
Optimizing the update packet stream for web applications

Muthuprasanna Muthusrinivasan1 and Manimaran Govindarasu2

1 Google Inc, Mountain View CA 94043, USA
muthup@google.com

2 Iowa State University, Ames IA 50011, USA
gmani@iastate.edu

Abstract. The Internet has evolved to an extent where users now
expect any-where any-time and any-form access to their personalized
data and applications of choice. However providing a coherent (seam-
less) user experience across multiple devices has been relatively hard
to achieve. While the how to sync problem has been well studied in
literature, the complementary when to sync problem has remained rel-
atively unexplored. While frequent updates providing higher user satis-
faction/retention are naturally more desirable than sparse updates, the
steadily escalating resource costs are a significant bottleneck. We thus
propose extensions to the traditional periodic refresh model based on an
adaptive smart sync approach that enables variable rate updates closely
modeling expected user behavior over time. An experimental evaluation
on a sizeable subset of users of the GMAIL web interface further indi-
cates that the proposed refresh policy can achieve the best of both worlds
- limited resource provisioning and minimal user-perceived delays.

Key words: data synchronization, web applications, cloud computing

1 Introduction

The World Wide Web has seen tremendous growth since its early days at
CERN [1], and in the past few years has witnessed a steady shift away from the
traditional desktop computing paradigm. The rapid emergence of cloud com-
puting [2] has given rise to - service providers who build/manage universally
accessible, massively scalable, highly reliable compute infrastructure as an util-
ity/commodity, software vendors who host their applications in this cloud avoid-
ing capital expenditure and instead paying only for their resource utilization,
and end users who can now access technology-enabled applications easily with-
out knowledge of the underlying infrastructure. While cloud/service providers [3]
benefit from multi-tenancy and economies of scale, the software vendors bene-
fit from on-demand access to resources for their SaaS [4] deployments worldwide.

The greatest beneficiaries though have been the end users - the use of open stan-
dards, technological convergence [5] and pervasive computing [6] have enabled
users to access information through a multitude of devices - instant messaging



2 Muthuprasanna Muthusrinivasan and Manimaran Govindarasu

through desktop clients, web browsers, mobile phones, interactive TV etc. is
now possible. Users can thus access their data in the cloud using any device, at
any time, anywhere in the world, and in any desired form, with no restrictions
whatsoever. The widespread adoption of these ubiquitous applications is now
primarily governed by natural expectations of a coherent user experience. In ap-
plications where data reconciliation can be quick and easy, seamless on-access
device sync would suffice. However, it is untenable for applications requiring
longer synchronization cycles or needing a complex update mechanism, due to
undesirable user-perceived delays and slow application response times.

The traditional approach towards data reconciliation has been to execute mu-
tually agreed update protocols at regular intervals. However, high frequency
updates for devices having low user activity leads to a large number of redun-
dant null updates. Such a non-optimal use of resources does not scale well for
the cloud managing millions of users each possibly using tens of remote devices.
Hence we propose a smart sync approach that exploits user behavior (past ac-
cess patterns) to determine the likelihood of an impending user access to trigger
a pro-active update. This would not only consume far fewer resources due to
throttling of updates during periods of expected user inactivity, but also provide
maximal data coherence across devices due to pro-active data synchronization.
In this paper, we analyze a sizeable subset of GMAIL user interactions with the
cloud, to determine optimal user behavior models for likelihood estimation (up-
date interval adaptation) and to also study the resulting benefits for the users
and the application in the cloud.

2 Related Work

Continuous harmonization of data over time across multiple remote sources, or
data synchronization [7], has been a well studied topic [8], and has been explored
in multiple contexts such as database design [9], secure communications [10],
memory architectures [11], distributed computing [12], etc.

The research on data synchronization for ubiquitous computing has proceeded
mainly along two lines, namely the how to sync and when to sync paradigms.
The ‘how to sync’ issue deals with designing optimal data sync protocols that are
scalable with network size and the resulting bandwidth/storage considerations.
The traditional approach has relied on the use of timestamps [13] for version
control, and delta compression [14] for minimal data transmission. Recent ap-
proaches relying on robust mathematical [15], information-theoretic [16], and
probabilistic [17] techniques have provided greater flexibility.

