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Abstract. Many social networks, e.g., Slashdot and Twitter, can beesgmted
as directed graphsligraphg with two types of links between entities: mutual (bi-
directional) and one-way (uni-directional) connectio8scial science theories
reveal that mutual connections are more stable than oneesagections, and
one-way connections exhibit various tendencies to beconteahconnections.
It is therefore important to take such tendencies into asccwdnen performing
clustering of social networks with both mutual and one-wagrections.

In this paper, we utilize thdyadicmethods to analyze social networks, and de-
velop a generalized mutuality tendency theory to captusagehdencies of those
node pairs which tend to establish mutual connections nmecgiéntly than those
occur by chance. Using these results, we develaopuguality-tendency-aware
spectral clustering algorithm to identify more stable t#us by maximizing the
within-cluster mutuality tendency and minimizing theross-clustermutuality
tendency. Extensive simulation results on synthetic é#azs well as real on-
line social network datasets such as Slashdot, demonghateour proposed
mutuality-tendency-aware spectral clustering algorietracts more stable so-
cial community structures than traditional spectral @tisg methods.

1 Introduction

Graph models are widely utilized to represent relations ragrentities in social net-
works. Especially, many online social networks, e.g., |8las and Twitter, where the
users’ social relationships are represented as directgeisad directed graphs (or in
short,digraphg. Entity connections in a digraph can be categorized into types,
namely, bi-directional links (mutual connections) and-dimectional links one-way
connections). Social theories [28] and online social netvamalysis [2, 6, 28] have
revealed that various types of connections exhibit difiestabilities, where mutual
connections are more stable than one-way connectionshén words, mutual connec-
tions are the source of social cohesion [3, 4] that, if twaviitiials mutually attend to
one another, then the bond is reinforced in each direction.

Studying the social network structure and properties oiedties have been an ac-
tive area of research. Clustering and identifying socralcttires in social networks is an
especially important problem [8,17, 24] that has wide aggpions, for instance, com-
munity detection and friend recommendation in social netaoExisting clustering
methods [21, 29] are originally developed fordirectedgraphs, based on the classical
spectral clustering theorySeveral recent studies (see, e.g., [10,21,27,29]) extend
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spectral clustering method to digraphs, by first convertirgunderlying digraphs to
undirected graphs via some form®fmmetrizationand then apply spectral clustering
to the resulting symmetrized (undirected) graphs. Howelkthese methods have two
common drawbacks, which prevent them from obtairstapleclusters withmore mu-
tual connectionsFirst, these methods do not explicitly distinguish betweitualand
one-wayconnections commonly occurring in many social networleating them es-
sentially as the same and therefore ignoring the differeciasrelations and interpreta-
tions these two types of connections represent (see Sect@mmmore details). Second,
by simply minimizing the total cross-cluster links (thaé@ymmetrized in some fash-
ion), these methods do not explicitly account for the patdtendencies of node pairs
to become mutually connected. As a simple example, Fig. &vsitvwo groups of peo-
ple in a network, where people in the same group tend to have matual (stable)
connections, and people across two groups have more onéuwstable) connections.
When using the traditional spectral clustering method hasva in Fig. 6(a), group B
will be partitioned into two clusters, due to its strict rdeminimizing the total num-
ber of across cluster edges. On the other hand, the correitigpashould be done as
shown in Fig. 6(b), where the majority of mutual (stable)mections are placed within
clusters, and one-way (unstable) connections are placedsaclusters.

In this paper, we propose and develop a stable social cldistection algorithm that
takes into account the tendencies of node pairs whethemo foutual (thus stable)
connections or not, which can result in matablecluster structures. To tackle this
clustering problem, we need to answer the following questid) how to track and
evaluate the tendencies of node pairs to become mutualdstafations? and 2) how
to cluster the entities in social networks by accountingtieir mutuality tendencies so
as to extract more stable clustering structures?

To address these questions, we utilize dyadic methods tgzansocial networks,
and develop a generalized mutuality tendency theory whattebcaptures the tenden-
cies of node pairs that tend to establish mutual connectim e frequently than those
occur by chance. Using these results, we developtuality-tendency-awapectral
clustering algorithm to detect more stable clusters by maing thewithin-cluster
mutuality tendency and minimizing tteeoss-clustemutuality tendency. Our contribu-
tions are summarized as follows.

