Skip to main content

Graph and Geometric Algorithms and Efficient Data Structures

  • Chapter
Book cover Handbook of Optimization

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 38))

  • 5791 Accesses

Abstract

Many NP-complete optimization problems may be approximately solved by stochastic or deterministic heuristic methods and it is necessary to find their efficient data representation to minimize iteration computational time. In this chapter, we will touch the Minimum Steiner Tree Problems in Graphs (or Network Steiner Tree Problem), which can be solved by heuristics based on the Minimum Spanning Tree Problem and/or the Shortest Path Problem using a binary heap that enables to implement a priority queue that substantially increases the algorithm efficiency. We will also show a Delaunay triangulation-based way of finding minimal networks connecting a set of given points in the Euclidean plane using straight lines (minimum spanning tree) and its more general case (Steiner minimum tree) where additional points can be considered. Finally, we will deal with visibility graphs, Voronoi diagrams and rapidly exploring trees and focus on their applications in robot motion planning, where the robot should pass around obstacles from a given starting position to a given target position, touching none of them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aurenhammer, F.: Voronoi Diagrams – A Survey of a Fundamental Geometric Data Structure. ACM Computing Surveys 23(3), 345–405 (1991)

    Article  Google Scholar 

  2. Balakrishnan, V.K.: Network Optimization. Chapman & Hall Mathematics, London (1995)

    MATH  Google Scholar 

  3. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry: Algorithms and Applications. Springer, Berlin (2000)

    MATH  Google Scholar 

  4. Chartrand, G., Oellermann, O.R.: Applied Algorithmic Graph Theory. McGraw Hill, New York (1993)

    Google Scholar 

  5. Choset, H., Lynch, K.M., Hutchinson, S., et al.: Principles of Robot Motion: Theory, Algorithms, and Implementations. Intelligent Robotics and Autonomous Agents. The MIT Press, Cambridge (2005)

    MATH  Google Scholar 

  6. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  7. Dreyer, D.R., Overton, M.L.: Two Heuristics for Euclidean Steiner Tree Problem. Journal on Global Optimization 13, 95–106 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Du, D.Z., Hwang, F.K.: A Proof of Gilbert-Pollak Conjecture on the Steiner Ratio. Algorithmica 7, 121–135 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  9. Du, D.-Z., Smith, J.M., Rubinstein, J.H.: Advances in Steiner Trees. Kluwer Academic Publishers, Dordrecht (2000)

    MATH  Google Scholar 

  10. Fortune, S.: Voronoi Diagrams and Delaunay Triangulations. In: Du, D.A., Hwang, F.K. (eds.) Euclidean Geometry and Computers, pp. 193–233. World Scientific Publishing, Singapore (1992)

    Chapter  Google Scholar 

  11. Hwang, F.K., Richards, D.S., Winter, P.: The Steiner Tree Problem. North-Holland, Amsterdam (1992)

    MATH  Google Scholar 

  12. Ivanov, A.O., Tuzhilin, A.A.: Minimal Networks. The Steiner Problem and its Generalizations. CRC Press, Boca Raton (1994)

    MATH  Google Scholar 

  13. Krček, P., Dvořák, J.: Nonholonomic Mobile Robot Path Planning by Means of Case-Based Reasoning. In: Proceedings of the 13th International Conference on Soft Computing Mendel 2007, Brno, pp. 151–156 (2007)

    Google Scholar 

  14. Krejsa, J., Věchet, S.: Rapidly Exploring Random Trees Used for Mobile Robot Path Planning. Engineering Mechanics 12(4), 231–237 (2005)

    Google Scholar 

  15. LaValle, S.M.: Planning Algorithms. University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  16. Masehian, E., Sedighizadeh, D.: Rapidly Exploring Random Trees Used for Mobile Robot Path Planning. World Academy of Science, Engineering and Technology 29, 101–106 (2007)

    Google Scholar 

  17. Okabe, A., Boots, B., Sugihara, K., Chiu, S.N.: Spatial Tessellations and Applications of Voronoi Diagrams. John Wiley & Sons, New York (2000)

    MATH  Google Scholar 

  18. Pich, V.: Application of Voronoi Diagrams in Robot Motion Planning. Master Thesis, Brno University of Technology, 64 p. (2008) (in Czech)

    Google Scholar 

  19. Ruehl, M., Roth, H.: Robot Motion Planning by Approximation of Obstacles in Configuration Space. In: 16th IFAC World Congress, Prague, 6 p. (2005) (submitted)

    Google Scholar 

  20. Šeda, M.: A Comparison of Roadmap and Cell Decomposition Methods in Robot Motion Planning. WSEAS Transactions on Systems and Control 2(2), 101–108 (2007)

    Google Scholar 

  21. Šeda, M.: From Exact Methods to Heuristics. Vědecké spisy VUT v Brně, Edice Habilitační a inaugurační spisy 276, 1–40 (2008)

    Google Scholar 

  22. Šeda, M., Březina, T.: Geometric Data Structures Approximations for Network Optimisation Problems. In: Proceedings of the 11th WSEAS International Conference on Mathematical Methods, Computational Techniques & Intelligent Systems MAMECTIS 2009, pp. 158–163. WSEAS Press, La Laguna (2009)

    Google Scholar 

  23. Šeda, M., Březina, T.: Geometric Robot Strategies. In: Březina, T., Jablonski, R. (eds.) Recent Advances in Mechatronics, pp. 197–202. Springer, Berlin (2009)

    Google Scholar 

  24. Švec, P.: Using Methods of Computational Geometry in Robotics. PhD. Thesis, Brno University of Technology, 135 p. (2007)

    Google Scholar 

  25. Zilouchian, A., Jamshidi, M.: Intelligent Control Systems Using Soft Computing Methodologies. CRC Press, Boca Raton (2001)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miloš Šeda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Šeda, M. (2013). Graph and Geometric Algorithms and Efficient Data Structures. In: Zelinka, I., Snášel, V., Abraham, A. (eds) Handbook of Optimization. Intelligent Systems Reference Library, vol 38. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30504-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30504-7_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30503-0

  • Online ISBN: 978-3-642-30504-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics