Skip to main content

Compact Optimization

  • Chapter
Handbook of Optimization

Abstract

Compact algorithms are optimization algorithms belonging to the class of Estimation of Distribution Algorithms (EDAs). Compact algorithms employ the search logic of population-based algorithms but do not store and process an entire population and all the individuals therein, but on the contrary make use of a probabilistic representation of the population in order to perform the optimization process. This probabilistic representation simulates the population behaviour as it extensively explores the decision space at the beginning of the optimization process and progressively focuses the search on the most promising genotypes and narrows the search radius. In this way, a much smaller amount of parameters must be stored in the memory. Thus, a run of these algorithms requires much more limited memory devices compared to their corresponding standard population-based algorithms. This class of algorithms is especially useful for those applications characterized by a limited hardware, e.g. mobile systems, industrial robots, etc. This chapter illustrates the history of compact optimization by giving a description of the main paradigms proposed in literature and a novel interpretation of the subject as well as a design procedure. An application to space robotics is given in order to show the applicability of compact algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahn, C.W., Ramakrishna, R.S.: Elitism based compact genetic algorithms. IEEE Transactions on Evolutionary Computation 7(4), 367–385 (2003)

    Article  Google Scholar 

  2. Aporntewan, C., Chongstitvatana, P.: A hardware implementation of the compact genetic algorithm. In: Proceedings of the IEEE Congress on Evolutionary Computation, vol. 1, pp. 624–629 (2001)

    Google Scholar 

  3. Baraglia, R., Hidalgo, J.I., Perego, R.: A hybrid heuristic for the traveling salesman problem. IEEE Transactions on Evolutionary Computation 5(6), 613–622 (2001)

    Article  Google Scholar 

  4. Brest, J., Greiner, S., Bošković, B., Mernik, M., Žumer, V.: Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems. IEEE Transactions on Evolutionary Computation 10(6), 646–657 (2006)

    Article  Google Scholar 

  5. Caponio, A., Cascella, G.L., Neri, F., Salvatore, N., Sumner, M.: A fast adaptive memetic algorithm for on-line and off-line control design of PMSM drives. IEEE Transactions on System Man and Cybernetics-part B 37(1), 28–41 (2007)

    Article  Google Scholar 

  6. Caponio, A., Neri, F., Tirronen, V.: Super-fit control adaptation in memetic differential evolution frameworks. Soft Computing-A Fusion of Foundations, Methodologies and Applications 13(8), 811–831 (2009)

    Google Scholar 

  7. Cody, W.J.: Rational Chebyshev Approximations for the Error Function 23(107), 631–637 (1969)

    MathSciNet  MATH  Google Scholar 

  8. Cupertino, F., Mininno, E., Naso, D.: Elitist compact genetic algorithms for induction motor self-tuning control. In: Proceedings of the IEEE Congress on Evolutionary Computation (2006)

    Google Scholar 

  9. Cupertino, F., Mininno, E., Naso, D.: Compact genetic algorithms for the optimization of induction motor cascaded control. In: Proceedings of the IEEE International Conference on Electric Machines and Drives, vol. 1, pp. 82–87 (2007)

    Google Scholar 

  10. Das, S., Suganthan, P.N.: Differential evolution: A survey of the state-of-the-art. IEEE Transactions on Evolutionary Computation (2011) (to appear)

    Google Scholar 

  11. Dasgupta, S., Das, S., Biswas, A., Abraham, A.: On stability and convergence of the population-dynamics in differential evolution. AI Communications - The European Journal on Artificial Intelligence 22(1), 1–20 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computation. Springer, Berlin (2003)

    Google Scholar 

  13. Fan, H.Y., Lampinen, J.: A trigonometric mutation operation to differential evolution. Journal of Global Optimization 27(1), 105–129 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fossati, L., Lanzi, P.L., Sastry, K., Goldberg, D.E.: A simple real-coded extended compact genetic algorithm. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp. 342–348 (2007)

    Google Scholar 

  15. Gallagher, J.C., Vigraham, S.: A modified compact genetic algorithm for the intrinsic evolution of continuous time recurrent neural networks. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 163–170 (2002)

    Google Scholar 

  16. Gallagher, J.C., Vigraham, S., Kramer, G.: A family of compact genetic algorithms for intrinsic evolvable hardware. IEEE Transactions Evolutionary Computation 8(2), 111–126 (2004)

    Article  Google Scholar 

  17. Gautschi, W.: Error function and fresnel integrals. In: Abramowitz, M., Stegun, I.A. (eds.) Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, ch. 7, pp. 297–309 (1972)

    Google Scholar 

  18. Harik, G.: Linkage learning via probabilistic modeling in the ECGA. Tech. Rep. 99010, University of Illinois at Urbana-Champaign, Urbana, IL (1999)