© Motivated by the social science mutuality tendency theseyestablish a newluster-
basedmutuality tendency theory. It yields a symmetrized mutyakndency for each
node pair, that measures the strength of social ties in fosagclusters (Sec 3).

© Based on our theory, we developatuality-tendency-awaspectral clustering algo-
rithm that partitions the social graphs into stable clustiey maximizing within-cluster
mutuality tendencies and minimizing across-cluster mityuindencies (Sec 4).



o The experimental results — based on both social networlktsires of synthetical
and real social network datasets — confirm that our clugiexigorithm generates more
stable clusters than the traditional spectral clusteriggréghms (Sec 5).

2 Preliminaries, Related Work and Problem definition

In this section, we first introduce the existing dyadic asalynethods in the social the-
ory literature for analyzing and characterizing socialwgek mutual connections and
one-way connections. We then present the classic spelistdng theory which was
developed foundirectedgraphs, and briefly survey some related works which apply
this theory todigraphsthroughsymmetrizationWe end the section with the problem
definition, namely, how to identifgtable clusters in social networks by taking into
account mutuality tendencies of mutual and one-way coloret

2.1 Dyadic Analysis and Mutuality Tendency

Given a social network with both uni- and bi-directionakién such a network can be
represented as a (simple) digragh= (V, E) with |V| = n nodes. Let4d be the
standard adjacency matrix of the digraplereA;; = 1 if the directed edge — j is
present, andl;; = 0 otherwise Social scientists commonly view the social netwafk
as a collection of dyads [28], wheaedyad is arunorderegair of nodes andlirected
edges between two nodes in the pBienote a dyad a®y;; = (A;;, Aj;), fori < j.
Since dyad is an unordered notion, we have in tdal= n(n — 1)/2 dyads inG.
Hence, there are only three possible isomorphism dyads fildieype of dyads is
mutualrelationship, where both directional edges» j andj — i are present. The
second type of dyads @me-wayrelationship, where eithér— j or j — iis present, but
not both. The last type of dyadsmsill relationship, where no edges show up between
1 andj. Let m, b, andu denote the number of mutual, one-way, and null dyads in the
network. Clearlym + b +u = n(n — 1)/2.

Interpretations of dyads. Social scientists have observed that mutual social relatio
and one-way relations in social networks typically exhdifterent stabilities, namely,
mutual relations are more stable than one-way relatiorisishce in the social science
literature, one prevalent interpretation of dyadic relasi in social networks are the
following: mutual dyads are considered as stable conmesti@tween two nodes and
null relation dyads represent no relations; the one-waydyh, 5,16, 18,20] are viewed
as anintermediatestate of relations, which are in transition to more stablgildaium
states of reciprocity (mutual or no relation). Several rt@mpirical studies [6, 9] of
online social networks have further revealed and confirrhatimutual social relations
are more stable relations than one-way connections.

Measuring mutuality tendency. The notion of mutuality tendency has been introduced
in the social science literature (see, e.g., [7,28]) to mesthe tendency for a node pair
to establish mutual connections. For any dyad betvwedj in a digraphG, if 7 places
alinkto j, p;; represents the tendency thawill reciprocate toi more frequently than
would occur by chancd.et X;; denote the random variable that represents whether
or not nodei places a directed edge to nogieThere are only two possible events
(i.e., X;; takes two possible valuesX;; = 1, representing the edge is present; or
Xi; = 0, the edge is not present. L&%; (resp.X;;) denote the evertX;; = 1} (resp.



{Xi; = 0}). Then the probability of the evefif;; occurring isP(X,;). The probability
thats places a directed edge joandj reciprocates back (i.e., nhodeand node;j are
mutually connected) is thus given B X;, X;i) = P(X;;)P(X;i|Xi;). Wofle [28]
introduces the following measure of mutuality tendencyamts of the conditional
probability P(X ;| X;,) as follows:

P(Xij, Xji)

P(XjilXij) = P(Xji) + pig P(Xji) = PX,)
)

1)

where—oco < p;; < 1 ensured) < P(Xj;) + pP(X;;) < 1 to hold. Like many
indices used in statistics;oco < p < 1 is dimensionless and easy to interpret, since
it uses0 and1 as benchmarks, representing no tendency and maximum tenétenm
reciprocation. From eq.(1), the joint distributiét{ X;;, X ;) in eq.(1) can be measured
by the observed graph, namely, eitheftX;;, X;;) = P()(X;;, X;;) = 1, wheni and

j have mutual connection, @¢(X;;, X;;) = P“)(X,;, X;;) = 0, otherwise, where
the superscripl indicates that the probability is obtained from the obsdrgeaph.
On the other hand, the distribution for each individual esgmeasured by’ (X;;) =
PU(Xij) = g, whered; is the out-going degree of nodeP ") (X;;) represents
the probability of edge — j being generated under a random graph model, denoted
by the superscript, with edges randomly generated while preserving the ogteass.
Hence, the tendengyis obtained by implicitly comparing the observed graph véth
reference random digraph model.

Limitations of Wolfe’s mutuality tendency measure for stale social structure clus-
tering. Although the node pair in a dyad is unordered (i.e., the twdesaare treated
“symmetrically” in terms of dyadic relations), Wolfe's mgae of mutual tendency isin
factasymmetricThis can be easily seen through the following derivationdBfinition,

pii _ P(X;))P(Xij) _ P(Xji) = P(Xij) P(Xji)

pij  P(Xij)P(Xji)  P(Xiy) — P(X45)P(Xj:)

We see thap;; = p,; if and only if P(X;,;) = P(X};) holds. Hence, given an arbitrary
dyad in a social network Wolfe’s measure of mutuality tercyeaf the node pair is
asymmetric — in a sense that it isn@de-specifieneasure of mutuality tendency. It
does not provide a measure of mutuality tendency of the @lered)node pairviewed
together. In Section 3, we will introduce a hew measure ofuality tendency that is
symmetricand captures the tendency of a node pair in a dyadic reladi@stablish
mutual connection. This measure of mutuality tendency eaapplied to clusters and
a whole network in a straightforward fashion, and leads udeteelop amutuality-
tendency-awarspectral clustering algorithm.

2.2 Spectral Clustering Theory and Extensions to Digraphsia Symmetrization

Spectral clustering methods (see, e.g., [15, 22, 26, 2Y a28]originally developed for
clustering data with symmetric relations, namely, data ¢ha be represented aadi-

rectedgraphs, where each relation (edge) between two entitigs= A;;, represents
their similarity. The goal is to partition the graph suchttbatities within each cluster
are more similar to each other than those across clusteisisTdone by minimizing



the total weight of cross-cluster edges. Especially, [I@Vjues a systematic study
on comparing a wide range of undirected graph based clogtatgorithms using real
large datasets, which gives a nice guideline of how to selastering algorithms based
on the underlying networks and the targeting objectives.

When relations between entities @asymmetricor the underlying graph girected
spectral clustering cannot be directly applied, as theonotif (semi-)definiteness is
only defined forsymmetrianatrices. Several recent studies (see, e.g., [10,21,]7,29
all attempt to circumvent this difficulty by first convertitige underlying digraphs to
undirected graphs via some form sfmmetrizationand then apply spectral cluster-
ing to the resulting symmetrized (undirected) graphs. Kan®le, the authors in [21]
discuss several symmetrization methods, including thensgtrized adjacency matrix
A = (A+ AT) /2, the bibliographic coupling matriXx A7 and the co-citation strength
matrix A” A, and so forth. Symmetrization can also be done through aorangalk
on the underlying graph, whe® = D~'A is the probability transition matrix and
D = diag[d$“] is a diagonal matrix of node out-degrees. For example, ¢atkia ob-
jective function as the random walk flow circulation matfix = IIP, wherell is
the diagonal stationary distribution matrix, we have thesyetrized Laplacian of the
circulation matrix asC = (£ + £7)/2, whereL is the (asymmetric) digraph Laplacian
matrix [13]. Then the classical spectral clustering altjoni can then be applied using
L which is symmetric and semi-definite. Zhou and et al [27, 28] this type of sym-
metrization to perform clustering on digraphs. Moreoveicht and Newman [10] pro-
pose the digraph modularity matd} = [Q;;], which captures the difference between
the observed digraph and the hypothetical random graphediyles randomly generated
by preserving the in- and out-degrees of nodes, nargely= A;; — df“td;-"/m. Then,
if the sum of edge modularities in a clustgiis large, nodes it are well connected,
since the edges ifi tend to appear with higher probabilities than occur by cbaRow-
ever,Q by definition is asymmetric, where [10] uses the symmetr@ed (Q +Q7T)/2
as objective to perform spectral clustering method. Esslgnthe edge modularity cap-
tures how an individual edge appears more frequently thatrh@ppens by chance, thus
the modularity based clustering method tends to group thodes with more connec-
tions than expected together, which like all other clustgmethods presented above
completely ignores the distinction between mutual andwag-connections.