Also, commercial solutions including Palm’s HotSync [18], Microsoft’s Ac-
tiveSync [19], Nokia’s IntelliSync [20], etc. are in wide use today. This prolif-
eration of proprietary sync protocols and their mutual incompatibilities led to



Optimizing the update packet stream for web applications 3

the Open Mobile Alliance [21] and the emergence of a platform-independent
open standard known as SyncML [22].

The complementary ‘when to sync’ issue deals with the formulation of an op-
timal update policy - good data coherence while consuming fewer resources in
the device, the cloud, and the network. The classic ‘push vs pull’ debate arises
in this context [23]. In a push model the server (cloud) keeps track of all the
connected clients (devices) and triggers updates as soon as they are generated.
While it guarantees maximal data coherence and least resource consumption,
scalability has been a minor concern due to expensive state maintenance for the
dynamically-changing heterogeneous network topology.

In a pull model, the different clients (devices) fetch data from the server (cloud)
at some pre-defined intervals. While a lower pull frequency leads to delayed
data coherence, a higher pull frequency leads to increased resource consump-
tion. Although achieving an optimal threshold has proven to be difficult, most
web applications today use periodic polling for updates as it is both light-weight
and easily deployed. Recently hybrid push-pull mechanisms [24] exploiting per-
sistent (keep-alive) HTTP connections and reverse-AJAX style asynchronous
polling such as COMET [25] and the Bayeux protocol [26] have been proposed.
In parallel, tool-kits such as Google Gears [27], Microsoft Sync Framework [28]
and others provide the ability to use applications off-line, yet seamlessly syn-
chronizing with the cloud whenever possible.

Our focus here is on continual adaptation of the popular periodic polling tech-
nique based on past access patterns to both improve user satisfaction and net-
work/cloud performance. The rest of the paper is organized as follows. Sections 3
and 4 present the system architecture used for analysis and a few key preliminary
observations respectively. Sections 5 and 6 then present the proposed adaptive
sync techniques and the results of their experimental evaluation respectively.

3 Analysis Framework

GMAIL [29] is a popular cloud-based email solution used by a large number
of people world-wide on multiple platforms/devices. As a means of evaluating
our proposed smart sync approach, we analyze a sizeable subset of GMAIL user
interactions for a five-week duration (25 week-days). In this context, we wish
to categorically state that the web access logs used in this experiment were
fully anonymized to mask all user and location identifying information with due
concern for privacy. Fig. 1 represents the analysis framework used for our exper-
imental evaluation here. All user queries served by the many GMAIL frontend
servers have historically been anonymized and per query statistics archived in
the Google File System [30]. We mine these per query logs to construct aggregate



4 Muthuprasanna Muthusrinivasan and Manimaran Govindarasu

per user logs, and run them through a Sawzall/Map-Reduce [31] [32] based pat-
tern extraction engine that generates session signatures in Bigtable [33]. Lastly
we design a query replay mechanism that can gather/compute per user statistics
based on continual adaptation of the individual session signatures.

Fig. 1. Analysis Framework

For privacy and confidentiality reasons, our results here primarily focus on fre-
quency distributions and behavioral trends, not absolute statistics and raw num-
bers. Additionally, the results are expected to have a minor loss of fidelity induced
by the anonymization process used to strip sensitive user/location information
from the user access logs.

4 Preliminary Study

We now present our initial observations along with a formal definition of a few
terms loosely used thus far.

4.1 Terminology

While we expect the terms user, device and location to refer to a person, physical
gadget, and some geo-coordinate respectively, their usage in the world of web
applications is slightly skewed - every HTTP request is instead represented by
a triplet (user id, location id, cookie id).

While user id directly maps a digital identity to a physical person, it is not
guaranteed to be unique due to the use of multiple accounts by a single person
or sharing of a single account by a group of users. Similarly location id cannot
guarantee a unique mapping from a network address to the Internet host that is-
sued that particular request due to the use of network address translation, proxy
servers etc. The other means of tracking distinct devices using browser cookies



Optimizing the update packet stream for web applications 5

(cookie id) also cannot guarantee unique device identification due to browser
state synchronization across devices by various applications [34] and pro-active
user deletion of cookies due to privacy/anonymity concerns or otherwise.

