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Abstract. In many numerical simulation codes the backbone of the ap-
plication covers the solution of linear systems of equations. Often, being
created via a discretization of di�erential equations, the corresponding
matrices are very sparse. One popular way to solve these sparse linear
systems are multigrid methods - in particular AMG - because of their
numerical scalability. As the memory bandwidth is usually the bottle-
neck of linear solvers for sparse systems they especially bene�t from
high throughput architectures like GPUs. We will show that this is true
even for a rather complex hierarchical method like AMG. The presented
benchmarks are all based on the new open source library LAMA and com-
pare the run times on di�erent GPUs to those of an e�cient OpenMP
parallel CPU implementation. As the memory access pattern is especially
crucial for GPUs we have a focus on the performance of di�erent sparse
matrix formats.
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1 Introduction

In this paper we show that it is possible to gain a signi�cant performance in-
crease when GPUs are used for the solution phase of AMG. To achieve this it is
necessary to execute the full AMG cycle on a GPU with massively parallel com-
ponents. By using Jacobi smoothing the full AMG cycle essentially cuts down
to a series of sparse matrix vector multiplications (SpMV). So it is possible to
achieve good AMG performance for the solver phase if we have good SpMV
performance. We show that the popular CSR format does not lead to acceptable
performance on GPUs, at least if the rows are not padded like done by Baskaran
and Bordawekar[7]. Instead, more GPU-suitable formats like ELLPACK or JDS
are needed. ELLPACK has been successfully used for a GPU AMG implementa-
tion by Feng and Zeng[9]. Also Haase, et. al. have been successfully implemented
a AMG for GPUs using the interleaved compressed row storage format[11] which
is quite similar to our JDS implementation. In contrast to their publications we
focus on well known model problems to report comprehensible results. This has
been already the approach for our last publication �Scalable parallel AMG on
ccNUMA machines with OpenMP�[10], where we have compared our AMG im-
plementation to the open source solver packages PETSc and hypre[2, 1]. This
CPU implementation also is the baseline for our GPU benchmarks. To make it



easier to classify our results this paper follows the structure of our aforemen-
tioned paper and uses the same hardware and model problems.

We start with a short introduction of LAMA the library we used for our
AMG implementation. In the following section 3 we describe our hard- and soft-
ware setup and the execution environment we used. After describing the model
problems, the used AMG Setup and the used sparse matrix formats we present
the obtained benchmark results. The benchmarks evaluate how the performance
is in�uenced by the matrix storage format and the precision of the calculations.

2 LAMA

The Library for accelerated math applications, LAMA, is a new open source
project which is available at http://www.libama.org. The �rst of two main
design aims of LAMA is to allow easy integration of accelerators like GPGPUs.
As a consequence to this the second main design aim is to be extensible with new
matrix storage schemes while supporting a natural mathematical syntax without
sacri�cing performance, like it is also achieved by the C++ Library Blitz++[3].
To achieve both goals LAMA is separated into two parts. A C library which
provides BLAS functionality for dense and sparse types and which is used to
utilize all types of accelerators and a C++ part which supports the extensibility
and provides the natural mathematical syntax. The C library makes our core
algorithms of our library usable by a wide range of applications and allows the
integration of existing BLAS Libraries. The C++ part uses simpli�ed expression
templates [16] to achieve the second design aim. Utilizing this and by formulating
solvers only in terms of simple BLAS operations, like they are printed in text
books[6], we achieve very comprehensible solver implementations and it is easy to
experiment with new accelerators or data structures, e.g. di�erent sparse matrix
formats. The results obtained in this paper have been produced with a version
of LAMA that is mainly using �compile time polymorphism� through templates.
This enables aggressive compiler optimizations while sacri�cing some run time
�exibility. A very similar approach is taken by the LAToolbox[12] which is part
of the HiFlow3 FEM solver package[5].