Problem definition. In this paper we want to solve the following clustering peghlin
social networks with bi- and uni-directional links: Givedigected (social) graph where
mutual connections represent more stable relations andvage&onnections represent
intermediate transferring statdgyw can we account for mutual tendencies of dyadic
relations and cluster the entities in such a way that noddhkiwieach cluster have
maximized mutuality tendencies to establish mutual cdiores; while across clusters,
nodes have minimized tendencies to establish mutual ctons®The clusters (rep-
resenting social structures or communities) identified extdacted thereof will hence
likely be more stable.

3 Cluster-based Mutuality Tendency Theory

Inspired by Wolfe’s study in [28], we propose a new measurenofuality tendency
for dyads that can be generalized to groups of nodes (cf)stard develop mutuality
tendency theorfor characterizing the strength of social ties within a tdugnetwork



structure) as well as across clusters in an asymmetriclggreigh. This theory lays the
theoretical foundation for the network structure clasatfan and community detection
algorithms we will develop in section 4.

Let X;; denote the random variable that represents whether or mietingaces a
directed edge to nodg There are only two possible events (iX;; takes two pos-
sible values)X;; = 1, representing the edge is presentXgf = 0, the edge is not
present. LetX;; (resp.X;;) denote the everftX;; = 1} (resp.{X;; = 0}). Given an
observedasymmetric) social grapty, to capture thenutuality tendencyf dyads in
this graph, we compare it withfeypotheticalrandom(social) graph, denoted &&*,
where links (dyadic relations) are generated randomly, p¢chance) in such a man-
ner that the (out-)degreg of each nodé in G(*) is the same as that in the observed
social graphG. Under this random social graph model, the probability ef¢lentX;;
occurring isP" (X,;) = IV(T—LI; namely,i places a (directed) link to noderandomly
or by chance (the superscripindicates the probability distribution of link generaton
under the random social graph model). The probability thaleices a directed edge
to j andj reciprocates back (i.e., nodeand nodej are mutually connected) is thus
given by PUY (X, Xj;) = PU(Xi5) PU) (X5 Xy5) = PU(Xi5) P (X},), since
Xi; andX;; are independent under the random social graph model. Onbidenced
social graph, denoté’(W(Xij,in) to represent the event whether there is a mutual
connection (symmetric link) between nodland nodej, i.e., P(“)(X;;, X;;) = 1, if
the dyadDy;; is a mutual dyad in thebservedsocial graph, and®“)(X;;, X;;) = 0,
otherwise. We define thmutuality tendencgf dyadDy;; as follows:

0i; 1 = P (X5, Xji) — PU(Xy5, Xji) = P9(Xy5, Xj0) — PU (X5 PW(X),
(2)

which captures how the node paiand; establish a mutual dyad more frequently than
would occur by chance.

