1g1f(β∗)(1−γ∗β∗)

σ2β∗(1+γ∗)
,

R2g2f(γ∗)(1−γ∗β∗)

σ2γ∗(1+β∗)

(1 − α)
R1g1f(β∗)(1−β∗)

σ2β∗
,

(1 − α)
R2g2f(β∗)(1−β∗)

σ2β∗

S1

NS1

NS2 S2

Fig. 1. The Utility Matrix of the Two-Player Sensing Game.

The equilibria of this game are strongly related to the
sensing parameterα.

Theorem 4.2:The matrix game has three equilibria if and
only if

α <
β∗ − γ∗

1− β∗γ∗
(15)

Let us characterize the three equilibria. From Appendix 1,
is it easy to see that :

α <
β∗ − γ∗

1− β∗γ∗
⇐⇒

(1 − α)
R1g1f(β

∗)(1− γ∗β∗)

σ2β∗(1 + γ∗)
>

R1g1f(β
∗)(1 − β∗)

σ2β∗

We conclude that the joint actions(NS1, NS2) and (S1, S2)



are not Nash Equilibria:

U1(NS1, NS2) < U1(S1, NS2) (16)

U2(NS1, NS2) < U2(NS1, S2) (17)

U1(S1, S2) < U1(NS1, S2) (18)

U2(S1, S2) < U2(S1, NS2) (19)

The sensing parameter determines which one of the two
options is optimal between leading and following.

Corollary 4.3: Following is better than leading if and only
if

α <
f(β∗)− f(γ∗) + f(β∗)

β∗
− f(γ∗)

γ∗

f(β∗)1+β∗

β∗

(20)

The proof is given in Appendix 3.
The above matrix game has two pure equilibria(NS1, S2)

and(S1, NS2). There is also a completely mixed equilibrium
we compute using the indifference principle. Let(x, 1 − x)
a mixed strategy of player 1 and(y, 1 − y) a mixed strategy
of player 2. We aim at characterize the optimal joint mixed
strategy (x∗, y∗) satisfying the indifference principle (see
Appendix 2 for more details). The above joint mixed strategy
(x∗, 1 − x∗) and (y∗, 1 − y∗) is an equilibrium strategy. The
corresponding utilities are computed in Appendix 2. and writes
with ∆ defined in(IV-B).

U1(x
∗, y∗) =

R1g1
σ2

∆

U2(x
∗, y∗) =

R2g2
σ2

∆

The equilibrium utilities are represented on the following
figure. The two pure Nash equilibrium utilities are represented
by a circle whereas the mixed Nash utility is represented by
a square.

We also provide a characterization of the equilibria for the
cases whereα is greater or equal thanβ

∗−γ∗

1−β∗γ∗
.

Corollary 4.4: The matrix game has a unique equilibrium
if and only if

α >
β∗ − γ∗

1− β∗γ∗
(21)

It has a infinity of equilibria if and only if

α =
β∗ − γ∗

1− β∗γ∗
(22)

First note that if the sensing cost is too high, the gain in
terms of utility at Stackelberg instead of Nash equilibrium
would be dominated by the loss of utility due to the sensing
activity. In that case, the Nash equilibrium would be more
efficient. Second remark that in case of equality, the action
profiles(NS1, NS2), (NS1, S2), (S1, NS2) and every convex
combination of the corresponding payoffs are all equilibrium
payoffs.

Now that we have fully characterized the pure and mixed
equilibria of the game, let us turn our attention to correlated
equilibria.

b

b

b

b

b

U2(x
∗, y∗)

U2(S1, NS2)

U2(NS1, S2)

U2(S1, S2)

U2(NS1, NS2)

U1(x
∗, y∗)

U1(S1, NS2)

U1(NS1, S2)U1(S1, S2)

U1(NS1, NS2)

Fig. 2. The Equilibrium and Feasible Utilities.

Theorem (3.8) allows us to characterize the correlated equi-
librium utility using the system of linear inequalities (13). We
investigate the situation where the stage game has three Nash
equilibria and following is better than leading. We suppose
that the parameterα satisfies.

