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Abstract. In this paper, we investigate power allocation that maximizes
the secrecy rate of orthogonal frequency division multiplexing (OFDM)
systems under arbitrarily distributed inputs. Considering commonly as-
sumed Gaussian inputs are unrealistic, we focus on secrecy systems with
more practical discrete distributed inputs, such as PSK, QAM, etc. While
the secrecy rate achieved by Gaussian distributed inputs is concave with
respect to the transmit power, we have found and rigorously proved that
the secrecy rate is non-concave under any discrete inputs. Hence, tra-
ditional convex optimization methods are not applicable any more. To
address this non-concave power allocation problem, we propose an effi-
cient algorithm. Its gap from optimality vanishes asymptotically at the
rate of O(1/

√
N), and its complexity grows in the order of O(N), where

N is the number of sub-carriers. Numerical results are provided to illus-
trate the efficacy of the proposed algorithm.

Key words: OFDM wire-tap channel, arbitrarily distributed inputs,
duality theory, non-convex problem, optimal power allocation

1 Introduction

In recent years, many privacy sensitive wireless services, such as pushmail, mo-
bile wallet, Microblogging, etc, have become more and more popular. But, due to
the broadcast nature of wireless channels, security problems and challenges are
also accompanying with the growing up of those privacy services. The security
of wireless communications is commonly supported by cryptographic techniques
employed at upper layer. However, this traditional method faces several chal-
lenges, such as the emergence of new cracking algorithms and increasing compu-
tational capability of eavesdroppers. Recently, physical layer security, a method
that can supplement upper layer security, has received considerable attentions
[1].
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Physical layer security was firstly studied from an information-theoretic per-
spective in [2], where the concept of “wire-tap channel” was introduced to il-
lustrate the channel with three terminals, transmitter, legitimate receiver and
eavesdroppers, and secrecy rate was defined as the maximum achievable data
rate from the transmitter to its legitimate receiver while keeping the eavesdrop-
per completely ignorant of the secret massage. Later, the research in this field
was extended to various scenes, such as Gaussian wire-tap channel [3]-[4], multi-
ple input multiple output (MIMO) channel [5]-[7], orthogonal frequency division
multiplexing (OFDM) channel [8]-[11], etc.

Recently, OFDM-based secure communications have obtained much atten-
tion for its capability of countermining the dispersive of wideband wireless chan-
nels and enhance secrecy rate [8]-[11]. Optimal power allocation of OFDM-based
wire-tap channels is investigated in [8]-[10] under Gaussian inputs. In practical
system, due to Gaussian inputs’ infinite peak-to-average ratio, finite discrete
constellations2, such as PSK, QAM (see Fig.1 (a)), are used instead. In this pa-
per, we investigate optimal power allocation for OFDM-based wire-tap channels
under arbitrarily distributed channel inputs.

We have found and rigorously proved that the secrecy rate is non-concave
under any discrete constellations, while the secrecy rate achieved by Gaussian
distributed channel inputs was found to be concave with respect to the transmit
power [8]-[10]. Therefore, the optimal power allocation strategy for OFDM-based
wire-tap channels with Gaussian inputs [8]-[10] is not applicable any more to the
considered problem. To address this non-concave power allocation problem, we
propose an efficient power allocation algorithm. Its gap from optimality vanishes
asymptotically at the rate of O(1/

√
N), and its complexity grows in the order

of O(N), where N is the number of sub-carriers. Numerical results are provided
to illustrate the efficiency of the proposed algorithm.

The remainder of this paper is organized as follows. Section 2 presents the
system model and power allocation problem is formulated. Optimal power allo-
cation for arbitrarily distributed inputs is given in Section 3. Numerical results
and conclusions are provided in Section 4 and Section 5, respectively.

2 System Model and Problem Formulation

Consider an OFDM-based wire-tap channel with a transmitter, a legitimate re-
ceiver and an eavesdropper, where the eavesdropper intends to extract the con-
fidential message transmitted from transmitter to legitimate receiver (see Fig. 1
(b)). There are N sub-carriers and the transmitter’s signal in each sub-carrier
follows an arbitrary but predetermined distribution, which can be either continu-
ous constellations, such as Gaussian distribution, or finite discrete constellations,
including PSK, QAM, etc (see Fig. 1 (a)).