This definition of mutuality tendency is a symmetric meadoredyad Dy;;, i.e.,
0;; = 6;;. In addition, it is shown tha;; € [—1,1]. We remark tha#;; = 0 indicates
that if nodei places a directed link to node the tendency that nodewill reciprocate
back to node is no more likely than would occur by chance; the same holds ifr
node; places a directed link to nodeinstead. On the other han@,; > 0 indicates
that if node: (resp. nodg) places a directed link to node(resp. nodé), node; (resp.
nodes) will more likely than by chance to reciprocate. In partaywith6;; = 1, node
J (resp. node) will almost surely reciprocate. In contragj; < 0 indicates that if node
i (resp. nodg) places a directed link to node(resp. nodé), nodej (resp. node) will
tend not to reciprocate back to nod@esp. nodg). In particular, withd;; = —1, node
Jj (resp. node) will almost surely not reciprocate back. Herne provides a measure
of strength of social ties between nodandj: 6;; > 0 suggests that the dyadic relation
between nodéandj is stronger, having a higher tendency (than by chance) torbec
mutual; wherea$;; < 0 suggests that nodeand; have weaker social ties, and their
dyadic relation is likely to remain asymmetric or eventydaisappeatr.
Mutuality tendency of clusters. The mutuality tendency measure for dyads defined
in eq.(2) can be easily generalized for an arbitrary clugesubgraph) in an observed
social graphS C G. We define the mutuality tendency of a clus#&m©g, as follows:
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where the subscript ~ j : 7,57 € S means that the summation accounts for all (un-
ordered) dyads, and; are both inS. Denote the second termin eq.(3)rag*), and the
(out-degree) volume of the clustérasds := Y, ¢ di. As P (X;;) = d;/([V] — 1)
and P (X ;) = d;/([V] - 1),

= Y did; - d§ — Yies 3127 4
i VI=12 T 2V 1)

which represents the expected number of mutual connedimosig nodes ity under
the random social graph modebiven the clustelS in the observed social gragh,
definems) .= Siiijes P9 (X, Xj0), namely,m” represents the number of
(observed) mutual connections among nodes in the cluysterthe observed social
graphG. The mutual tendency of clustérdefined in eq.(3) is therefore exacthy =
m(sw) _ m(su)_

Hence®s provides a measure of strength of (likely mutual) socia éimong nodes
in a cluster:©s > 0 suggests that there are more mutual connections among modes
S than would occur by chance; where@s < 0 suggests that there are fewer mu-
tual connections among nodes $hthan would occur by chance. Usirtgg, we can
therefore quantify and detect clusters of nodes (netwarkcgires or communities)
that have strong social ties. In particular, whenr= G, O« characterizes the mutual-

ity tendency for the entire digrap®i, i.e.,O¢ = m(é“) — m(cﬁf) = Ziwj 0;;, where

m(c‘f) = i P (X;;, X;;) represents the number of (observed) mutual dyads
among nodes in the observed social gréptand
2 2
() _ did; _ - 2icv 4 5
(KD Y 7 VT ©

i~j

represents the expected number of mutual dyads among nodesrider the random
social graph modelLikewise, given a bipartitior( S, S) of G, we define the cross-
cluster mutuality tendency as

Oos = Y (PW(Xi;X;0) — PU(Xi5) P (X)) (6)
i€S~jeS
Denote the second quantity in eq.(6)m§”,

() _ did;  dsdg
mis= D QU1 = (V- 1P 7)

i€S~jeS
which represents the expected number of mutual conne@innag nodes acrossand
S under the random social graph model. Defin§y = 3,5 ;5 P (Xij, Xji)



representing the number of (observed) mutual connectimasig nodes across clusters
S andS in the observed social gragh The mutuality tendency across clusteand.S
defined in eq.(6) is therefore exac#ys = m(aws) - m(a‘g)

The mutuality tendency theory outlined above accountsifterént interpretations
and roles mutual and one-way connections represent andirplagymmetric social
graphs, with the emphasis in particular on the importancetfual connections in
forming and developing stable social structures/comnmmitith strong social ties.
In the next section, we will show how we can apply this mutyaiendency theory
for detecting and clustering stable network structures@mdmunities in asymmetric
social graphs.

4 Mutuality-tendency-aware spectral clustering algorithm

In this section, we establish the basic theory and algorfitmsolving the mutuality-
tendency-aware clustering problem. Due to the space limitasome proofs are dele-
gated to the technical report [14].