Using LAMA we had only a minimal implementation e�ort to make the AMG
implementation, that we also used in our previous publication, run with CUDA
and OpenCL. It was only necessary to implement SpMV for the tested sparse
matrix storage formats within the back ends for CUDA and OpenCL. In addition
we also implemented specializations of the Jacobi smoother for the tested sparse
matrix storage formats for both back ends. Although this would not have been
necessary from a functional point of view, since we also implemented a universal
Jacobi based on just SpMV, the specialized version is slightly more e�cient.
Because we have also used a specialized version of the Jacobi smoother in the
OpenMP back end this was necessary to have a fair comparison.



3 Hardware and Software Setup

The CPU results presented in this paper have been computed on the hardware
described in table 1. This is one of the systems we have used in our previous
publication [10], where it was named BULL. All binaries have been build with
gcc version 4.4.3 and the optimization options -O3 and -ffast-math.

3.1 GPUs

The GPU benchmarks have been done with the GPUs that are listed in table 2.
We have used CUDA 3.2 for the GPU benchmarks. To compile the GPU kernels
we have used the options -arch=sm_13 and -use_fast-math in all cases. If not
otherwise mentioned all measurements have been done in double precision with
disabled ECC and enabled Texture cache for the access to the input vector in
SpMV operations and Jacobi iterations.

Table 1. CPU Hardware

name CPU

cpu Xeon X5650
core freq. 2.67 GHz
L3-cache 12 MB
cores/cpu 6
HT o�

sockets 2
cores 12

memory 12 GB
BW (GB/s) 32

Table 2. GPUs used

name G46 G48 T10 T20

device GeForce GeForce Tesla Tesla
GTX 460 GTX 480 C1060 C2050

compute cap. 2.1 2.0 1.3 2.0
multiprocessors 7 15 30 14
cores 336 480 240 448
core freq 1.43 GHz 1.40 GHz 1.30 GHz 1.2 GHz

memory 1 GB 1.5 GB 4 GB 3 GB
BW (GB/s) 115 177 102 144
HW Cache yes yes no yes

An introduction to CUDA or GPU programming can be found in [13]. We
just want to highlight that in contrast to a CPU a GPU is designed as a high
throughput architecture. This has certain implications for the performance char-
acteristics of these devices. Because the algorithm under examination is memory
bound the most crucial point for us is the high memory bandwidth of GPUs.
This high memory bandwidth comes at the cost of a high access latency and
strict coalescing requirements to achieve the full memory bandwidth[8]. To over-
come the high latency a GPU can manage a lot more threads concurrently than
there are compute cores. If enough threads are available it is possible to hide the
high access latency to the GPU memory, by switching between threads that are
waiting and threads that are ready to run.

To achieve good performance on a GPU this means that it is necessary to
have a high degree of parallelism and regular memory accesses. For the chosen
solver the high degree of parallelism is given. The regular memory access however
is dependent on the chosen storage format for sparse matrices. The in�uence of
the sparse matrix format on the coalescing is described in section 5.1.



4 Execution

All benchmarks have been computed via the benchmark framework integrated
in the LAMA package. This framework running in Python ensures reproducible
run times by creating new processes for every test run, eliminating the possibility
of a benchmark in�uencing its followers with respect to memory usage. Within
every benchmark process, the reported run time is the minimum of 5 executions.
Additionally, every process is started at least 3 times. In case aberrations have
to be eliminated here this number will automatically increase. Since GPUs do
not support preemption and therefore deliver reproducible results this feature is
in general only triggered within CPU benchmarks.

4.1 Model Problems

Our set of test matrices is shown in table 3. It consists of di�erent discretizations
of the Laplacian operator on structured grids in up to three dimensions. All
matrices have a total of 1 million rows but increase in the number of nonzero
entries. Each row corresponds to exactly one grid point and its nonzero values
refer to the entries of the di�erential stencil applied. We have chosen these model
problems because they are well known, which makes it more easy to compare
our results[8]. Additionally, they are a good measure for real world 1D, 2D and
3D applications because of the basic local access patterns common for matrices
based on a wide range of PDE applications.