α < min(
β∗ − γ∗

1− β∗γ∗
,
f(β∗)− f(γ∗) + f(β∗)

β∗
− f(γ∗)

γ∗

f(β∗)1+β∗

β∗

) (23)

Note that the analysis is similar in the case where Leading is
better than Following. However, if the parameterα > β∗−γ∗

1−β∗γ∗

we have seen that the stage game has only one Nash equi-
librium corresponding to play the Nash equilibrium power in
the one-shot game. In such a case, no signalling device can
increase the set of equilibria. The unique correlated equilib-
rium is the Nash equilibrium. We characterize an infinity of
correlated equilibria.

Theorem 4.5:Any convex combination of Nash equilibria
is a correlated equilibrium. In particular if there exists autility
vectoru and a parameterλ ∈ [0, 1] such that:

u1 = λU1(S1, NS2) + (1− λ)U1(NS1, S2) (24)

u2 = λU2(S1, NS2) + (1− λ)U2(NS1, S2) (25)

Thenu is a correlated equilibrium.
The above result state that any distributionQ defined as

follows with λ ∈ [0, 1] is a correlated equilibrium. The
canonical signalling device which should be added to the
game consist in a lottery with parameterλ over the actions
(S1, NS2) and (NS1, S2) and of signalling structure such
that each player receives her component. For example, if



x∗ = y∗ =
(1− α) f(β

∗)
β∗

(1− β∗)− f(γ∗)
γ∗

1−γ∗β∗

1+β∗

(1− α) f(β
∗)

β∗
(1− β∗)− f(γ∗)

γ∗

1−γ∗β∗

1+β∗
+ f(β∗)

β∗
(1− β∗)− (1− α) f(β

∗)
β∗

1−γ∗β∗

1+γ∗

∆ =
(1− α) f(β

∗)
β∗

(1− β∗) f(β
∗)

β∗
(1− β∗)− f(γ∗)

γ∗

1−γ∗β∗

1+β∗
(1− α) f(β

∗)
β∗

1−γ∗β∗

1+γ∗

(1− α) f(β
∗)

β∗
(1 − β∗)− f(γ∗)

γ∗

1−γ∗β∗

1+β∗
+ f(β∗)

β∗
(1− β∗)− (1− α) f(β

∗)
β∗

1−γ∗β∗

1+γ∗

0 1− λ

λ 0S1

NS1

NS2 S2

(S1, NS2) is chosen the player 1 receives the signal “play
S1” whereas player 2 receives the signal “playNS2”.

The correlated equilibrium utilities are represented by the
bold line. The signalling device increase the achievable utility
region by adding the light gray area.

b

b

b

b

b

U2(x
∗, y∗)

U2(S1, NS2)

U2(NS1, S2)

U2(S1, S2)

U2(NS1, NS2)

U1(x
∗, y∗)

U1(S1, NS2)

U1(NS1, S2)U1(S1, S2)

U1(NS1, NS2)

Correlated Equilibria

Fig. 3. The Correlated Equilibria.

V. CONCLUSION

In this paper we have introduced a new power control game
where the action of a player is hybrid, one component is
discrete while the other is continuous. Whereas the general
study of these games remains to be done, it turns out that in
our case we can prove the existence of a Braess paradox which
allows us to restrict our attention to two separate games played

consecutively: a finite game where the players decide to sense
or not and a compact game where the transmitter chooses
his power level. We have studied in details the sensing game.
In particular, it is proved it is weighted potential. Also, by
characterizing the correlated equilibria of this game we show
what is achievable in terms of fairness. Much work remains to
be done to generalize all these results to games with arbitrary
number of players and conduct simulations in relevant wireless
scenarios.

VI. A PPENDIX 1

α <
β∗ − γ∗

1− β∗γ∗

⇐⇒
1− γ∗β∗ − β∗ − γ∗

(1− γ∗β∗)
< 1− α

⇐⇒ (1− β∗)(1 + γ∗) < (1− α)[(1 − β∗)(1 + γ∗) + γ∗ + β∗]

⇐⇒
f(β∗)

β∗
(1− β∗) < (1 − α)

f(β∗)

β∗

1− β∗γ∗

1 + γ∗

⇐⇒
R1g1f(β

∗)(1 − β∗)

σ2β∗
< (1− α)

R1g1f(β
∗)(1− γ∗β∗)