Without loss of generality, we consider only simple (unweégl) digraphsz =
(V,E) (i.e., the adjacency matrid is a 0-1 matrix). Define the mutual connection
matrix M := min(4, A7), which expresses all the mutual connections with unit weigh
1. In other words, if nodéand nodeg are mutually connected (with bidirectional links),
Mij = Mji =1, otherwise,Mij = ]\/fﬂ = 0. Hence, we havé/[ij = P(w) (Xij, in),
representing the event whether there is a mutual conne®@yonmetric link) between
nodei and nodej, i.e., in the dyadDy;; in the observed social graph. In addition, let
d0;; be the Kronecker delta symbol, i.6;; = 1 if i = j, andd;; = 0 otherwise. Then,
we define matrix

dd"” — diag[d?]
(IV]—1)?

with d as the out-going degree vector, where each entry

Ny = Gids = 0udi { itz i £

M:

(IV]—1)2 0 ifi=j ®
represents the probability that two nodesd; independently place two unidirectional
links to each other to form a mutual dyad. Hengé,; = P (X;;)P"(X};) repre-
sents the probability of node padiand; to establish a mutual connection under random
graph model with edges randomly generated by preservingdbe out-degrees. We
denotel’ = M — M as the mutuality tendency matrix, with each entry

Tij = P“)(Xij, Xji) — P (Xi5)PW (Xj5) = 0y (9)

as the individual dyad mutuality tendency.

Mutuality Tendency Lapacian. T' is symmetric and those entries associated with non-
mutual dyads are negative, representing less mutualitjetasies to establish mutual
connections than those occur by chance. Define the mutttiiency Laplacian ma-
trix as

Ly=Dp—T (10)



whereDr = diag|dr(i)] is the diagonal degree matrix f with dr (i) = >, T;;. We
have the following theorem presenting several properfids;o '

Theorem 1. The mutuality tendency Laplacian matiix as defined in eq.(10) has the
following properties

— Given a column vectar € R!V!, the bilinear formz” L,z satisfies

,TTLT,T = ZT” (.I'l — ,Tj)Q. (11)
inj
— Ly is symmetric and in general indefinite. In additidn; has one eigenvalue equal
to 0, with corresponding eigenvector as= [1,--- ,1]7.

Mutuality tendency ratio cut function. For a digraphG = (V; E), and a partition
V = (S, S) onG, we define thenutuality tendency ratio cut functias follows.

_ 1 1
TRCut(S, S) = Oys (— + —) , (12)
S| 15|
which represents the overall mutuality tendency acrosstets balanced by the “sizes”
of the clusters. Then, the clustering problem is formulae@ minimization problem
with K = 2 clusters. (More general cases wjihi| > K > 2 will be discussed in the
next subsection.)

mgn TRCut(S, S) (13)
SinceB®ys = O¢ — (Os + Og) holds true, we have

_ 1 1
For a given graplds, the graph mutuality tenden@ is a constant, the minimization
problem in eq.(13) is equivalent to the following maximipatproblem:

mgx{(@s—i-@S—QG) <§+|—§,|)} (14)

Hence, minimizing the cross-cluster mutuality tendenaggaivalent to maximize the
within-cluster mutuality tendency. Using the results preéed in Theorem 1, we prove
the following theorem which provides the solution to the \aboutuality tendency
optimization problem.

Theorem 2. Given the tendency Laplacian matrlyy = Dp — T, the signs of the
eigenvector of 7 corresponding to the smallest non-zero eigenvalue inditia opti-
mal solution(., S) to the optimization problem eq.(13).

Moreover, the mutuality-tendency-aware spectral clirsgecan be easily general-
ized for the case ok > 2 (See more details in [14]).
Choice of K. We choosé¥, i.e., the total number of clusters, using the eigengapiieur
tic [25]. Theorem 1 shows thdir has all real eigenvalues. Denote the eigenvalues of
L7 in an increasing order, i.e\; < --- < \,, The index of the largest eigengap,
namely, K := argmax,;<,(9(K)), whereg(K) = Ax — Ag—1, K = 2,--- |n,
indicates how many clusters there are in the network.
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5 Evaluations

In this section, we evaluate the performance ofrthguality-tendency-awamspectral
clustering method by comparing it with various symmetiaamethods based digraph
spectral clustering algorithms. We only present the compatresults for the adjacency
matrix symmetrization method, with objective matrix &s= (A + A™)/2. For other
settings, we obtained similar results and omit them here,tduhe space limitation.
We will 1) first test the performances using synthetic datasnd then 2) apply our
method to real online network datasets, e.g., Slashdadlsoeiwork, and discover sta-
ble clusters with respect to mutual and one-way connections
Synthetic datasetsWe first consider synthetic datasets designed specificatBst the
performance of our mutuality-tendency-aware spectrateling method. We randomly
generate a network with200 nodes and<’ = 3 clusters, that contaifi00, 400 and
300 nodes, respectively. There &r4675 directional edges, among whiefi336 edges
are bidirectional and7339 edges are unidirectional. We are randomly plaged2%
of the bidirectional edgem clusters, and9.6% of the unidirectional edgeacross
clusters. Fig. 2(i)-(iii) show that traditional spectralstering algorithm detects clusters
with 661, 538 and 1 entities, respectively, while our method identify correlisters
(See Fig. 3(i)-(iii)).
Real Social Networks.In the second set of simulations, we applied owrtuality-
tendency-awarspectral clustering algorithm to several real social nekwdatasets,
e.g., Slashdot [23], Epinions [19], and email communicatietwork [11] datasets, and
compare with various symmetrization methods based digchpdtering algorithms,
such asA = (A + AT)/2, AAT andF, = IIP. Here we only show the compari-
son results with adjacency matrix symmetrization basechgiy spectral clustering on
Slashdot dataset. All other settings lead to similar resarid we omit them here.
Slashdot is a technology-related news website founded %7.19sers can submit
stories and it allows other users to comment on them. In 28G%hdot introduced
the Slashdot Zoo feature which allows users to tag each athéiends or foes. The
network data we used is the Slashdot social relation netwelnlere a directed edge
from ¢ to j indicates an interest fromto j's stories (or topics). Hence, two people
with mutual connections thus share some common interekitg @ne-way connections
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Table 1. Statistics of Smshgggtopﬂataset'(M-nggD'Suﬂidired’ffongm@-'kédge: Bidirectional edge)
Nodes| 77360 | Nodes in larde§t SCORINPIROEREGHthe “core” componerjt10131
Edges|828161| Edges in largest SC(818310| Edges in the “core” component 97378

U-edges110199|U-edges in largest SGQ0930|U-edges in the “core” componegrit1404
B-edges$717962|B-edges in largest SQC17380|B-edges in the “core” compongn75974

infer that one is interested in the other’s posts, but ther@sts are not reciprocated
back. The Slashdot social network data was collected ardsell by Leskovec [23]in
November 2008.

The statistick are shown in Table 1. It shows that the largest strongly cctede
component (SCC) include abot355 nodes. Then, we remove those nodes with very
low in-degrees and out-degrees, say no more than or eq@aBy finding the largest
strongly connected component of the remaining graph, weeixa “core” of the net-
work with 10131 nodes and97378 edges, among which there &104 unidirectional
edges and 75974 bidirectional edges, respectively. In our evaluationsplvserve that
there is a large “core” of the network, and all other usersadti@hed to this core net-
work. In our study, we are interested in extracting the comityustructure from the
“core” network. When applying our spectral clustering aityon to the “core” net-
work, two clusters with8892 and 1239 nodes are detected (shown in Fig.5(i)-(iii)).
In our result, a large portion (abo85.04%) of cross-cluster edges are unidirectional
edges which in turn yield lower mutuality tendency acrossigrs. On the other hand,
when using the traditional symmetrizetl = (A + AT)/2, two clusters with9640
and491 nodes are extracted instead (shown in Fig.4(i)-(iii)). Vile see that the clus-
tering result obtained using the traditional spectralteltisg method has only around
5.75% of the total edges across clusters as unidirectional edg@sh boost up the
mutuality tendency across clusters. However, in our ctigjeresult, we have more
unidirectional edges placed across clusters, which deesethe mutuality tendency
across clusters. From Fig. 5(i), we can clearly see that we baidirectional (red)
edges dominating the cross-cluster parts. Moreover, Tableows the average mutual-
ity tendency comparison between different clustering mésh where we can see that
the mutuality-tendency-aware spectral clustering atborican group nodes together
with higher within-cluster tendencies than that of tramiitll spectral clustering.

Table 2. Ave. mutuality tendency comparison on Slashdot dataset

} Oc | 0s1 | Os2 | Oss
Mutuality tendency aware clustering||0.00170.00490.00280.00033
Traditional clustering 0.00170.00180.00210.0007(
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