Table 3. Laplacian discretizations used for solver benchmarks

name dimensions diags entries CSR mem

1D3P 1,000,000 3 3 Mio. 38 MB
2D5P 1,000x1,000 5 5 Mio. 61 MB
3D7P 100x100x100 7 7 Mio. 83 MB
2D9P 1,000x1,000 9 9 Mio. 107 MB
3D27P 100x100x100 27 27 Mio. 307 MB

To exploit the sparsity all matrices are stored in either Compressed Sparse
Row (CSR), Jagged Diagonal Storage (JDS) or ELLPACK format using both,
single and double precision. More details about the Matrix formats will be given
in Section 5.

To make it easier to compare our work with the results of others table 4
contains the theoretically calculated complexity of 10 AMG preconditioned CG
iterations for all evaluated matrix storage schemes and all model problems. The
achieved memory bandwidth and compute performance for the di�erent devices
and model problems can be easily derived from these numbers and the given
execution times. These reference numbers are counted based on the assumptions
made in section 6 to allow the comparison of di�erent hardware, even if they
di�er in the capabilities of the available hardware performance counters.



Table 4. Complexity of 10 CG-AMG Iterations

CSR ELL JDS
GB-S GB-D GFLOP GB-S GB-D GFLOP GB-S GB-D GFLOP

1D3P 8.24 14.80 1.26 6.96 13.68 1.30 8.12 13.40 1.26
2D5P 13.85 23.99 2.26 13.06 23.53 2.34 14.53 23.61 2.26
2D9P 17.09 29.24 2.91 16.52 28.99 2.98 18.41 29.71 2.91
3D7P 20.62 35.25 3.43 20.96 36.64 3.70 22.02 35.63 3.43
3D27P 36.80 62.01 6.56 38.39 65.27 6.98 40.95 65.43 6.56

4.2 AMG Setup Phase

Due to its complexity and partially sequential nature, the setup phase of AMG
in LAMA is computed on the CPU. This includes coarse grid de�nitions, in-
terpolation and restriction constructions as well as the multiplication of the
galerkin operators. As a coarsening strategy we use the classical Ruge-Stüben
algorithm[15] (1stage) in combination with standard interpolation.

Table 5 shows the galerkin operator stats of the resulting hierarchies for the
corresponding 2D and 3D stencils.

Table 5. Galerkin Operator stats for 2D and 3D stencils

2D5P 2D9P 3D7P 3D27P
Lvl Rows Entries Rows Entries Rows Entries Rows Entries

0 1000000 4996000 1000000 8988004 1000000 6940000 1000000 26463592
1 500000 4492002 250000 6220036 500000 9320600 125000 13642048
2 125000 3105014 62500 2776594 83331 6321285 14456 2762872
3 31250 1380362 15625 684745 10458 1611064 1317 318939
4 7813 338689 3126 120954 966 171576 181 25235
5 1563 59057 601 21161 133 13507 - -
6 312 10388 121 3405 - - - -
7 60 1452 - - - - - -

The coarsening rates, and therefore also the number of levels constructed,
are strongly related to the stencil size as well as the problem dimension. These
levels in return will de�ne the amount and shape of the SpMV operations used
within each AMG V-cycle in the solution phase later on.

Besides the classical meaning of an AMG setup phase our solver initializa-
tion also includes the setup of the coarsest grid inverse as well as the needed
data conversions and transfers for the GPU devices. Since this whole process is
currently only partially parallelized and optimized, we will not consider it for
the benchmarks but focus on the solution phase.



4.3 AMG Solution Phase

Here we describe the implementation of the AMG solution phase which is basi-
cally a series of SpMV operations. For the benchmarks we measure 10 iterations
of a CG solver preconditioned with AMG. In the solution phase AMG is running
a V-cycle performing two pre- and post-smoothing steps with a weighted Jacobi.

Although it has no e�ect on the performance analysis later on, table 6 ex-
emplary shows the convergence history of the resulting AMG approach applied
to the 2D9P stencil.