The transmitted signal over the ith sub-carrier is denoted as xi, described as

2 The words “distribution” and “constellation” are used alternatively throughout the
paper.
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Fig. 1. (a). Finite discrete constellations: QPSK and 16QAM, (b). OFDM-based wire-
tap channel

xi =
√
pisi, i = 1, . . . , N, (1)

where pi is the power ratio between transmission signal xi and the noise, and si
represents the normalized channel inputs with predetermined distribution. Then
power constraint can be readily shown to be

1

N

N
∑

i=1

pi ≤ P, (2)

where P is total available transmit power.
The received signals at the legitimate receiver and eavesdropper are given by

yi = hi

√
pisi + wi, i = 1, · · · , N, (3)

zi = gi
√
pisi + vi, i = 1, · · · , N, (4)

respectively, where the wi and vi are zero-mean complex Gaussian noises with
unit variance; hi and gi are the complex channel coefficients of ith sub-carrier.
According to the information theoretical studies of [8], the secrecy rate from
transmitter to its legitimate receiver is

N
∑

i=1

[I(si;hi

√
pisi + wi)− I(si; gi

√
pisi + vi)]

+, (5)
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where [x]+ , max{x, 0}, and I(x; y) denotes the mutual information between
random variables x and y. The expression in (5) is quite illuminating: the secrecy
rate of each sub-channel is non-negetive; if it is positive, it is exactly the data
rate difference of the legitimate and eavesdropping channels; the total secrecy
rate is simply the sum secrecy rate of all the N sub-carriers.

For fixed constellations of {si}Ni=1, we need to optimize the power allocation
to obtain the maximal secrecy rate. The optimization problem can be cast as
follows,

R∗ = max
p

Rs(p) ,
1
N

N
∑

i=1

[I(si;hi
√
pisi + wi)− I(si; gi

√
pisi + vi)]

+

s.t. 1
N

∑N

i=1 pi ≤ P,

p ≥ 0

(6)

where p ∈ RN is transmit power vector forN sub-carriers, i.e., p = {p1, p2, ..., pN},
and R∗ denotes the optimal value. For the facility of the following analysis, let
Rs,i(pi) denote the ingredients of Rs(p), i.e.,

Rs,i(pi) , [I(si;hi

√
pisi + wi)− I(si; gi

√
pisi + vi)]

+. (7)

3 Optimal Power Allocation under Arbitrarily Distributed

Channel Inputs

3.1 Non-concavity of the Secrecy Rate Rs(p)

If si follows Gaussian distribution, the secrecy rate Rs(p) in (6) has explicit
expression [4], i.e.,

RG
s (p) =

1

N

N
∑

i=1

[ log2(1 + |hi|2pi)− log2(1 + |gi|2pi) ]+. (8)

It can be checked that RG
s (p) is a concave function of p. Hence problem (6) is

a convex optimization problem. The ingredients of RG
s (p) are illustrated in the

left part of Fig. 2. One can observe that log2(1 + |hi|2pi), log2(1 + |gi|2pi) and
log2(1 + |hi|2pi) − log2(1 + |gi|2pi) are all concave, provided that |hi|2 > |gi|2.
In [8]-[10], utilizing the convexity structure of problem (6), authors obtained the
optimal power allocation shown as follows,

p∗i =



















−(|hi|
2+|gi|

2)+

√

(|hi|2+|gi|2)2−4|hi|2|gi|2
u+|gi|

2−|hi|
2

u

2|hi|2|gi|2

, if |hi|2 − |gi|2 > u

0 , others,

(9)

where the Lagrange multiplier u is chosen to meet the power constraint,
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Fig. 2. (a). Secrecy rate achieved by Gaussian distributed inputs. (b). Secrecy rate
achieved by discrete inputs (eg. QPSK). Here hi ≥ gi.

1

N

N
∑

i=1

pi = P. (10)

One may expect that the concavity of Rs(p) still holds under general input
distributions. Unfortunately, our investigation shows that this is not true, which
is formally presented in the following proposition.

Proposition 1. The secrecy rate function Rs(p) under any finite discrete con-

stellations is non-concave with respect to p.

Proof. When pi = 0, one can derive I(si; yi) = I(si; zi) = 0; when pi = +∞,
we have I(si; yi) = I(si; zi) = H(si), where H(x) is entropy of x. Therefore,
Rs,i(0) = Rs,i(+∞) = 0.

According to [15],
∂I(s;

√
ps+ n)

∂p
= MMSE(p). (11)

MMSE(p) is defined as

MMSE(p) , E[|s− E(s|√ps+ n)|2], (12)
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Fig. 3. Secrecy rate achieved by distribution of (14).

where E[x] is the expectation of random variable x; E[x|y] is the conditional
expectation of x for given y. By (11), the derivative of Rs,i(pi) at pi = 0 is given
by3

R′
s,i(pi)|pi=0 =

[

|hi|2 − |gi|2
]+

> 0, (13)

which indicates that there must exist a p̂i > 0 that Rs,i(p̂i) > 0. According to
the Lagrange’s mean value theorem [17], it must have a point p̃i ∈ [p̂i,+∞] with
negative slop R′

s,i(p̃i) < 0.
AssumeRs,i(pi) is concave, then the inequalityRs,i(pi) ≤ Rs,i(p̃i)+R′

s,i(p̃i)(pi−
p̃i) holds [18], which indicates Rs,i(+∞) = −∞. This contradicts Rs,i(+∞) = 0.
Therefore, the concavity assumption is not true, and Proposition 1 holds.