Fortunately these anomalies are relatively fewer and hence we unify the terms
cookie, location and device and use them interchangeably henceforth. We thus
restrict our analysis here to appropriate (user id, cookie id) tuples as represen-
tative of true user migration patterns on the Internet as a whole.

4.2 Initial Observations

As previously stated, data sync techniques relying on a client pull design require
server polling at regular intervals. However the ever-increasing bandwidth needs
coupled with higher demand for cpu, memory and disk resources mandate the
design and use of a more efficient sync mechanism. Our key observation in this
regard has been that most users display fairly stereotypical intra-day access pat-
terns in addition to regular everyday usage, making them fairly repetitive and
their access patterns relatively easy to predict.

User Persistence: A critical requirement of any adaptive technique is the avail-
ability of sufficient per-user data over extended durations of time to make rea-
sonably accurate predictions. Fig. 2 shows the user persistence histogram for
the 25-day window. The x-axis represents the total duration (in days) an user
accessed the GMAIL web interface, while the (log-scale) y-axis tracks the total
number of users in each of those intervals. Herein we notice the large number
of highly persistent (heavy) users (long-tail) which provides sufficient scope for
reliable data gathering and analysis, for accurate user behavior predictions.

Fig. 2. User Persistence

Device Spread: The user persistence metric measures the time spread, but not
the location/device spread for any user. The device spread histogram in Fig. 3
plots the maximum/average/minimum number of cookies accessed by the user
during the 25-day observation window. The x-axis represents the total number of



6 Muthuprasanna Muthusrinivasan and Manimaran Govindarasu

distinct cookies, while the (log-scale) y-axis tracks the number of users accessing
the corresponding number of cookies. Herein we notice a large number of users
who interact with multiple cookies/devices on a regular basis. The seemingly
large number of cookies for certain users is probably due to extensive account
sharing or incorrect query to device attribution as explained previously.

Fig. 3. Device Spread

Time Persistence: Varying the data sync update interval yields higher re-
source savings for mostly idle users than always-on users, and hence the prac-
tical feasibility of any adaptive sync technique is impacted by the cumulative
time duration an user accesses a particular session. Fig. 4 represents the time
persistence histogram where the x-axis represents the time persistence intervals
(in minutes/day), while the (log-scale) y-axis tracks the number of users in each
of those intervals. We notice that a majority of users show activity for less than
a few hours a day, and hence a periodic polling strategy would perform poorly.
The presence of user accounts having extremely high time persistence can be
attributed to coarse-grained time data available and mismatched query to user
attribution, both induced by content stripping for logs anonymization.

Fig. 4. Time Persistence

Thus high user persistence and device spread combined with low time persistence
for a large majority of GMAIL users indicates that an adaptive sync approach



Optimizing the update packet stream for web applications 7

can easily outperform the periodic polling mechanism. We now seek to analyze
in greater detail these stereotypical trends in daily user access patterns to design
an optimal data refresh policy.

5 Smart Sync Approach

We have thus far focused on the basic can we adapt issue, while we now try to
address the more critical how to adapt issue by analyzing a few user behavior
models for simplicity, scalability, and impact on overall user satisfaction.

5.1 Basic Representation

As stated previously, we use a (user id, cookie id) tuple as the basic unit of
data measurement, analysis and subsequent optimization - henceforth simply
referred to as a session. A steady increase in the number of users and their per-
sonal devices can quickly lead to scalability issues with respect to storage and
computational needs, and hence we need small light-weight session signatures
that lend well to easier generation and real-time adaption. Thus complex pat-
tern analysis or correlation techniques need to be discarded in favor of simple
resource-efficient approximate solutions.

(a) Light User

(b) Medium User

(c) Heavy User

Fig. 5. User Session Activity (1 day)

Click Tracking: A simple means of characterizing session activity would be to
analyze user-generated clicks in any browser session - while a single click indi-
cates user presence, a corresponding absence may not accurately differentiate an
inactive session from an idle user processing related/other information. However,
if we presume higher likelihood of an user click in the close neighborhood of a
previous click than farther away from it, it provides an indirect means of session
state inference - the terms idle and inactive now assume a more continuous inter-
pretation, lower (higher) deviations indicate idle (inactive) behavior respectively.