Table 6. L2-residual reduction for 2D9P

Iter 0 1 2 3 . . . 8 9 10

LAMA 1.9E + 2 2.6E + 1 2.4E + 0 1.8E − 1 . . . 3.2E − 7 3.5E − 8 1.7E − 9

Please keep in mind that we only measure the run times of the solution
phase. The transfer of the matrices to GPU memory is considered to be a part
of the setup. Theoretically, these transfer costs could also be hidden behind the
computation of subsequent level operators. Besides that, also the transfer of the
rhs and the solution is not considered in the given run times. This is because
they remain constant for a given problem size, independently of the number and
complexity of the AMG cycles performed. For our benchmarks the transfer costs
for the needed uploads of right hand side and �rst guess as well as the download
of the solution are given in Table 7. The transfer times have been measured with
paged locked host memory that enables dma transfers and is necessary to allow
asynchronous transfers.

Table 7. Transfer cost of rhs, 1st guess and solution

�oat double

Transfer 2, 4ms 4, 8ms
Bandwidth 4.65GB/s 4.65GB/s

This shows that even with comparably small amounts of data transferred one
can utilize a quite satisfying percentage of the maximal available PCI-Express
bandwidth of 6GB/s.

5 Matrix Formats

There are many di�erent storage formats available for sparse matrices. In this
paper we will focus on three of them which are quite diverse in their advantages
and disadvantages. They will be introduced brie�y by showing the main storage
vectors for the test matrix in �gure 1.
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Fig. 1. Example 5x5 matrix
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Fig. 2. The CSR storage format

5.1 The CSR Format

The �rst and probably most commonly used format (at least on CPUs) is the
compressed sparse row format (CSR). It keeps all matrix data in two index arrays
ia and ja, as well as the actual matrix values in data. The array ia keeps track
of the start and end of each row in the other two arrays as shown in �gure 2,
while ja and data give the column index and value of each nonzero element. To
ensure fast access to the diagonal elements of the matrix they are always stored
�rst in each row.1

The storage amount is �xed by the number of rows and non zeros and there
are no additional requirements for the matrix pattern. Therefore the CSR format
is one of the most universal sparse formats available.

To give a baseline of our GPU AMG implementation we compare the run
times in single and double precision to the results obtained on the CPU for the
popular CSR format. The presented double precision run times on the CPU have
been validated against PETSc and boomer AMG from the hypre package[2, 1].
This has been done in our aforementioned publication[10]. Table 8 list the run
times for all model problems and for all the hardware mentioned in the tables
1 and 2 in single and double precision. The �rst column shows the identi�er of
the tested hardware in this column S means a serial run, 1 means a run that
uses one socket (6 Cores) of the CPU system and 2 means a run that uses two
sockets (12 Cores) of this system. The other identi�ers are the GPUs from table
2.

As one can see from table 8 the execution times for the GPUs are dramati-
cally increasing with the complexity of the model problems. To understand that
remember the implementation of the AMG solver phase, which is described in
section 4.3. As described there it mainly consist of SpMV operations and is
therefore memory bound. Given that the dramatic performance drop for more
complex problems can be easily explained by the fact that the memory system
of the tested GPUs does not run at full speed. This is due to the decreasing
memory coalescing with growing numbers of none zeros per row[8].

5.2 The ELLPACK Format

Looking towards GPUs or vector-processors in general one needs to ensure more
regularity in memory access in order to achieve good performance. The sparse

1 The CSR SpMV kernel can be found in our SVN Repository at sourceforge in
trunk/src/lama/lama_CSPBLAS_level2_cuda.cu



Table 8. Execution Times for the CSR format in seconds

1D3P 2D5P 2D9P 3D7P 3D27P
S D S D S D S D S D

S 1.15 1.17 1.78 1.87 2.01 2.13 2.60 2.86 4.09 4.70
1 0.34 0.58 0.53 0.86 0.62 0.98 0.78 1.25 1.30 1.99
2 0.18 0.32 0.27 0.51 0.32 0.53 0.41 0.67 0.67 1.05

G46 0.11 0.17 0.77 0.96 1.40 1.75 1.98 2.39 6.02 6.45
G48 0.08 0.12 0.51 0.62 0.94 1.10 1.28 1.53 3.81 4.06
T10 0.20 0.30 0.74 0.90 1.14 1.29 1.52 1.63 2.93 3.00
T20 0.09 0.13 0.60 0.74 1.08 1.33 1.54 1.84 4.55 4.87

format provided by the ELLPACK package[4] ensures easier storage under the
additional requirement of an equally number of non zeroes per matrix row. Be-
cause of this assumption it does not need the array ia but might arti�cially
increase the number of non zeroes as shown in �gure 3(a).

0 1 1 2 3 4 2 3 3 2 4 0ja

2 9 1 5 5 1 6 9 4 2 3 7data

(a) row-wise

0 1 2 3 4 1 2 3 2 0 3 4ja

5 12 1 6 4 3 9 95 2 7data

(b) column-wise

Fig. 3. The ELLPACK storage format

To allow coalesced memory access in terms of multiple threads reading a
sequence of matrix rows at once it is also bene�cial to store the nonzero Elements
of the matrix column-wise as shown in �gure 3(b), which is how ELLPACK is
stored on GPU devices for the benchmarks in this paper.2

While the number of additional arti�cial elements needed to meet the stor-
age requirements for ELLPACK might not be high for the actual system matrix
created from a di�erential stencil of some speci�c pattern, this does not need to
hold when looking at the whole AMG hierarchy of matrices. Especially Interpo-
lation operators are usually very unbalanced in terms of nonzero entries. Table 9
shows the overall overhead of arti�cial non zeros throughout the AMG hierarchy
of matrices.

The run times of the benchmarks with the ELLPACK format are given in
table 10. The table is formatted like table 8 in section 5.1. The run time for the
model problems 3D27P in double precision on the GeForce GTX 460 is missing
because the available global memory on this device is not large enough to store

2 The ELLPACK SpMV kernel can be found in our SVN Repository at sourceforge in
trunk/src/lama/lama_CSPBLAS_level2_cuda.cu



Table 9. Storage overhead of ELLPACK versus CSR for the AMG hierarchy

Stencil 1D3P 2D5P 2D9P 3D7P 3D27P

overhead 14% 14% 11% 17% 13%

the whole solver setup in addition to the texture memory reserved by the desktop
environment.

Table 10. Execution Times for the ELL format in seconds

1D3P 2D5P 2D9P 3D7P 3D27P
S D S D S D S D S D

S 0.97 1.12 1.62 1.87 1.90 2.17 2.51 2.95 4.10 4.74
1 0.31 0.55 0.52 0.84 0.61 0.96 0.81 1.29 1.36 2.10
2 0.15 0.27 0.27 0.44 0.31 0.53 0.42 0.66 0.70 1.07

G46 0.10 0.15 0.16 0.22 0.19 0.25 0.26 0.37 0.43 N/A
G48 0.07 0.10 0.10 0.13 0.11 0.15 0.16 0.21 0.25 0.33
T10 0.11 0.19 0.15 0.24 0.17 0.27 0.25 0.38 0.38 0.54
T20 0.08 0.14 0.12 0.16 0.13 0.18 0.19 0.27 0.30 0.42

As one can see from �gure 4(a) all tested GPUs have a huge bene�t from the
ELLPACK format. This can be explained with the same arguments like the bad
performance of the CSR format on GPUs. Because we use a column major order
layout of the ELLPACK format on the GPU all accesses to the input matrix are
perfectly coalesced and therefore no memory bandwidth is wasted[8]. For the
CPU version of ELLPACK we are using row major order storage to have a good
cache utilization while accessing the input matrix. Although the performance of
ELLPACK remains constant its speedup increases because the CSR performance
is decreasing for the more complex system like it has been described in section
5.1.