    Google Scholar 

  19. Harik, G.R., Lobo, F.G., Goldberg, D.E.: The compact genetic algorithm. IEEE Transactions on Evolutionary Computation 3(4), 287–297 (1999)

    Article  Google Scholar 

  20. Harik, G.R., Lobo, F.G., Sastry, K.: Linkage learning via probabilistic modeling in the extended compact genetic algorithm (ECGA). In: Pelikan, M., Sastry, K., Cantú-Paz, E. (eds.) Scalable Optimization via Probabilistic Modeling. SCI, vol. 33, pp. 39–61. Springer (2006)

    Google Scholar 

  21. Hart, W.E., Krasnogor, N., Smith, J.E.: Memetic evolutionary algorithms. In: Hart, W.E., Krasnogor, N., Smith, J.E. (eds.) Recent Advances in Memetic Algorithms, pp. 3–27. Springer, Berlin (2004)

    Google Scholar 

  22. Huang, P., Chen, K., Xu, S.: Optimal path planning for minimizing disturbance of space robot. In: Proceedings of the IEEE International Conference on on Control, Automation, Robotics, and Vision (2006)

    Google Scholar 

  23. Iacca, G., Mallipeddi, R., Mininno, E., Neri, F., Suganthan, P.N.: Global supervision for compact differential evolution. In: Proceedings IEEE Symposium on Differential Evolution, pp. 25–32 (2011a)

    Google Scholar 

  24. Iacca, G., Mallipeddi, R., Mininno, E., Neri, F., Suganthan, P.N.: Super-fit and population size reduction mechanisms in compact differential evolution. In: Proceedings of IEEE Symposium on Memetic Computing, pp. 21–28 (2011b)

    Google Scholar 

  25. Iacca, G., Mininno, E., Neri, F.: Composed compact differential evolution. Evolutionary Intelligence 4(1), 17–29 (2011c)

    Article  Google Scholar 

  26. Iacca, G., Neri, F., Mininno, E.: Opposition-Based Learning in Compact Differential Evolution. In: Di Chio, C., Cagnoni, S., Cotta, C., Ebner, M., Ekárt, A., Esparcia-Alcázar, A.I., Merelo, J.J., Neri, F., Preuss, M., Richter, H., Togelius, J., Yannakakis, G.N. (eds.) EvoApplications 2011, Part I. LNCS, vol. 6624, pp. 264–273. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  27. Ishibuchi, H., Yoshida, T., Murata, T.: Balance between genetic search and local search in memetic algorithms for multiobjective permutation flow shop scheduling. IEEE Transactions on Evolutionary Computation 7, 204–223 (2003)

    Article  Google Scholar 

  28. Ishibuchi, H., Hitotsuyanagi, Y., Nojima, Y.: An empirical study on the specification of the local search application probability in multiobjective memetic algorithms. In: Proc. of the IEEE Congress on Evolutionary Computation, pp. 2788–2795 (2007)

    Google Scholar 

  29. Jewajinda, Y., Chongstitvatana, P.: Cellular compact genetic algorithm for evolvable hardware. In: Proceedings of the International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, vol. 1, pp. 1–4 (2008)

    Google Scholar 

  30. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, pp. 1942–1948 (1995)

    Google Scholar 

  31. Krasnogor, N.: Toward robust memetic algorithms. In: Hart, W.E., Krasnogor, N., Smith, J.E. (eds.) Recent Advances in Memetic Algorithms. STUDFUZZ, pp. 185–207. Springer, Berlin (2004)

    Google Scholar 

  32. Lanzi, P., Nichetti, L., Sastry, K., Goldberg, D.E.: Real-coded extended compact genetic algorithm based on mixtures of models. In: Linkage in Evolutionary Computation. SCI, vol. 157, pp. 335–358. Springer (2008)

    Google Scholar 

  33. Larrañaga, P., Lozano, J.A.: Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation. Kluwer (2001)

    Google Scholar 

  34. Mallipeddi, R., Iacca, G., Suganthan, P.N., Neri, F., Mininno, E.: Ensemble strategies in compact differential evolution. In: Proceedings of the IEEE Congress on Evolutionary Computation (2011)

    Google Scholar 

  35. Mininno, E., Cupertino, F., Naso, D.: Real-valued compact genetic algorithms for embedded microcontroller optimization. IEEE Transactions on Evolutionary Computation 12(2), 203–219 (2008)

    Article  Google Scholar 

  36. Mininno, E., Neri, F., Cupertino, F., Naso, D.: Compact differential evolution. IEEE Transactions on Evolutionary Computation 15(1), 32–54 (2011)

    Article  Google Scholar 

  37. Neri, F., Mininno, E.: Memetic compact differential evolution for cartesian robot control. IEEE Computational Intelligence Magazine 5(2), 54–65 (2010)

    Article  Google Scholar 

  38. Neri, F., Tirronen, V.: Recent advances in differential evolution: A review and experimental analysis. Artificial Intelligence Review 33(1–2), 61–106 (2010)