8 Muthuprasanna Muthusrinivasan and Manimaran Govindarasu

In Fig. 5, we partition user session activity patterns into three categories. While
Fig. 5a and Fig. 5c represent the two extremes of daily user click activity, Fig. 5b
better represents a typical user behavior over a 24-hour period. In Fig. 6, we
plot corresponding user activity patterns across multiple days, each day with a
different color. While Fig. 6a shows an user having a very high correlation across
days, Fig. 6b indicates a moderate level of correlation having a few outliers. On
the other hand, Fig. 6c represents an user showing practically no correlation
across days. The higher the correlation measured, the more reliable are the
resulting user behavior models, and hence better the user click predictions.

(a) High Correlation

(b) Moderate Correlation

(c) No Correlation

Fig. 6. User Session Activity (multiple days)

Click Probability Tracking: Representing a session signature as the union
of multiple user click instances on a daily basis leads to variable-sized session
signatures. Thus we not only require multiple session signatures for high-activity
users, but also larger session signatures due to the higher number of clicks gen-
erated. An alternate fixed-size representation that tracks the probability of an
user click across multiple contiguous yet disjoint time intervals can alleviate this
problem. The session signature size is now determined by the granularity of the
individual time intervals and also the precision of the click probabilities in each
time interval, and can thus be easily provisioned for better scalability.

Finally, we propose a simple exponentially weighted moving average technique to
succinctly capture user access patterns across multiple days. Eqn. 1 now repre-
sents the session signature (Sn) as the union of multiple user click probabilities
(P t

n) for the different time instances - where α is the weight assigned to any new
entry pt with respect to the previously measured user click probability (P t

n−1)
in that time interval (t) but in the older session signature (Sn−1).

Si =
⋃
∀t

P t
i =

⋃
∀t

(α ∗ pt + (1− α) ∗ P t
i−1) (1)

We now extend this basic representation to formulate precise/imprecise models
based on individual click probabilities for optimal update interval adaptation.



Optimizing the update packet stream for web applications 9

5.2 Click Tracking: Precise Models

We now propose three simple adaptive sync models each displaying a different
update interval adaptation around any single user click. We then discuss how
these per-click models can be easily combined across multiple user clicks both
intra-day and inter-day, thereby achieving better resource utilization.

(a) Uniform Refresh (or Basic Periodic Polling)

(b) Throttle Refresh

(c) Predict Refresh

Fig. 7. Per-Click Sync Models

Uniform Refresh: This model assumes an uniform access probability distribu-
tion around any user click, and represents the basic periodic polling technique.
Fig. 7a thus represents the uniform refresh (periodic polling) at some user click,
while Eqn. 2 depicts the individual time instances of subsequent updates, where
U0 represents the registered user click, and ∆ is a constant (say, 2 time units).

Un = Un−1 +∆ = U0 + n ∗∆, ∀ n > 0 (2)

Throttle Refresh: This model assumes a monotonically decreasing access prob-
ability distribution around any user click, and hence the refresh interval also
steadily increases. Our experimental evaluation of refresh interval adaptation
indicates that an arithmetic growth models user access trends more closely than
a geometric/exponential growth. Fig. 7b thus represents the throttle refresh at
some user click and the decaying access probability, while Eqn. 3 depicts their
individual time instances following an additive growth model.

Un = Un−1 + n ∗∆ = U0 +
n ∗ (n+ 1)

2
∗∆, ∀ n > 0 (3)

Predict Refresh: This model accounts for refresh interval adaptation not only
leading away from the user click, but also leading towards that user click. Thus



10 Muthuprasanna Muthusrinivasan and Manimaran Govindarasu

it supports pro-active updates for better data coherence, and represents an axial
reflection of throttle refresh about the user click. Fig. 7c thus shows the access
probability ramp up leading towards and ramp down leading away from some
user click, while Eqn. 4 represents the (additive) modulation of the corresponding
refresh time instances around the user click.

Un =

{
Un+1 + n ∗∆ = U0 − n∗(n−1)

2 ∗∆ if n < 0
Un−1 + n ∗∆ = U0 + n∗(n+1)

2 ∗∆ if n > 0
(4)

The global sync schedule for any session can now be viewed as the interference
pattern of the individual sync schedules at each user click, smoothed across
multiple days using a simple exponentially weighted moving average technique.
It is important to note that we can obtain these precise adaptive sync models only
for users having a high click-behavior correlation across multiple days. For users
having lower click-behavior correlation, and deployments with limited storage
capacity or requiring greater privacy, these models tend to be insufficient.

5.3 Click Probability Tracking: Practical Models

To alleviate privacy concerns surrounding explicit click tracking, we now propose
imprecise yet more practical models based on aggregate click probability tracking
across multiple contiguous yet disjoint time intervals. In any session, predicting
the exact time instant of any user click is infeasible and dependent on myriad
factors including the number of emails received, their relative priorities, average
user response times etc. Not so surprisingly, it is not infeasible to determine the
user click probabilities over longer time intervals - longer the time interval, more
precise the click predictions can be. However these longer time intervals render
click predictions virtually useless as they cannot guarantee better data coherence
(by update pre-fetching) due to the very size of the intervals themselves. Thus
we need appropriately-sized time intervals that provide good click predictions
(better data coherence), while limiting the session signature storage overhead.

Fig. 8. Slotted Refresh Sync Model

Slotted Refresh: This model is similar to the predict refresh model discussed
previously, but assumes a discrete probability distribution across the many time
interval boundaries. This results in a non-continuous (step-like) growth in refresh
intervals, increasing as we traverse time interval boundaries away from an user
click. Fig. 8 now represents this slotted refresh model with an additive growth
rate (3 time units) across the different static time intervals (15 time units).



Optimizing the update packet stream for web applications 11

Idle Behavior: We introduce another critical parameter here known as the win-
dow/probability spread factor that accounts for expected idle time between user
clicks. User activity typically spans multiple neighboring time intervals wherein
not all of them register an user click everyday - these sandwiched zero-activity
time intervals thus represent idle user behavior. We now propose a few probabil-
ity smoothing functions each differently scaling user access probabilities across
multiple neighboring time intervals to accurately model these passively active
idle time intervals. Fig. 9a represents a session signature with distinct click
probabilities for each of the user clicks. In Fig. 9b (Fig. 9c) we assume that
the idle behavior extends to one (two) time intervals on either side of the user
click (scaled probability value). It is critical to note that while a low probability
spread results in increased sync lag during idle times, a higher spread leads to
gradual probability homogenization and uniform click probabilities across the
entire time spectrum, and an appropriate window size is hence critical.

(a) 1 window smoothing

(b) 3 window smoothing

(c) 5 window smoothing

Fig. 9. Probability Smoothing: Window Spread Factor

Finally, the global sync schedule can again be viewed as the interference pattern
of the individual sync schedules wherein the click probability in any time inter-
val is the sum of the individual (scaled) click probabilities as determined by the
window spread factor of its neighboring user click regions. As discussed above, a
simple exponentially weighted moving average technique can once again be used
to smooth the effect of variations in user behavior across multiple days.

To summarize, we have thus far modeled session signatures as a collection of con-
tiguous yet disjoint time intervals, wherein each unit represents the user access
probability (and hence the associated sync lag) for that time interval. We have
also sought to detect idle user behavior and subsequently employed a smoothing
function to guarantee better data coherence and thus higher user satisfaction.
We now seek to individually evaluate both the precise and the imprecise adaptive
sync models against a large number of GMAIL user activity streams to study
their relative benefits and performance characteristics.



12 Muthuprasanna Muthusrinivasan and Manimaran Govindarasu

6 Experimental Evaluation

We now analyze both the per-click adaptive sync models and the more practical
slotted refresh model by experimental evaluation on a large sample of GMAIL
user activity streams. We mainly focus on two critical metrics, resource utiliza-
tion with respect to the total number of refresh queries issued by any client
device/session, and user satisfaction based on the instantaneous data sync lag
experienced by the users. In this context, we assume that every refresh query
consumes a fixed amount of resources in the client (device), the network, and
the server (cloud), to simplify the amortized cost calculations.

6.1 Click Tracking: Precise Models

The per-click models capture the total automated refresh query overhead asso-
ciated with any user click - we compare the traditional periodic polling (uniform
refresh) model against the proposed throttle/predict refresh models here. For
sparse user click distributions (Fig. 5a) the growth rate is roughly linear in the
total number of uncorrelated user clicks, while it is largely sub-linear for a denser
distribution (Fig. 5b), as explained previously.

Fig. 10. Query Histogram: Manual vs Refresh Queries (2 minute intervals)

Resource Utilization: Fig. 10 shows the query histogram for all GMAIL users
measured over a 24-hour period. The (log-scale) x-axis represents the total num-
ber of queries, while the (log-scale) y-axis represents the number of users that
generated the corresponding number of queries. We notice that the manual clicks
closely follow a power law distribution with very few users showing very high user
activity (Fig. 5c). Figs. 11a, 11b now depict the same background refresh query
trends for the three per-click models with a linear scale x-axis and different mini-
mum refresh intervals. The uniform refresh curve with a positive slope provides a
non-scalable model to support an ever-expanding user base and emerging trends



Optimizing the update packet stream for web applications 13

in higher device spread (Fig. 3) and lower time persistence (Fig. 4). On the
other hand, the throttle and predict refresh curves with a negative slope provide
a more scalable model, with fewer users requiring a high number of background
queries. While the predict refresh curve closely tracks the throttle refresh curve
for the longer interval here, it shows a greater divergence for the shorter interval
- this strange behavior can only be attributed to the specific user click distri-
butions and the refresh interval durations analyzed, and displays high variance
across days to postulate any reasonable generalization of this trend.

(a) Refresh @ 1 minute intervals

(b) Refresh @ 2 minute intervals

Fig. 11. Query Histogram: Per-Click Sync Models (varying intervals)

User Satisfaction: We now measure content sync lag at any user click instance
as a means of measuring user satisfaction or data coherence. A lower data sync
lag provides greater data coherence, and hence better user satisfaction. While
the uniform and predict refresh models consume more resources, they bound the
maximum (user-perceived) sync lag to pre-determined values, and hence provide



14 Muthuprasanna Muthusrinivasan and Manimaran Govindarasu

greater control over data coherence. On the other hand, the throttle refresh
model provides greater resource savings at the cost of potentially unbounded
sync lag - not only across different sessions, but also across user clicks within
a single session. Fig. 12 now shows the (throttle refresh) delay histogram for
all user sessions, the x-axis representing the sync lag (in minutes) and the (log-
scale) y-axis representing the number of users experiencing the corresponding
sync lag. We see that the shorter interval refreshes naturally provide a better
data coherence, and also that very few users experience a large sync lag. While
the mean and standard deviation of sync lags display a wide spread, their average
values across all user sessions is of the order of 2-4 minutes at best, and thus
provides maximal user satisfaction.

Fig. 12. Throttle Refresh: User-Perceived Sync Lag

Thus the throttle refresh model providing no guarantees on maximum sync lag
does a reasonably good job of maintaining good data coherence. To summarize,
while the uniform and predict refresh models provide fine-grained control over
user-perceived data sync lag, the throttle refresh model behaves more like a best
effort model with a few outliers. In short while throttle refresh would suffice for
casual users, it might be prudent to employ the predict refresh model for the
business or power users - the extra incentive of a relatively smaller data sync lag
being delivered at slightly higher resource costs for the service provider.

6.2 Click Probability Tracking: Practical Models

For our analysis here, we aggregate daily user click activity into 15-minute time
intervals - each session signature thus tracks 96 independent user access prob-
ability values. In order to quickly discard spurious one-off user sessions and to
efficiently manage the storage requirements for caching multiple user session sig-
natures, we propose limits on the number of session signatures being tracked on
a per-user basis using an adaptive replacement cache (ARC) [35] policy.



Optimizing the update packet stream for web applications 15

Resource Utilization: Fig. 13a shows the query histogram for all GMAIL
users for the different window spread factor sizes, where the (log-scale) x-axis
and (log-scale) y-axis represent the number of queries and the number of users
that generated the corresponding number of queries respectively. We notice that
the background refresh queries here show a similar negative-slope as the per-
click models discussed previously. In Fig. 13b we notice the slight shift in the
waveform shape as the window spread factor size increases. This result can be
interpreted as follows - while the higher window spread factor size does increase
the click probability in neighboring time intervals, it also scales down the relative
click probability in the current time interval. The net effect of the inter-day
exponentially weighted moving average smoothing and that of the intra-day
probability scaling (window spreading) in this case yields lower update pre-
fetches as the window spread factor increases.

(a) Manual vs Refresh Queries

(b) Refresh Queries (different window sizes)

Fig. 13. Query Histogram: Practical (Slotted Refresh) Model



16 Muthuprasanna Muthusrinivasan and Manimaran Govindarasu

In order to determine the optimal window spread factor for any user given its
many indirect dependencies as listed above, we adopt the periodic window spread
tightening concept here. We bootstrap with a high probability spread, and then
relatively tighten the adapted click probability distribution every few weeks -
the lower the session signature correlation across multiple days, the lesser is the
window spread tightening provided and vice versa (Fig. 14). While this issue
merits an in-depth discussion in itself, we do not delve into greater details here
due to space constraints. We suffice it to mention that while this optimization
is optional, it does provide incrementally higher benefits.

Fig. 14. Probability (Window) Spread Tightening Concept

User Satisfaction: We now measure the effect of the different window spread
factor sizes on user-perceived data sync lag. Fig. 15 shows the delay histogram for
all user sessions, the x-axis representing the sync lag (in minutes) and the (log-
scale) y-axis representing the number of users experiencing the corresponding
sync lag. We see that better data coherence is achieved for smaller window
spread factor sizes, and this can similarly be explained on the basis of relative
probability scaling as discussed above. While the mean and standard deviation
of sync lag displays a wide spread, their average values across all user sessions
is less than a minute - thereby achieving maximal user satisfaction levels.

To summarize, the proposed data sync models vastly outperform the naive pe-
riodic polling mechanism - amongst the many adaptive sync models proposed,
the slotted refresh model provides the most practical means of achieving bet-
ter resources utilization and higher user satisfaction. We also wish to state that
the one-size fits all approach may not work here - different cloud-based appli-
cations might benefit from vastly different models and appropriate choices can
only be made by analysis of the individual application requirements and their
corresponding user traffic patterns. In this context, we wish to again state that
a vastly superior but complex (not cheap) model may not be the most prudent
choice with respect to scalability concerns and the resulting computation costs.



Optimizing the update packet stream for web applications 17

Fig. 15. Slotted Refresh: User-Perceived Sync Lag

7 Conclusions

Web applications today have greatly evolved to provide users instantaneous ac-
cess to their personalized data from any device/location and in any form with
extreme ease. While users today have come to expect seamless data migra-
tion across their many devices, various technological constraints with respect
to high data coherence and better data synchronization do impose certain bar-
riers. The traditional approach of periodic data fetch by the clients from the
different servers in the cloud faces critical limitations with respect to scalability
and prohibitively high costs. We thus seek to address the dual-fold problem here
- increased user satisfaction and resource savings - by proposing novel extensions
to the popular periodic polling technique.

The focus of this work is on addressing the classic trade-off between resource
utilization and user satisfaction. Higher the data refresh rate, higher the costs,
but also higher the user satisfaction. Conversely, lower the data refresh rate, lower
the costs, and correspondingly lower the user satisfaction. The opportunity thus
lies in identifying the sweet spot along the entire spectrum that achieves the right
balance between the two metrics. Our approach here has been to understand
individual user behavior based on past access patterns and thereby derive future
predictions for user access with high confidence, so that preemptive/throttled
data sync can be easily achieved. An experimental evaluation of a large sample
of GMAIL user activity streams successfully validates our approach, and we now
plan to perform limited user trials hopefully leading to wide-spread deployment.

References

1. Website of the world’s first-ever web server, http: // info. cern. ch
2. Cloud Computing, http: // en. wikipedia. org/ wiki/ Cloud_ computing



18 Muthuprasanna Muthusrinivasan and Manimaran Govindarasu

3. A guided tour of Amazon, Google, AppNexus, http: // www. infoworld. com/

article/ 08/ 07/ 21/ 30TC-cloud-reviews_ 1. html
4. SaaS, http: // en. wikipedia. org/ wiki/ Software_ as_ a_ service
5. Convergence, http: // en. wikipedia. org/ wiki/ Media_ convergence
6. Pervasive Computing, http: // en. wikipedia. org/ wiki/ Pervasive_ computing
7. A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization: A Universal Concept in

Nonlinear Sciences, Cambridge University Press, 2001
8. W. Kautz, Fibonacci codes for synchronization control, IEEE Trans. on Information

Theory, 11(2):284-292, 1965
9. J.J. Kistler, M. Satyanarayanan, Disconnected Operation in the Coda File System,

ACM TOCS, 10(1):3-25, 1992
10. T. L. Liao, S. H. Tsai, Adaptive synchronization of chaotic systems and its appli-

cation to secure communications, Chaos, Solitons, Fractals, 11(9):1387-1396, 2000
11. J. Mellor-Crummey, M. Scott, Algorithms for scalable synchronization on shared-

memory multiprocessors, ACM TOCS, 9(1):21-65, 1991
12. H. Kopetz, W. Ochsenreiter, Clock synchronization in distributed real-time systems,

IEEE Trans. on Computers, 36(8):933-940, 1987
13. P. Bernstein, N. Goodman, Timestamp-based algorithms for concurrency control

in distributed database systems, VLDB, pp. 285-300, 1980
14. RSync, http: // en. wikipedia. org/ wiki/ Rsync
15. Y. Minsky, A. Trachtenberg, R. Zippel, Set reconciliation with nearly optimal com-

munication complexity, IEEE Trans. on Info. Theory, 49(9):2213-2218, 2003
16. D. Starobinski, A. Trachtenberg, S. Agarwal, Efficient PDA synchronization, IEEE

Trans. on Mobile Computing, 2(1): 40-51, Jan-Mar 2003
17. L. Fan et.al., Summary Cache: A Scalable Wide-Area Web Cache Sharing Protocol,

IEEE/ACM ToN, 8(3):281-293, 2000
18. Palm HotSync, http: // www. palm. com/ us/ support/ hotsync. html
19. Using ActiveSync, http: // www. microsoft. com/ windowsmobile/ en-us/ help/

synchronize/ default. mspx
20. Nokia IntelliSync, http: // europe. nokia. com/ A4164024
21. Open Mobile Alliance, http: // www. openmobilealliance. org
22. SyncML, http: // www. syncml. org
23. E. Bozdag, A. Mesbah, A. V. Duersen, A Comparison of Push and Pull Techniques

for Ajax, CoRR 2007, http: // arxiv. org/ abs/ 0706. 3984
24. E. Bozdag, A. V. Duersen, An Adaptive Push/Pull Algorithm for AJAX Applica-

tions, AEWSE, pp. 95-100, 2008
25. Low Latency Data for the Browser, http: // alex. dojotoolkit. org/ ?p= 545
26. Bayeux Protocol, http: // svn. xantus. org/ shortbus/ trunk/ bayeux
27. Google Gears, http: // gears. google. com/ support
28. Sync Framework, http: // msdn. microsoft. com/ en-us/ sync
29. The official GMAIL Blog, http: // gmailblog. blogspot. com
30. S. Ghemawat, H. Gobioff, S. Leung, The Google File System, ACM SOSP, 2003
31. R. Pike, S. Dorward, R. Griesemer, S. Quinlan, Interpreting the Data: Parallel

Analysis with Sawzall, Scientific Programming Journal, 13(4):277-298, 2005
32. J. Dean, S. Ghemawat, MapReduce: Simplified Data Processing on Large Clusters,

OSDI, pp. 137-150, 2004
33. F. Chang, J. Dean, S. Ghemawat, W. Hsieh, D. Wallach, M. Burrows, T. Chandra,

A. Fikes, R. Gruber, Bigtable: A Distributed Storage System for Structured Data,
OSDI, pp. 205-218, 2006

34. Mozilla Weave, http: // labs. mozilla. com/ projects/ weave
35. Cache Algorithms, http: // en. wikipedia. org/ wiki/ Cache_ algorithms