Two evidentiary examples are provided to illustrate Proposition 1.
The first example is QPSK. The curves of I(si; yi), I(si; zi) and Rs,i(pi)

versus pi are shown in right part of Fig. 2, and they are in accordance with the
statements in the proof of Proposition 1.

The second example considers a 4 points PAM constellation with non-uniform
spacing. The probability mass function of si is given by

3 Only the sub-carriers that satisfy |hi|2 > |gi|2 are considered, as Rs,i(pi) ≡ 0 for
those sub-carriers with |hi|2 ≤ |gi|2, which do not affect the concavity of Rs(p).
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Psi ∼
[

−51L − 50L 50L 51L
0.25 0.25 0.25 0.25

]

, (14)

where L is a normalization parameter to maintain unit variance. Figure 3 shows
the secrecy rate Rs,i(pi) for this case. It is interesting that the Rs,i(pi) has two
peaks. Hence, it is definitely non-concave. We note that the mutual information
I(si; yi) and I(si; zi) are concave with respect to pi in linear scale [16].

3.2 Optimal Power Allocation Solution of Problem (6)

Although problem (6) is non-convex, there are still some efficient algorithms to
solve it and obtain near-optimal solutions. One of them is the Lagrangian duality
method [18]. Some recent studies [12]-[14] showed that, for certain non-convex
structures, asymptotic optimal performance can be achieved by this method.

The Lagrangian of problem (6) is given by

L(p, u) =
1

N

N
∑

i=1

[I(si;hi

√
pisi + wi)− I(si; gi

√
pisi + vi)]

+ + u

(

P − 1

N

N
∑

i=1

pi

)

,

(15)
where u is Lagrangian dual variable. The corresponding dual function can then
be written as

g(u) , max
p≥0

L(p, u). (16)

Hence the dual problem formulation of problem (6) can be readily expressed as

D∗ = min
u≥0

g(u), (17)

where D∗ denotes the optimal dual value. Since the objective function of primal
problem (6) is non-concave, there is a positive gap between R∗ and D∗, i.e.,
D∗ − R∗ > 0. However, according to the recent studies of Luo and Zhang [12],
[13], asymptotic strong duality holds for problem (6), i.e. the duality gapD∗−R∗

goes to zero as N → ∞, as is expressed in the following proposition:

Proposition 2. If the channel coefficients gi and hi are Lipschitz continuous

and bounded in the sense

∣

∣|hi| − |hj |
∣

∣ ≤ Lh

|i− j|
N

, ∀ i, j ∈ {1, 2, ..., N} (18)

∣

∣|gi| − |gj |
∣

∣ ≤ Lg

|i− j|
N

, ∀ i, j ∈ {1, 2, ..., N} (19)

where Lh, Lg > 0 is the Lipschitz constant. Then we have

0 ≤ D∗ −R∗ ≤ O

(

1√
N

)

. (20)
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Proof. According to (11) and (12), we have [15]

0 ≤ ∂I(s;
√
ps+ n)

∂p
= MMSE(p) ≤ E[|s|2] = 1, (21)

which implies that

∂Rs,i(p)

∂p
= |hi|2MMSE(|hi|2p)− |gi|2MMSE(|gi|2p) ≤ |hi|2, (22)

∂Rs,i(p)

∂|hi|
= 2p|hi|MMSE(|hi|2p) ≤ 2p|hi|, (23)

∂Rs,i(p)

∂|gi|
= 2p|gi|MMSE(|gi|2p) ≤ 2p|gi|, (24)

where Rs,i(p) is defined in the expression of (7).
According to equation (22) and the Lagrange’s mean value theorem [17], we

have
|Rs,i(p)−Rs,i(p

′)| ≤ |hi|2||p− p′||∞. (25)

On the other hand, combining (23), (24), (21), (18) and (19), using chain rule
and the Lagrange’s mean value theorem [17], we have

|Rs,i(p)−Rs,j(p)| ≤ (2p|hi|Lh + 2p|gi|Lg)
|i− j|
N

. (26)

As |hi|, |gi| and p are bounded, according to (25) and (26), there must exist an
L such that

|Rs,i(p)−Rs,j(p
′)| ≤ L

( |i− j|
N

+ ||p− p′||∞
)

(27)

i.e., the secrecy rate Rs,i(p) is Lipschitz continuous. Hence according to Theorem
2 of [12], the duality gap betweenD∗ and R∗ vanishes asymptotically in the order
of 1/

√
N , which is expressed as

0 ≤ D∗ −R∗ ≤ O(
1√
N

), (28)

and Proposition 2 holds.

The procedures to solve (16) and (17) are provided in the following.
For each fixed u, problem (16) can be decoupled into N independent sub-

carrier problems

g(u) = max
pi≥0

L(pi, u),

=
N
∑

i=1

max
pi≥0

[

[I(si; yi)− I(si; zi)]
+ − upi

]

+ uP . (29)
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Table 1.

Algorithm : Lagrangian dual optimization method

Initialize u
repeat

for i=1 to N
find pi = argmax

pi

[

[I(si; yi)− I(si; zi)]
+ − upi

]

+ uP .

end
update u using bisection method.

until u converges.

While the sub-carrier problem in (29) is still non-convex, it has only one variable
pi and can be solved by simple one dimension line search. As the dual function
g(u) is convex in u, its subgradient g′(u) = P − 1

N

∑N

i=1 p
∗
i , where p∗i is optimal

solution for problem (16) with fixed u, is an increasing function in u. Hence
bisection method can be used to solve dual problem (17), so that either u = 0,

P ≥ 1
N

∑N

i=1 p
∗
i or u > 0, P = 1

N

∑N

i=1 p
∗
i is satisfied. Table.1 summarizes the

algorithm.
The complexity of this algorithm is N 1

ep
log2(

1
ed
), where ep is the accuracy

of one dimension exhausitive search to solve (16) and ed is the accuracy of the
bisection search to solve (17). Since its complexity is linear with respect to the
number of sub-carriers N , it is quite convenient for practical large values of N ,
such as 64∼4096. We note that the complexity of solve (6) exhaustively is 1

eNp
,

which is exponential in N and thus unrealistic.

4 Numerical Results

In this section, we provide some simulation results to illustrate the performance
of our proposed power allocation algorithm and show how different channel input
distributions affect the secrecy rate and power allocation results.

We first consider an OFDM-based secure system with N = 128 sub-carriers.
The secrecy rate versus total power constraint under different power allocation
strategies and channel input distributions are illustrated in Fig. 4. Two reference
strategies are considered to compare with our strategy: the optimal strategy
under Gaussian inputs, i.e., (9), which is denoted by “PA of (9)” in Fig. 4; the
equal power allocation strategy, which equally allocates total power among the
sub-carriers that satisfy |hi|2 > |gi|2 and is denoted by “equal PA”.

Seen from Fig. 4, higher secrecy rate can be achieved for QPSK and 16QAM
by our proposed optimal power allocation strategy, especially when the power
constraint P is quite large. However, equal power allocation and power allocation
of (9) can be quite bad under finite discrete constellations, and the secrecy rate
even drops to zero for large value of P . Actually, when P is large, secrecy rate
under Gaussian inputs can be approximated by
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Fig. 4. The secrecy rate versus total power P .

RG
s (p) =

1
N

∑N

i=1[ log2(1 + |hi|2pi)− log2(1 + |gi|2pi) ]+

≈ 1
N

∑N

i=1[ log2(
|hi|

2

|gi|2
) ]+,

(30)

which is independent with power allocation pi. So equal power allocation works
asymptotically optimal under Gaussian inputs when P is large, as shown in Fig.
4.

The power allocation solution of the proposed algorithm is shown in Fig. 5
and Fig. 6, respectively, under QPSK and Gaussian inputs with N = 4. When
the power constraint P is small, most transmit power is allocated to the stronger
sub-channels, the channels with larger |hi|2 − |gi|2 (Channel 2 and Channel 4
in our simulation example). However, as P grows, the transmit power allocated
to the weak sub-channels grows. Under QPSK input signals, the transmit power
allocated to every sub-channel should stop increasing when P is very large. But
the transmit power under Guassian input signals keeps increasing.

5 Conclusion

In this paper, we have obtained the optimal power allocation for OFDM-based
wire-tap channels with arbitrarily distributed inputs. While the secrecy rate
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Fig. 5. Power allocation results versus P under QPSK inputs.

Fig. 6. Power allocation results versus P under Gaussian inputs.

achieved by Gaussian distributed channel inputs is concave with respect to the
transmit power, we have found and rigorously proved that the secrecy rate is
non-concave under any practical finite discrete constellations. A power allocation
algorithm has been proposed, which is asymptotic optimal as the number of
sub-carrier increases. Our numerical results show that more transmit power may
results in a huge loss in secrecy rate, which is rarely seen in previous power
allocation studies. This indicates that optimal power allocation is quite essential
in practical studies of physical layer security.
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