    Article  Google Scholar 

  39. Neri, F., Toivanen, J., Cascella, G.L., Ong, Y.S.: An adaptive multimeme algorithm for designing HIV multidrug therapies. IEEE/ACM Transactions on Computational Biology and Bioinformatics 4(2), 264–278 (2007)

    Article  Google Scholar 

  40. Neri, F., del Toro Garcia, X., Cascella, G.L., Salvatore, N.: Surrogate assisted local search on PMSM drive design. COMPEL: International Journal for Computation and Mathematics in Electrical and Electronic Engineering 27(3), 573–592 (2008)

    Article  MATH  Google Scholar 

  41. Neri, F., Mininno, E., Kärkkäinen, T.: Noise Analysis Compact Genetic Algorithm. In: Di Chio, C., Cagnoni, S., Cotta, C., Ebner, M., Ekárt, A., Esparcia-Alcazar, A.I., Goh, C.-K., Merelo, J.J., Neri, F., Preuß, M., Togelius, J., Yannakakis, G.N. (eds.) EvoApplicatons 2010. LNCS, vol. 6024, pp. 602–611. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  42. Neri, F., Iacca, G., Mininno, E.: Disturbed exploitation compact differential evolution for limited memory optimization problems. Information Sciences 181(12), 2469–2487 (2011)

    Article  MathSciNet  Google Scholar 

  43. Norman, P.G.: The new AP101S general-purpose computer (gpc) for the space shuttle. IEEE Proceedings 75, 308–319 (1987)

    Article  Google Scholar 

  44. Ong, Y.S., Lim, M.H., Chen, X.: Memetic computation-past, present and future. IEEE Computational Intelligence Magazine 5(2), 24–31 (2010)

    Article  Google Scholar 

  45. Parsopoulos, K.E.: Cooperative micro-differential evolution for high-dimensional problems. In: Proceedings of the Conference on Genetic and Evolutionary Computation, pp. 531–538 (2009)

    Google Scholar 

  46. Price, K.V., Storn, R., Lampinen, J.: Differential Evolution: A Practical Approach to Global Optimization. Springer (2005)

    Google Scholar 

  47. Prügel-Bennett, A.: Benefits of a population: Five mechanisms that advantage population-based algorithms. IEEE Transactions on Evolutionary Computation 14(4), 500–517 (2010)

    Article  Google Scholar 

  48. Rastegar, R., Hariri, A.: A step forward in studying the compact genetic algorithm. Evolutionary Computation 14(3), 277–289 (2006)

    Article  Google Scholar 

  49. Ren, K., Fu, J.Z., Chen, Z.C.: A new linear interpolation method with lookahead for high speed machining. In: Technology and Innovation Conference, pp. 1056–1059 (2006)

    Google Scholar 

  50. Rudolph, G.: Self-adaptive mutations lead to premature convergence. IEEE Transactions on Evolutionary Computation 5(4), 410–414 (2001)

    Article  Google Scholar 

  51. Sastry, K., Goldberg, D.E.: On extended compact gentic algorithm. Tech. Rep. 2000026, University of Illinois at Urbana-Champaign, Urbana, IL (2000)

    Google Scholar 

  52. Sastry, K., Xiao, G.: Cluster optimization using extended compact genetic algorithm. Tech. Rep. 2001016, University of Illinois at Urbana-Champaign, Urbana, IL (2001)

    Google Scholar 

  53. Sastry, K., Goldberg, D.E., Johnson, D.D.: Scalability of a hybrid extended compact genetic algorithm for ground state optimization of clusters. Materials and Manufacturing Processes 22(5), 570–576 (2007)

    Article  Google Scholar 

  54. Tan, K., Chiam, S., Mamun, A., Goh, C.: Balancing exploration and exploitation with adaptive variation for evolutionary multi-objective optimization. European Journal of Operational Research 197, 701–713 (2009)

    Article  MATH  Google Scholar 

  55. Tasoulis, D.K., Pavlidis, N.G., Plagianakos, V.P., Vrahatis, M.N.: Parallel differential evolution. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp. 2023–2029 (2004)

    Google Scholar 

  56. Weber, M., Tirronen, V., Neri, F.: Scale factor inheritance mechanism in distributed differential evolution. Soft Computing - A Fusion of Foundations, Methodologies and Applications 14(11), 1187–1207 (2010)

    Google Scholar 

  57. Xu, Y.: The measure of dynamic coupling of space robot system. In: Proceedings of the IEEE Conference on Robotics and Automation, pp. 615–620 (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferrante Neri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Neri, F., Iacca, G., Mininno, E. (2013). Compact Optimization. In: Zelinka, I., Snášel, V., Abraham, A. (eds) Handbook of Optimization. Intelligent Systems Reference Library, vol 38. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30504-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30504-7_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30503-0

  • Online ISBN: 978-3-642-30504-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics