
A Systematic Approach to the Comparison of
Roles in the Software Development Processes

Murat Yilmaz1, Rory V. O’Connor2 and Paul Clarke1

1 Lero Graduate School in Software Engineering, Dublin City University, Ireland

2 Lero, the Irish Software Engineering Research Centre, Dublin City University

{murat.yilmaz,roconnor,pclarke}@computing.dcu.ie

Abstract. The vision of building a successful software product requires
teams of individuals equipped with a wide range of social and technical
skills. Furthermore, by combining these skills with appropriate job roles,
we should be able to improve the productivity of a software organization.
In order to identify and compare different roles in software development
activities, we conduct a systematic comparison of software development
models, covering traditional approaches through to agile techniques. To
compare the roles in the literature with industrial software landscapes,
we use data from a survey conducted on 266 software practitioners to
ascertain job roles in two middle size software companies, one of which
uses traditional methods and in particular ISO/IEC 12207 for managing
their software development activities while other uses a tailored agile
methodology. In light of our interviews, we found that based on project
specific needs, the roles used in industry vary significantly from the roles
defined in literature.

1 Introduction

Software development is a complex socio-technical activity, which relies on teams
of individuals working harmoniously. Therefore, individuals should be able to
cope with challenges embedded in software development tasks. These tasks, how-
ever, should be performed as teamwork to accomplish a particular contract with
stakeholders [1]. During these activities, the socio-technical skills of individuals
are an important consideration when forming teams. As mentioned in every soft-
ware development methodology, there are job roles for individuals to be assigned,
and there is always a type of process it follows to progress [2]. A role, on the other
hand, is a series of expectations from an individual based on the team-based ac-
tivities that are defined in a social context or a situation. To achieve successful
results, these individuals should be selected for a appropriate role based on the
skills mentioned, which also usually creates a kind of dependency on their tasks.

While the development process involves lots of social interactions, and partic-
ipants with overlapping responsibilities, defining proper interactions among these
roles are important for software development activities so that the participants

will know what to do and which parts of a task fall under their responsibility.
However, without portraying the needs of these roles in a social structure, def-
inition of these roles may not be enough for organizing a software team and
particularly for orchestrating a software organization as a whole.

There are several software development roles that are defined by traditional
development approaches. The agile perspective somehow changed the flow of
information in a software company, which causes alterations in several roles or job
titles previously defined in traditional software development. This realignment
has weakened some of the traditional roles to some extent: therefore even some
practitioners think that agile reduces the ability of managers to command their
teams [3].

In this paper, we constitute a systematic comparison framework based on
actualized roles and defined roles in the software development processes. We for-
malize our research question as: “In practice, do software development roles differ
from the role definitions provided by the software development process method-
ologies?” To this end, we review the literature to single out the set of defined
roles for the selected software development processes and systematically com-
pare them with the roles that are used in industrial settings. Based on a case
study with two middle size software companies, we first use the data collected
on our surveys to understand the working roles or titles in an industrial software
organization, and secondly we interview software practitioners to validate our
results.

The remainder of this paper is structured as follows: In section two, we
introduce our research viewpoint, which defines our systematic approach that
enables the comparison of different roles. The following section reviews the roles
identified in literature for the different software development processes. The next
section evaluates our approach by analyzing of data gathered from the case
studies we conducted in two middle size software companies. The last section
will conclude the paper with a brief summary of contributions.

2 Research Overview

The first part of our systematic approach starts with constructing our research
goal to evaluate whether there is a significant amount of difference in previously
identified roles and their actualizations especially when tailoring a role-based
task assignment in software development. Next, we survey the literature for the
roles for both traditional and agile methodologies that are mentioned in soft-
ware development literature. We selectively chose software methodologies and
processes and work on the roles that are defined by these approaches. In techni-
cal terms, we conduct a thematic content analysis (i.e. descriptive presentation
of this literature review) based on roles as the units of analysis. After identifying
software development roles in the literature, secondly we conduct a focus group
study with one of our industrial partners, where we seek opinions about actual
roles that are used in their company. We initiate the focus group conversation
by using some parts on our previously conducted survey, in which we ask par-

ticipants about their organizational roles and experience levels on that role (see
figure 1). Secondly, we interview team leaders and development managers about
how accurate the actualization of the job roles.