σ2β∗(1 + γ∗)

VII. A PPENDIX 2

Replacing the abovey∗ into the indifference equation, we
obtain the utility of player 1 at the mixed equilibrium. The
same argument applies:

VIII. A PPENDIX 3

α <
f(β∗)− f(γ∗) + f(β∗)

β∗
− f(γ∗)

γ∗

f(β∗)1+β∗

β∗

⇐⇒ 1− α >
f(β∗)1+β∗

β∗
− f(γ∗)1+γ∗

γ∗

f(β∗)1+β∗

β∗

⇐⇒ (1− α)
f(β∗)

β∗

1− γ∗β∗

1 + β∗
>

f(γ∗)

γ∗

1− γ∗β∗

1 + γ∗

IX. A PPENDIX 4

The proof comes from the theorem of Monderer and Shap-
ley 1996 (see Sandholm ”Decomposition of Potential” 2010)

Theorem 9.1:The gameG is a potential game if and only
if for every playersi, j ∈ K, every pair of actionssi, ti ∈ Si



R1g1f(β
∗)(1 − β∗)

σ2β∗
· y∗ +

R1g1f(γ
∗)(1 − γ∗β∗)

σ2γ∗(1 + β∗)
· (1 − y∗)

= (1− α)
R1g1f(β

∗)(1− γ∗β∗)

σ2β∗(1 + γ∗)
· y∗ + (1 − α)

R1g1f(β
∗)(1− β∗)

σ2β∗
· (1− y∗)

⇐⇒ y∗ · [
R1g1f(β

∗)(1− β∗)

σ2β∗
− (1− α)

R1g1f(β
∗)(1 − γ∗β∗)

σ2β∗(1 + γ∗)

+(1− α)
R1g1f(β

∗)(1− β∗)

σ2β∗
−

R1g1f(γ
∗)(1 − γ∗β∗)

σ2γ∗(1 + β∗)
]

= (1− α)
R1g1f(β

∗)(1− β∗)

σ2β∗
−

R1g1f(γ
∗)(1 − γ∗β∗)

σ2γ∗(1 + β∗)

⇐⇒ y∗ =
(1− α) f(β

∗)
β∗

(1 − β∗)− f(γ∗)
γ∗

1−γ∗β∗

1+β∗

(1− α) f(β
∗)

β∗
(1− β∗)− f(γ∗)

γ∗

1−γ∗β∗

1+β∗
+ f(β∗)

β∗
(1 − β∗)− (1− α) f(β

∗)
β∗

1−γ∗β∗

1+γ∗

U1(x
∗, y∗) =

R1g1f(β
∗)(1−β∗)

σ2β∗

R1g1f(γ
∗)(1−γ∗β∗)

σ2γ∗(1+β∗) − R1g1
σ2

f(γ∗)
γ∗

1−γ∗β∗

1+β∗

R1g1
σ2 (1− α) f(β

∗)
β∗

1−γ∗β∗

1+γ∗

R1g1
σ2 (1− α) f(β

∗)
β∗

(1− β∗)− R1g1
σ2

f(γ∗)
γ∗

1−γ∗β∗

1+β∗
+ R1g1

σ2

f(β∗)
β∗

(1− β∗)− R1g1
σ2 (1− α) f(β

∗)
β∗

1−γ∗β∗

1+γ∗

+

R1g1
σ2 (1 − α) f(β

∗)
β∗

(1 − β∗)R1g1
σ2

f(β∗)
β∗

(1− β∗)− R1g1f(β
∗)(1−β∗)

σ2β∗

R1g1f(γ
∗)(1−γ∗β∗)

σ2γ∗(1+β∗)

R1g1
σ2 (1− α) f(β

∗)
β∗

(1− β∗)− R1g1
σ2

f(γ∗)
γ∗

1−γ∗β∗

1+β∗
+ R1g1

σ2

f(β∗)
β∗

(1− β∗)− R1g1
σ2 (1− α) f(β

∗)
β∗

1−γ∗β∗

1+γ∗

=
R1g1
σ2

(1 − α) f(β
∗)

β∗
(1 − β∗) f(β

∗)
β∗

(1 − β∗)− f(γ∗)
γ∗

1−γ∗β∗

1+β∗
(1− α) f(β

∗)
β∗

1−γ∗β∗

1+γ∗

(1− α) f(β
∗)