The CPU run times are nearly not a�ected by the storage format because the
additionally stored matrix elements of the ELLPACK format are compensated
by fewer indirect memory accesses and the fact that we can save the storage of
one integer array. It would be possible to further optimize the ELLPACK format
on the CPU, but this has not been done because it was not in the focus of this
work.

5.3 The JDS Format

For many applications the additional storage of arti�cial zeroes are a knock-
out criterion for the ELLPACK format. For matrices with few long rows this
overhead will turn out to be much higher than the percentage given in table
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9. To have a more general matrix storage structure we will also look at the
Jagged Diagonal Sparse (JDS) format, which has been known to perform well
on graphics cards as shown in [14]. The format is a compromise between highly
e�cient coalesced memory accesses on GPUS from ELLPACK and the �exibility
of CSR.

2 3 401perm 2 3 401perm
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data
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(a) permutation of ELLPACK
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1 0 22 32 4

1data
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5 5 1 1dlg
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(b) �nal arrays

Fig. 5. The JDS storage format

The arrays for JDS are very similar to the column-wise ELLPACK storage
in �gure 3(b). To remove the arti�cial elements we have to reorder the rows
by size and store the permutation in the array perm. Now this permutation is
also applied to every column in the arrays ja and data as shown in �gure 5(a),
sorting all matrix entries to the front of every column.

Given an extra array for each column size dlg, it is now safe to remove all
arti�cial values. Additionally we store an array ilg for the number of elements
in each row which will give us easier access in certain loops. Note that in general
only one of the arrays dlg and ilg is needed, the second one is purely optional.
To avoid multiple writes to the output vector and to allow parallel execution of



a JDS SpMV operation we are using dlg and omiting ilg3. Figure 5(b) shows
the modi�ed arrays for JDS.

Looking at the run times of JDS in table 11 the �rst thing to notice are the
comparably bad timings on the cpu. While there was a row-wise implementation
for ELLPACK on the CPU we only support column-wise ordering for JDS. Of
course this results in rather bad memory access patterns on a non-vector ar-
chitecture. In comparison to ELLPACK there are less matrix elements to load
within the JDS format, but this comes at the cost of two additional vectors perm
and dlg.

Table 11. Execution Times for the JDS format in seconds

1D3P 2D5P 2D9P 3D7P 3D27P
S D S D S D S D S D

S 1.27 1.41 3.45 3.91 4.40 5.99 7.02 8.06 10.04 12.14
1 0.37 0.62 0.77 1.08 0.98 1.37 1.5 1.92 2.27 3.01
2 0.21 0.33 0.42 0.59 0.55 0.81 0.85 1.07 1.23 1.56

G46 0.10 0.17 0.15 0.25 0.17 0.29 0.26 0.41 0.40 0.62
G48 0.08 0.10 0.10 0.14 0.11 0.15 0.17 0.23 0.24 0.33
T10 0.13 0.21 0.18 0.27 0.21 0.30 0.32 0.46 0.45 0.61
T20 0.09 0.13 0.11 0.18 0.13 0.20 0.20 0.30 0.29 0.44

Comparing the run times of the JDS directly to ELLPACK we see only slight
di�erences as shown in �gure 4(b). Besides that JDS is much more �exible than
ELLPACK looking at general matrix patterns with diverse row lengths that
would lead to much higher padding overhead.

6 Single precision vs double precision performance

The run times with single precision arithmetic are given in tables 8, 10 and 11.
A rationale for these numbers can again be derived from the characteristics of a
SpMV. If we state that

� the execution time for SpMV is limited by the memory bandwidth
� we ignore the existence of caches.

we can calculate the possible speedup of single precision calculation over a double
precision calculation for a SpMV theoretically.

To do that, let A be our input matrix with n rows, n columns and for sim-
plicity k none zero elements per row. To do a SpMV depending on the storage
format the following values need to be accessed:

3 The JDS SpMV kernel can be found in our SVN Repository at sourceforge in
trunk/src/lama/lama_CSPBLAS_level2_cuda.cu



CSR ELL JDS
n · k n · k n · k acc. to the input vector
n n n acc. to the output vector
n · k n · k n · k acc. to the none zero elements of A
n · k n · k n · k acc. to the column index array of A
n 0 0 acc. to the row index array of A
0 0 n acc. to the permutation array of A
0 0 n · k acc. to the dlg index array of A
n · (2 · k + 1) n · (2 · k + 1) n · (2 · k + 1) acc. to �oating point values
n · (k + 1) n · k n · (2 · k + 1) acc. to integer values

With the size of a single precision �oating point value being 4b, a double
precision value 8b and a integer value 4b this leads to

CSR ELL JDS
n · (5 · k + 3) · 4 n · (5 · k + 2) · 4 n · (6 · k + 3) · 4 bytes in double precision
n · (3 · k + 2) · 4 n · (3 · k + 1) · 4 n · (4 · k + 2) · 4 bytes in single precision

Because the accesses to the row index array do not grow with the number of
none zeros the ratio of double precision to single precision gets bigger with in-
creasing values of k for CSR. For ELL the ratio is getting smaller with increasing
values of k and for JDS they remain constant. This leads to the following upper
bounds for the theoretical speedup of single precision over double precision.

CSR ELL JDS

supk>=1
(5·k+3)
(3·k+2) = 5

3 supk>=1
(5·k+2)
(3·k+1) = 7

4 supk>=1
(6·k+3)
(4·k+2) = 3

2

Taking into account that the peak single precision performance is 8-times of
its double precision performance for a Tesla C1060 and 2-times for the other
tested GPUs it is obvious that the double precision compute performance is
not the bottle neck for a SpMV operation with double precision. That this is
not only a theoretical investigation can be seen in �gure 6. The fact that the
speedup is larger than the stated maximum for the model problem 1D3P can be
explained by cache e�ects (L1/L2/Texture). Because for smaller stencils we have
a better cache utilization which makes the theoretical calculation to pessimistic.
The more signi�cant single precision performance drop for the CSR format on
the GPUs can be explained by the fact that memory coalescing is a lesser issue
for double precision, because the doubled size means that only 8 consecutive
elements need to be accessed to exploit the available memory bandwidth.

7 Conclusion

We have shown that the incorporation of GPUs for AMG can give a performance
boost for the solution phase if the right sparse matrix format is chosen. Based
on the cache-ignoring memory model from section 6 one can see in �gure 7
that the performance - in terms of memory saturation - is nearly optimal. The
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evaluation of di�erent GPUs shows that this is even true for cheap devices like
the GeForce GTX 460. Supplementary we have taken a closer look at the aspect
of single precision calculation. Looking at this we want to accentuate that the
theoretical disadvantage for double precision calculations of GPUs is really no
issue for memory bound algorithms, like AMG.

8 Future Work

Choosing the right sparse matrix format makes the GPU a really good piece of
hardware to compute the solution phase of AMG. But if we take a look at the
performance of the whole algorithm the setup phase also has big optimization
potential. To address this two things should be done. First the proof that it is
possible that the transfer of the AMG hierarchy into GPU memory can be almost
completely hidden behind its own computation on the CPU. Given this proof
also very sophisticated AMG setups can bene�t from GPUs during the solution
phase, even if the setup process is to complicated to execute e�ectively on the
GPU. The second thing to do is to accelerate the setup with the integration of
GPUs, by executing parts or even the whole setup on the GPU.

Besides that more techniques to speedup the solution phase should be ex-
plored. These include the e�ect of mixed precision calculation and the option to
choose di�erent matrix storage formats for di�erent parts of the algorithm.

Alongside to these AMG related topics we want to support distributed mem-
ory machines with LAMA. This will also address multi GPU aspects and the
possibility to e�ectively utilize CPU and GPU resources in parallel.
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