Content analysis is an organized study of characteristics found in a content
of any type of communication, such as books, websites, newspapers, etc [4].
Our approach uses the content analysis technique for making interpretations
to create a role selection schema based on literature of roles in software de-
velopment methodologies. Based on the survey data collected previously, these
roles will be systematically compared to their industrial actualizations. To this
end, we first collect data from literature and consult industry about the defined
roles frequently used in software engineering settings. Secondly, we conduct a
focus group, where we record the session and a content analysis was performed
on participants’ definition of roles that are actualized in software development
landscapes.

We form a number of acronyms based on the roles that are found from the
literature. Here, we are making partial use of a coding mechanism to construct a
role-based schema with the defined roles from the literature. The coding aims to
create variables based on the roles defined in software development. It is done for
easy comparison of roles by constructing a unique key for each role found from
the literature. Our coding schema allows us to observe the commonalities and
differences between software engineering roles. It helps us to investigate cause-
effect relationships, interrelationships, and situational conditions for each role
category. Here, we design several questions to seek validity for our coding in the
defined categories, and analysis of identified roles from the literature.

– Is this role the same as a role in the other categories?

– Are there any duplicated role codings in a category?

– In which context do these roles emerge?

– What kind of roles have changed or evolved in emerging methods?

– Is there any observable change for other roles when a role evolved to an other
form (i.e. covariance between categories)?

The objective coding [5] is a technique to review a bunch of documents for
extracting and indexing the information so as to form a new perspective on
representing the data. We use an objective coding scheme on the collected infor-
mation of roles. This coding should be helpful for visually comparing actualized
roles systematically with the ones cited in the literature. In addition, a dia-
gram is drawn to support the development of the relationship among roles (see
Figure 1).

Finally, we aim to formulate a framework for software practitioners, which
enable them to select proper roles for their software development methodologies.
Consequently, by using such a framework, a software practitioner may easily
choose or customize the necessary roles for his or her development activities.

Surveying Roles
in Literature

Investigate the
Actuallization of Roles

Conduct an Industrial
Focus Group

Use a Survey Data

Create a unique ID
for Roles

Identify Roles in the
Traditional Approaches

Identify Roles Defined in
Agile Methodologies

Perform a Content Analysis
of the Roles

Form a hypothesis

Create a Schema for
the Identified Roles

Fig. 1: Our Systematic Approach for Investigating the Roles in Software Development
Environments.

3 Roles in Software Development Processes

Many different variants of development models and methodologies have been
created. In this section, we survey the roles that are defined in the literature
starting from traditional software development and working through ISO/IEC
12207, and agile methodologies such as extreme programming (XP), scrum and
feature driven development (FDD).

3.1 Roles in traditional software development

Software engineering teams address the complex problems of software develop-
ment by sharing the tasks among its members with respect to their roles. Roles
are the descriptions of duties or assignments and competence for participants
that are required to achieve a defined tasks and activities of software devel-
opment [6]. In his essay, The Cathedral and the Bazaar, Raymond states that
because of the strict roles defined in traditional software development, tradi-
tional approach is similar to building a cathedral, where a small team of people
working in an isolated environment [7]. Therefore, this could be considered as
a drawback because several artifacts are only visible for a limited number of
individuals in this setting.

Code Role Name Primary Type of Value
PM Project Manager Resource Allocation and Budgeting
SD Software Developer Development Activities
UID User Interface Designer Design Screen Interfaces
DD Database Designers Data Modeling
SA Software Architects Software Modeling
BA Business Analyst Stakeholder Management
RE Requirement Engineer Gathering Requirements
SQA Software Quality Assurance Creating and Maintaining Quality
SAN System Analyst Construction of a System

Table 1: Traditional Software Development Roles

Traditional roles include: Project manager who is responsible for allocation
of resources, project expenditures, and responsible from the general objectives of
a software project. Another typical role in the development processes is the role
of a developer. A software developer is responsible for designing and maintaining
the software programs, whereas a software tester is responsible for creating test
plans and testing the developed programs. In many cases user interface designers
(design screen interfaces), database designers (design database schema) and the
software architects (design technical blueprints) are also included as a generic
software practitioner category. A business analyst is not only responsible for
solving the problems by regulating the connections between the business and
the technical people but also for documenting several parts (e.g. requirement
documents) of a software project. In addition to these roles some others can also
be seen regarding several needs; e.g. requirements engineer, systems analyst,
software quality assurance engineer (see Table 1) .

Code Role Name Primary Type of Value
RO Requirements Owner Understanding Need
SD System Designer Accomplishing work
SA System Analysis Reducing Risks
VV Validation & Verification Mitigating Risks
LO Logistics and Operations Understanding need
G Glue among the subsystems Accomplishing work, Reducing Risks
CI Customer Interface Understanding the Need
TM Technical Manager Technical Management
IM Information Manager Knowledge Management
PE Process Engineer Managing and Understanding Needs
CO Coordinator Organizational Management
CA Classified Ads SE Accomplishing Work (assumed)

Table 2: Systems Engineering Roles and their values from [8]

Sheard [9] identifies twelve roles (see Table 2) of development from system
engineering viewpoint while investigating the relationship between the roles and
their importance for creating a value. This work not only suggests that the value
is asserted in qualitative terms and it should be quantified in further research
but it also claims that it should be observed as a requested improvement within a

product by better (i) definition of the requirements, (ii) management strategies,
(iii) ways for mitigating risks, (see [8] for details).

3.2 Roles in ISO/IEC 12207

ISO/IEC 12207 [10] has three main groups of roles for its participants. The first
group consists of the principal roles are the acquirer, who is a form of stakeholder
that obtains products or services from supplier, who is an individual or another
organization agree on providing a software products or services. Implementer
executes development tasks, while the maintainer can be either an organization
or an individual who performs the upkeep of developed software), and operator
is responsible for the execution of a system [10]. The second category consists
of configuration and supporting roles; the configurator is responsible for the
establishment and transformation of the information needed by an individual
or a group, evaluator tests and measure a software process or a product by
using the data collected during the actual tasks that are performed, the auditor
investigates the products and processes are compatible with the agreements, the
usability specialist deals with the demands and needs of the stakeholders such as
the design activities based on human factors and skills and their fulfillment [10].

Code Role Name Primary Type of Value
AC Acquirer Software Client or User or Product Owner
SU Supplier Software Producer, Product Seller
IMP Implementer Realization of Development Tasks
MN Maintainer Maintain the Software
OP Operator System Execution
CON Configurator Accomplishing Work, Reducing Risks
EV Evaluator Test & Measure a Process or a Product
AU Auditor Contract Management
US Usability Specialist Problems Regarding to People Factors
MA Manager Managing
AM Asset Manager Managing Assets
CM Knowledge Manager Knowledge Management
RA Reuse Administrator Seeking for Reusable Parts

Table 3: Roles in ISO/IEC 12207 (adapted from [10, 11])

The third group has the organizational roles, the manager identifies and
manages the state of the play (i.e. condition and progression of the project)
with respects to project constraints (e.g. objectives, budget, schedules), the asset
manager is a type of manager deals with the management and optimization of
the assets regarding to the plan he or she prepared, the knowledge manager
role works on the collection of particular knowledge and skills throughout the
organization and used for improvement for the products and services. The reuse
program administrator seeks to find favorable or advantageous circumstances
for reusable parts of a product or a service. Unlike the other two subfields of
software engineering (i.e. requirements engineering and software development),
domain engineer is a form responsible for designing the domain models (i.e.
software models) and domain descriptions for a software system (see Table 3).

3.3 Roles in Extreme Programming

According to Beck [12], the participants and their roles are as follows; Pro-
grammers are the individuals who need to have good communication and col-
laboration skills for both team and individual levels. They are responsible for
developing, maintaining and testing the software. One of their main responsibil-
ities is to ensure that their work is clean and lean. The technical decisions are
made by programmers. Customers form the steering teams in business terms
and in particular in requirement satisfaction decisions. Testers help customers
to write functional test cases. Business decisions are made by customers [12]. The
tracker role composes a trace and feedback mechanism in XP. The estimations,
goals and iterations made by teams are controlled by a tracker, who provides
feedback. The tracker is also responsible for measuring constraints such as scarce
resources and delivery times versus goal evaluation. The coach is the role which
is accountable for XP project who needs to understand the problems occurring
during the process to instruct team members and transfer the information or
sometimes experience among teams and individuals. Finally, the manager is re-
sponsible for final decisions, and also an aim of this role is to recognize problems
likely occur during the development life-cycle (see table 4).