β∗
(1− β∗)− f(γ∗)

γ∗

1−γ∗β∗

1+β∗
+ f(β∗)

β∗
(1− β∗)− (1− α) f(β

∗)
β∗

1−γ∗β∗

1+γ∗

U2(x
∗, y∗) =

R2g2
σ2

(1− α) f(β
∗)

β∗
(1− β∗) f(β

∗)
β∗

(1− β∗)− f(γ∗)
γ∗

1−γ∗β∗

1+β∗
(1− α) f(β

∗)
β∗

1−γ∗β∗

1+γ∗

(1− α) f(β
∗)

β∗
(1− β∗)− f(γ∗)

γ∗

1−γ∗β∗

1+β∗
+ f(β∗)

β∗
(1− β∗)− (1 − α) f(β

∗)
β∗

1−γ∗β∗

1+γ∗

andsj , tj ∈ Sj and every joint actionsk ∈ SK\{i,j}, we have
that

Ui(ti, sj , sk)− Ui(si, sj, sk) + Ui(si, tj , sk)− Ui(ti, tj, sk) +

Uj(ti, tj, sk)− Uj(ti, sj , sk) + Uj(si, sj , sk)− Uj(si, tj , sk) = 0

Let us prove that the two conditions provided by our
theorem are equivalent to the one of Monderer and Shapley’s
theorem. We introduce the following notation defined for each
player i ∈ K and each actionT ∈ S.

wi = Rigi (26)

UT (ti, tj , sk) =
UT
i (ti, tj , sk)

wi

(27)

For every playersi, j ∈ K, every pair of actionssi, ti ∈ Si

andsj , tj ∈ Sj and every joint actionsk ∈ SK\{i,j}, we have

the following equivalences:

Ui(ti, sj , sk)− Ui(si, sj, sk)

+Ui(si, tj , sk)− Ui(ti, tj , sk)

+ Uj(ti, tj, sk)− Uj(ti, sj , sk)

+Uj(si, sj , sk)− Uj(si, tj , sk) = 0

⇐⇒ wi(U
T (ti, sj , sk)− US(si, sj , sk)

+US(si, tj , sk)− UT (ti, tj , sk))

+ wj(U
T (ti, tj , sk)− US(ti, sj, sk)

+US(si, sj , sk)− UT (si, tj , sk)) = 0

⇐⇒ (wi − wj)(U
T (ti, sj , sk)− US(si, sj, sk)

+US(si, tj , sk)− UT (ti, tj , sk)) = 0

⇐⇒






wi = wj

UT (ti, sj , sk)− US(si, sj , sk)

+US(si, tj , sk)− UT (ti, tj, sk) = 0



Thus the sensing game is a potential game if and only if one
of the two following condition is satisfied:

∀i, j ∈ K Rigi = Rjgj (28)

∀i, j ∈ K, si, ti ∈ Si, ∀sj , tj ∈ Sj , ∀sk ∈ SK\{i,j}(29)

UT (ti, sj , sk)− US(si, sj , sk) (30)

+US(si, tj , sk)− UT (ti, tj , sk) = 0 (31)

X. A PPENDIX 5

The proof of this theorem follows the same line of the
previous theorem. It suffices to show that the auxiliary game
defined as follows is a potential game.

G̃ = (K, (S)i∈K , (Ũi)i∈K) (32)

Where the utility are defined by the following equations with
wi =

Rigi
σ2 .

Ũi(si, s−i) =
Ui(si, s−i)

wi

(33)

From the above demonstration, it is easy to show that, for
every playersi, j ∈ K, every pair of actionssi, ti ∈ Si and
sj , tj ∈ Sj and every joint actionsk ∈ SK\{i,j}:

Ũi(ti, sj , sk)− Ũi(si, sj , sk) (34)

+ Ũi(si, tj , sk)− Ũi(ti, tj , sk) (35)

+ Ũj(ti, tj , sk)− Ũj(ti, sj , sk) (36)

+ Ũj(si, sj , sk)− Ũj(si, tj , sk) = 0 (37)

We conclude that the sensing game is a weighted potential
game.
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