Code Role Name Primary Type of Value
PRG Programmers Maintaining and Testing Software
CU Customers Managing Business Decisions
TST Testers Helps Costumers for Functional Test Cases
TRC Tracker Feedbacks and Estimations
CO Coach Supervise Team
CON Consultant Guides the Team for Problem Solving
MA Manager Management

Table 4: Roles in XP (adapted from [12, 13])

3.4 Roles in Scrum

Schwaber and Beedle [14] single out six roles for the participants of Scrum. The
Scrum Master is a type of management role specific to Scrum, who is respon-
sible for the alignment of practices and rules as they have organized. This role
interacts not only with project team but also customer and management. Its
aim is to maximize productivity by practicing the agile and scrum values and
monitoring the team to avoid any kind of complications. The Product Owner is
the role which is responsible for exercising the project management and control
activities. Additionally, this role is also responsible for transforming the prod-
uct backlog into product features. Scrum Team should be considered as a self
organizing structure to produce a working piece of a product, where its main
goal is to achieve time targeted objectives of each sprint. The customer role will
continuously evaluate the backlog items, and helps the selection for a sprint.
The management role is responsible for implementing the proper standards for

the software development process. Additionally, this role encompasses decision
making activities and finalizing them at different stages of development process
such as evaluating goals, gathering requirements, etc. (see Table 5).

Code Role Name Primary Type of Value
SM Scrum Master Managing Scrum Team
PO Product Owner Product Management Decisions
CUS Customer Evaluation of backlog items
ST Scrum Team Organized itself for time boxed goals
MNG Management Evaluate Decisions and Goals
USR User Evaluate System Functionalities

Table 5: Roles in SCRUM (adapted from [14])

3.5 Roles in FDD

FDD has the most comprehensive role description with a flexibility of roles [15].
For example, an individual can play multiple roles, or either a role can be shared
by multiple persons [13]. The three main categories of roles, which are: key,
supporting and additional roles. The key roles are project manager, who admin-
isters the entire project and maintains the work settings of the software team,
the lead software architect is the role which makes the appropriate decisions for
software development, the software development manager is a role which focuses
on daily activities and team negotiations during the software development activ-
ities. The lead programmer, the class owner and the domain expert are the three
roles used in FDD. The supporting roles includes; manager (release), knowledge
expert, build process engineer, toolsmith and system administrator. Moreover,
testers, technical document expert and software deployment personnel are the
other roles used in this practices [15](see table 6).

Code Role Name Primary Type of Value
PM Project Manager Resource Management
LSA Lead Software Architect Architectural Decisions
DEM Development Manager Evaluation of backlog items
LP Lead Programmer Organized itself for time boxed goals
CO Class Owner Form Teams for Implementing Features
DE Domain Expert Inform Teams for Adequate Features
RM Release Manager Managing the development process
DM Domain Manager Managing Domain Experts
LG Language Guru Acquiring a Knowledge on Technology
BE Build Engineer Executing a Build Process
TA Toolsmith Creating Utilities for project
SYA System Administrator Administration of Work Systems
TE Testing Verifying the Actualization of a System
DEP Deployer Release of Feature Deployment
TEW Technical Writer The Documentation for Users

Table 6: Roles in FDD (adapted from [15, 13])

4 Evaluation of Roles from Industrial Settings

As a part of a survey, we asked 266 participants from two different software
companies about their roles in their applied settings in order to identify the
commonality of meaning in the different roles. One of the software companies
(with a staff about 400 personnel) is working in telecommunication sector, which
composes solutions for large-scale e-government projects. The other company
supplies turn key software solutions to telecommunications operators and mobile
service providers. It has a staff of about 40 personnel. By creating a list of roles
based on the roles mentioned in the literature, we conduct a focus group in one
of the companies about the actualization of roles in development environments.
This brings individuals together to debate about software development roles in
their company and their actualizations with respect to their experiences. Next,
we ask our research question to a selection of people mostly to the individuals
from the management teams.

Company A is using the traditional software development approaches to de-
fine the roles: PM, SD, UID, SA, BA, SQA, where DD is embedded in SD, and
RE role is somehow split with BA and SD. The role of system analyst provides
the requirement engineering processes.

Interview quotation: “During our development activities, we observe
lots of overlapping roles, which sometimes hinder our ability to handle
some development tasks. For example, some of our teams have key play-
ers with overlapping roles and some individuals perform more than one
role by the nature of our development process. We found it interesting
to have a big picture of the roles in the different software development
processes.”

Company A uses ISO/IEC 12207 combined with an iterative development
schema and a customized role selection based on the traditional viewpoint for de-
veloping and maintaining software project. However the roles defined by ISO/IEC
12207 are not fully used to profile the personnel. Instead, they use the role names
(see Table 1) that are traditionally used in software development.

Interview quotation: “We use approximately 14 out of 43 processes, 60
out of 95 activities, 180 out of 406 tasks from ISO/IEC 12207. We believe
that assigning suitable roles to teams and individuals is very important
for our success. A review of roles in different methodologies is useful from
an industrial perspective. All type of roles should be visible to everyone in
the company, and they should be defined in a simple language to provide a
way of ensuring everyone understands them. Therefore, we are not using
the role names provided by ISO/IEC 12207. I would say, we mostly use
the classical role names you have mentioned.”

According to the management team of Company A, the role of team leader
should not dictate anything to teammates but communicated the vision of a

company or a project. Therefore, maintaining a friendship and trust is more
important than dictating the facts to software teams.

Interview quotation: “People usually trust other people to some ex-
tent. There are always problems, when it comes to role assignment as well
as delegations based on these roles. I personally observed several situa-
tions, where improper delegation did cause lots of conflicts and tensions.
I would strongly suggest that role tailoring should not be taken lightly.”

Company B uses a customized agile methodology, which relies on XP and
Scrum. They use agile methodology so as to cope with dynamically challenging
requirements and to fulfill the request of their customer for continuous integra-
tion with small increments. They use all roles defined by scrum (i.e. SM, PO,
CUS, ST, MNG, USR) and a tester role (TST) and a progress tracker (TRC)
role from XP.

Interview quotation: “There is the notion of tailoring methodologies,
how about the roles? It is always a problem for us to select the suitable
roles for our customized methodology. Therefore, broader view of roles in
software development activities are very important for us. However, just
as there is no one-size-fits-all methodology for developing applications in
software development, there should not be a one-size-fits-all approach to
role selection.”

Finally, Company B highlights the importance of face to face communication
for agile landscapes, and therefore selection of suitable roles for development
activities becomes more important.

Interview quotation: “The process of customization of roles is very
important particularly in agile development environments. A summary
with roles contained in different agile approaches is very helpful for us to
see the suitable roles for our process.”

5 Conclusions

In this paper, we highlight how roles in literature and their actualizations on
industrial environments vary for both plan driven and agile methodologies. Soft-
ware development is a collaborative endeavor that depends on its development
methodology. However, selection of a proper methodology is not enough for
achieving goals of a software organization. The evidence suggests that we should
also tailor the necessary roles depending on development activities.

After analyzing the defined categories in light of the questions above, we
confirmed that several roles presented in older methods are emerged with a

Roles
Tr

ad
itio

nal Developm
ent

Agile Development

ISO / IEC 12207

System
 E

ngineering

P
la

n
D

riv
en

F
eature Driven

D
evelopm

ent
eXtreme

Programming

 S
cr

um

C
O

 C
oo

rd
in

at
or

PE P
ro

ce
ss

 E
ng

in
ee

r

IM
 In

fo
rm

at
ion

 M
an

ag
er

TM Te
ch

nica
l M

anager

CI C
ustomer In

terfa
ce

GL Glue among subsystems

LO Logistics & Operations

VV Validation & Verification

SA System AnalystSD System Designer
RO Requirements Owner

SM Scrum Master
CUS Customer

M
A

 M
anager

C
O

 C
oach

T
S

 Tester

T
E

W
 Technical W

riter

PO Product Owner

ST Scrum
 Team

C
O

N
 C

onsultant

T
R

C
 Tracker

C
U

 C
ustom

er
P

R
G

 P
rogram

m
er

D
E

P
 D

eployer

BE Build Engineer

DEM Development Manager

BA Business Analyst

R
A

 R
eu

se
 A

dm
in

is
tra

to
r

SYA System
 Adm

inistrator

RM Release Manager

CO Class Owner

RE Requirements Engineer

SA Software Architects

DD Database Designer

K
M

 K
no

w
le

dg
e

M
an

ag
er

A
C

 A
cq

ui
re

r

E
V

 E
va

lu
at

or

M
A

 M
an

ag
er

C
A

 C
la

ss
ifi

ed
 A

ds
 S

E

S
U

 S
up

pl
ie

r

M
N

 M
ai

nt
ai

ne
r

O
P

 O
pe

ra
to

r

C
O

N
 C

on
fig

ur
at

or

IM
P

 Im
pl

em
en

te
r

SD S
oft

ware
 D

ev
elo

pe
r

A
U

 A
ud

ito
r

U
S

 U
sa

bi
lit

y
S

pe
ci

al
is

t
A

M
 a

ss
et

 M
an

ag
er

PM
 P

ro
je

ct
 M

an
ag

er

UID
 U

se
rin

terfa
ce

 D
esig

ner

SQA Software Quality Assurance

SAN Systerm Analyst

PM Project Manager
LSA Lead Soft. Architect

LP Lead Programmer DE Domain Expert
DM Domain Manager

LG Language Guru

T0 Toolsm
ith

TE Tester

M
NG

 M
anagem

ent

U
SR

 U
ser

Fig. 2: A Summary of Roles Contained in the Different Approaches

different name, with similar responsibilities in newer approaches. Some of the
roles, however, have their responsibilities changed while revealing in different
software development organizations. Most frequently, the role definitions that
an organization uses based on a domain and a set of circumstances. Our study
exhibits that a role-based schema can be useful for a tailoring process of roles
regarding to the organizational needs. Furthermore, we argue that a software
development organization should customize their own roles suitable for their
social structure, where we suggest that our role based construct (see Figure 2)
will be beneficial for such activities. In other words, it enables them to select
proper roles for their software development methodologies. Consequently, by
using such a framework, a software teams may easily choose or customize the
necessary roles based on their activities.

Analysis of identified roles from the literature is portrayed in Figure 2. We
can confirm that several roles presented in older methods are emerged with a
different name with similar responsibilities in newer approaches. The roles, how-
ever, mostly have their responsibilities changed and reappeared as another form
while revealing in different software development organizations. Most frequently,
the role definitions that an organization uses based on a domain and a set of
circumstances. Moreover, it is important to choose roles, based on the social
structure of an organization and required interactions. These customized roles
are found to be organizational centric, which also clearly supports the notion of
separation of concerns [16].

Acknowledgments

This work is supported, in part, by Science Foundation Ireland grant number
03/CE2/I303-1 to Lero, the Irish Software Engineering Research Centre (www.lero.ie).

References

1. Humphrey, W.: Introduction to the team software process (sm). Addison-Wesley
Professional (2000)

2. Zahran, S.: Software Process Improvement: Practical Guidelines for Business Suc-
cess. Addison Wesley (1998)

3. Larman, C.: Agile and iterative development: a manager’s guide. Addison-Wesley
Professional (2004)

4. Krippendorff, K.: Content analysis: An introduction to its methodology. Sage
Publications, Inc (2004)

5. Glaser, B., Strauss, A.: The discovery of grounded theory: Strategies for qualitative
research. Aldine Transaction (2007)

6. Sommerville, I.: Software Engineering (9th Edition). Addison Wesley (2009)
7. Raymond, E.: The cathedral and the bazaar. Knowledge, Technology & Policy 12

(1999) 23–49
8. Sheard, S.: The value of Twelve systems engineering roles. In: Proceedings of

INCOSE, Citeseer (1996)
9. Sheard, S.: Twelve systems engineering roles. In: Proceedings of INCOSE, Citeseer

(1996)
10. ISO/IEC: Amendment to ISO/IEC 12207-2008 - Systems and software engineering

Software life cycle processes. (2008)
11. Acuna, S.T., Juristo, N., Moreno, A.M., Mon, A.: A Software Process Model

Handbook for Incorporating People’s Capabilities. Springer-Verlag (2005)
12. Beck, K.: Extreme programming explained. Addison-Wesley (2000)
13. Abrahamsson, P., Salo, O., Ronkainen, J., Warsta, J.: Agile software development

methods: Review and Analysis. Volume VTT Publications 478. Technical Research
Centre of Finland (2002)

14. Schwaber, K., Beedle, M.: Agile Software Development with SCRUM. Prentice
Hall (2002)

15. Palmer, S.R., Felsing, J.M.: A practical guide to feature-driven development. Pren-
tice Hall PTR (2002)

16. Parnas, D.L., Clements, P.C.: A rational design process: How and why to fake it.
IEEE Trans. Softw. Eng. 12 (1986) 251–257

