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Abstract. Multi-viewpoint modeling is an effective technique to deal with the
ever-growing complexity of large-scale systems. The evolution of multi-viewpoint
system specifications is currently accomplished in terms of fine-grained atomic
changes. Apart from being a very low-level and cumbersome strategy, it is also
quite unnatural to system modelers, who think of model evolution in terms of
coarse-grained high-level changes. In order to bridge this gap, we propose an
approach to formally express and manipulate viewpoint changes in a high-level
fashion, by structuring atomic changes into coarse-grained composite ones. These
can also be used to formally define reconciling operations to adapt dependent
views, using coupled transformations. We introduce a modeling language based
on graph transformations and Maude for expressing both, the coarse-grained
changes and the coupled transformations that propagate them to reestablish global
consistency. We demonstrate the applicability of the approach by its application
in the context of RM-ODP.

1 Introduction

Large-scale heterogeneous systems are inherently much more complex to design, de-
velop, and maintain than classical, homogeneous, centralized systems. One way to cope
with such complexity is by dividing the design activity according to several areas of
concerns, or viewpoints, each one focusing on a specific aspect of the system and al-
lowing different stakeholders to observe the system from different perspectives [18].

Although separately specified, developed, and maintained to simplify reasoning about
the complete system specifications, viewpoints are not completely independent: ele-
ments in each viewpoint need to be related to elements in the other viewpoints to ensure
consistency and completeness of the global specifications. Such relationships are nor-
mally specified by means of correspondences, which are statements that permit some
items in each viewpoint to be identified as related to items in the other viewpoints.
Prominent examples that advocate such architectural decomposition are the Reference
Model of Open Distributed Processing (RM-ODP) [17], the Model-Driven Web En-
gineering (MDWE) initiative [26] or UML [27]], which provide different diagrams to
represent different aspects of a system.

In this paper we are concerned with the evolution of multi-viewpoint specifications.
As any other software artefact, they evolve over time due to a variety of reasons: changes
in the requirements, errors in the design, evolution in the underlying technology, modi-
fications in the system configuration, hardware or network connections to improve per-
formance, etc. In general, dealing with model evolution is not easy, and the situation
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is even worse in case of multi-viewpoint system specifications: this implies not only
consistent single-view evolution but also consistent multi-view evolution. A change in
a view may imply changes in the rest of the views, or in the set of correspondences,
which need to be synchronized to restore consistency.

A large number of approaches address the problem of multi-viewpoint integration
and synchronization (e.g., cf. [7U10i32/37]]). Due to the low-level of detail at which
model changes are identified, represented, and handled by them, in terms of fine-grained
atomic changes, most of these approaches become quite unnatural to system modelers,
who think of model evolution in terms of coarse-grained high-level changes. Further-
more, tools supporting model evolution neither support detecting changes at this level
of abstraction, nor do they permit propagating these kinds of changes through the corre-
spondences. Therefore, everything needs to be done at the level of basic atomic changes,
such as adding and removing elements or modifying their values. Thus, the semantic
of the coarse-grained changes is lost which again may hamper the reconciliation of
models, e.g., information is lost which should be preserved.

In order to bridge this gap, we propose an approach to formally express and ma-
nipulate viewpoint changes at a higher level of abstraction, by structuring fine-grained
changes into coarse-grained ones that represent the conceptual units by which domain
experts think and reason about the changes. They can also be used to formally de-
fine reconciling operations to adapt dependent views, using coupled transformations.
For this purpose, we introduce a modeling language based on graph transformations
and Maude for expressing both the coarse-grained changes and the coupled transfor-
mations that propagate them between viewpoints. Although our proposal has been de-
signed to be generally applicable to any multi-viewpoint specification framework, in
this paper we demonstrate the applicability of the approach by its application in the
context of RM-ODP [[17], the ISO/IEC and ITU-T standard architectural framework
for multi-viewpoint specification of open distributed systems. RM-ODP provides five
complementary viewpoints: enterprise, information, computational, engineering, and
technology that allow to observe the environment from different perspectives.

2 Motivating Example

In order to illustrate our proposal we will use here a simple example of a multi-view
specification in the context of the RM-ODP (Fig. [T} top). It models a banking applica-
tion, which manages accounts owned by customers. Users can access banking services
through Branches or ATMs. Some operations should be authorized by regional head of-
fices, and several databases store the customers information, account, and the own bank
organization. This can be seen as a three-layer architecture, where branches and ATMs
provide the interfaces and basic banking operations to users, the headquarters provide
the main business logic, and the databases store the system data.

The Computational Viewpoint (CV) focuses on the functionality of the system and
its software architecture, which is described in terms of components (computational
objects) and connectors (that can be either simple primitive bindings or more com-
plex binding objects). The Engineering Viewpoint (NV) deals with how the functional
components (basic engineering objects, or BEOs) are distributed in nodes (separated
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computing places) and connected via channels. Fig. [l shows these two views, using
the UML Profiles defined by the UML4ODP standard notation [16]. The other three
viewpoints described by ODP (Information, Enterprise, and Technology) have not been
included here for simplicity.

The elements of these two models are related through correspondences, which are
expressed here using UML dependencies. Correspondences are shown in Fig. [ using
thicker dashed lines. They relate computational objects and bindings with the corre-
sponding engineering objects and channels in the N'V.

Evolution Scenarios in ODP. Let us think of a revised version of the Bank IT system
specification, shown in Fig. [[Fbottom. It contains three main changes: (1) computa-
tional objects Branch and ATM have been merged; (2) the primitive binding between
HeadOffice and DBManager computational objects has been substituted by a binding
object with more functionality (to add more powerful security mechanisms), and (3)
the replica manager Dup in the NV has been moved from node Site4 to Site5.

Describing the changes at this level of detail is the way in which we normally reason
about any system specification. Existing model difference tools calculate a very large
number of atomic changes that need to be applied to the individual model elements.
Understanding and manipulating those changes to, e.g., reason about the evolution of
the system specifications or to propagate the (atomic) changes from one view to the
rest, becomes quite a complex and brittle task. Quoting the well-known saying: “you
can’t see the forest for the trees.”

In order to address this problem, we need to have a mechanism for representing
and manipulating changes in models at a higher level of abstraction. We do that by
structuring atomic changes into coarse-grained changes, which are closer to the way
in which domain experts think about viewpoint evolution. Of course, the higher the
abstraction level, the more domain-specific they get. This is because of the semantics
they convey. In general, high-level composite operations depend on the specific domain.
Each one defines a set of operations which reflect the kinds of changes commonly used
in such a domain. For example, when dealing with software architectures two usual
changes are to split a component into several and to merge several components into
one. They imply a set of many atomic changes due to all the arrangements that need to
be done with their ports, their connections with other components, etc. But conceptually
they are just two changes.

In the following sections, the evolution of the Bank IT system specification is used
to describe how composite changes are (a) represented; (b) identified and constructed
from the set of individual atomic changes that existing model difference tools detect;
and (c) propagated from one viewpoint to others by using Maude.

3 Formalizing Viewpoints in Maude

Maude [6] is a high-level language, a high-performance interpreter and compiler that
supports rewriting logic based specification and programming of systems. Because of
its efficient rewriting engine and complete analysis toolkit, Maude turns out to be an
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Fig. 1. Bank IT system specification expressed in ODP: Initial (top) and revised (bottom) models

excellent tool to specify and analyze many kinds of systems, at the appropriate level of
abstraction. One of the benefits of using Maude is that its specifications are executable,
since the rewrite rules that describe the behaviour of the system can be used to simulate
it. The syntax for conditional rules is crl [I] : ¢ => t’ if Cond, with [ the rule label, ¢ the
left-hand side (LHS) of the rule, ¢’ the right-hand side (RHS), and Cond its condition.
Maude supports the specification of concurrent object-oriented systems in terms of
object-oriented modules, which specify the system classes and their behaviour. Maude
objects are structures of the form < o : ¢ | a;:v1, ..., an:v, >, where o is the
object identifier (of Sort 0id), c is the class the object belongs to, a; are attribute iden-
tifiers and v; their corresponding current values. The current state of the object-oriented
system, which is called a configuration, has the structure of a multiset made up of ob-
jects that evolves as dictated by the rewriting rules. Predefined sort Configuration
represents configurations of Maude objects, with none as the empty configuration.
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Fig. 2. Basic metamodels for CV, NV and Correspondences

In Maude, metamodels can be seen as object-oriented modules, which contain the
specification of the metamodel classes. Thus, attributes can be represented as Maude
attributes and references between metaclasses can be also represented as attributes, by
means of sets of Maude object identifiers (Oid’s). In this regard, depending on the mul-
tiplicity, we can use:

— a single identifier if the multiplicity is [1]

— a Maybe{Oid} which is either an identifier or a null value, for representing a [0 — 1]
multiplicity or

— a Set{Oid} for multiplicity [*]

The following listing describes the CV metamodel shown in Fig.[2las a Maude object-
oriented module:

(omod ODP is

protecting QID INT BOOL SET{Oid} CONVERSION .

--- Computational Viewpoint

class CVObject | interface : Set{0id}, attribute : Set{oid} .
class Attribute | cVObject : Set{oid} .

class Interface | binding : Maybe{0id}, cVObject : 0id .
class Binding | interface : Set{oid} .

class PrimitiveBinding .

class BindingObject .

subclasses BindingObject PrimitiveBinding < Binding .
subclass BindingObject < CVObject .

endom )

In the same way, a model that conforms to this metamodel can be represented in Maude
by a configuration of Maude objects. Since objects may have attribute values and links,
they are encoded as values of Maude objects’ attributes. The configuration of Maude
objects shown below represents an extract of the Bank specification model w.r.t. the CV
specification illustrated in Fig.[Il It models two CVObjects, Branch and HeadOffice,
linked by the BindingObject Reliable and two Bindings.

’Branch : CVObject | interface : ( 'ICl , ’IC2 ) >
’HeadOffice : CVObject | interface : ( 'IC3 , 'IC4 ) >
’Reliable : BindingObject | interface : ( ’IC5 , ’IC6 ) >
’BC1l : Binding | interface : ( ’IC2 , 'IC5 ) >

’BC2 : Binding | interface : ( ’IC6 , 'IC3 ) >

ANNNANN



342 M. Wimmer, N. Moreno, and A. Vallecillo

4 Change Detection: From Fine- to Coarse-Grained Changes

Two kinds of approaches to change detection may be distinguished, namely, model com-
parison and change tracking. In a perfect world, we would assume to have a complete
change log produced by the model manipulation tools automatically. However, current
modeling editors are often not equipped with a change recorder. Furthermore, models
can be edited with different tools and on different levels, e.g., within graphical or textual
modeling editors, using UML and DSM tools, using the models’ XML-based serializa-
tions, or by applying automatic model transformations. Model comparison is a generic
approach to decouple the change log computation from the actual model manipulation.

In the context of this paper, we employ a two-phase model comparison approach.
In the first phase, fine-grained changes are computed based on object identifier equiva-
lences. For this phase, we build on our previous work presented in [30]. In the second
phase, the fine-grained changes are analyzed to find coarse-grained changes between
the two model versions. Furthermore, coarse-grained changes can also be composed
into even coarser ones. In the following, we demonstrate both phases with the help of
our running example.

4.1 Phase 1: Detecting Fine-Grained Changes

The first phase of the change detection consists of two sequential steps. The first step
is to find the corresponding elements in the initial model and revised model based on
matching rules. From the match result, differences are derived in the second step based
on differencing rules.

Step 1: Matching. In the context of this paper, we use object identifiers to find the
corresponding elements. A match is reported for each pair of objects having the same
identifier assigned in the initial model and in the revised model. If such a pair is found,
a match object is created which links the two objects. Of course, more sophisticated
match rules based on name and structure similarities may be applied [30].

The following listing formalizes the previously explained match strategy. First,
classes for representing MatchModels and Matches are introduced which are instanti-
ated by the subsequent equation match. This equation is executed as long as objects
with same identifier are found in the initial and the revised version of the model. Please
note that both models are represented as configurations in Maude. Thus, the match op-
eration is defined for two configurations (representing the initial and the revised model)
and returns a match model which is again a configuration.

(omod Match is

class MatchModel .

class Match | initEl : 0id, revEl : 0id .
subclass MatchModel < Configuration .

vars INITIAL, REVISED, MATCH : Configuration .

op match : Configuration Configuration —> MatchModel.

eq match(< O : Cl1 | ATTS1 > INITIAL, < O : C2 | ATTS2 > REVISED)
=< M : Match | initEl : O, revEl : O > match(INITIAL, REVISED)
eq match(INITIAL, REVISED) = none [owise]

Example. When the match operation is executed for a subset of our running exam-
ple considering only the elements involved in the EnrichBinding change, matches are
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generated for the CVObjects, but the Binding in the initial model as well as the
BindingObject and its Bindings in the revised model remain unmatched.

Step 2: Differencing. Based on the match model, the difference detection is performed.
In the following, we introduce fine-grained change types and how instances of them
may be detected. The following listing shows the supported fine-grained change types
as Maude classes.

(omod fDiff is

class DiffElement .

class Addition | elem : 0id .

class Deletion | elem : 0id .

class Update | elml : 0id, elm2 : 0id, feature : String .
subclass Addition, Deletion, Update < DiffElement .
endom )

Diff Calculation. Classes Addition, Deletion, and Update are instantiated by
equations. These equations are built based on the following change detection rules ex-
plained in natural language: (a) If a model element of the initial model is not matched
then it generates a deletion; (b) If a model element of the revised model is not matched
then it generates an addition; (c) If a model element of the initial model is matched to
an element of the revised model then they are compared for each feature the values of
both model elements. Just when their values are different, an update is generated.

Diff Representation. For representing changes in a more convenient way, we rewrite the
produced diff elements which are typed by generic change types (cf. classes Addit-
ion, Deletion, and Update) to metamodel-specific changes. Although, such dif-
ferences are specific for a given metamodel, the difference metamodel is automatically
derivable from the modeling language metamodel by using a dedicated transformation
[4]]. Instead of stating in the change model that an object has been added and more in-
formation about this change has to be queried by navigating to the objects in the revised
and initial models, we aim for presenting more information about a change directly in
the difference model (diff model) by having metamodel specific change types.

The design rationale for choosing this change representation is based on the assump-
tion that metamodel-specific change types allow for a more concise formulation of pro-
grams analyzing the fine-grained changes—so to speak to provide an intuitive program-
ming interface. Such programs are actually needed for finding coarse-grained changes
in a set of fine-grained changes as well as for change propagation. Besides usability, also
performance of dependent programs may be enhanced by this kind of representation.

Example. The differencing rules explained above allow to derive the following dif-
ference model for EnrichBinding change excerpt of the running example. By starting
from the previously calculated matches, we end up with four fine-grained differences:
DELBinding, ADDBindingObject, ADDBinding, ADDBinding.

Maude> rewrite < M1 : Match | iniEl : ’Branch, revEl : ’Branch >
< ’'M2 : Match | iniEl : ’DBManager, revEl : ’'DBManager >
result @0bject: < ’D1 : DELBinding | element : ’'Bl >
< ’Al : ADDBindingObject | element : ’'Reliable >
< ’A2 : ADDBinding | element : B2 >

< ’A3 : ADDBinding | element : B3 >
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Fig. 3. Evolution pattern for the EnrichBinding change

4.2 Phase 2: Detecting Coarse-Grained Changes

Additional rules have to be formulated to structure fine-grained changes into coarse-
grained changes. The development of such rules should be done in the language of the
modelers. Because, in contrast to fine-grained changes which have simple and generic
contracts, coarse-grained changes may comprise complex contracts. Thus, we sketch
in the following subsection coarse-grained changes based on graph transformations
patterns stating the situation before a coarse-grained change is applied, i.e., the pre-
condition, as well as showing the effect of the coarse-grained change, i.e, the post-
condition. These graph transformation patterns act as blueprints for the implementation
of the detection rules for coarse-grained changes in Maude.

Sketching coarse-grained Changes. For sketching coarse-grained changes, we use
evolution patterns which are based on graph transformation patterns using the concrete
syntax of modeling languages. The pattern shown in Fig. Bl visualizes the EnrichBinding
change in the concrete notation of ODP. The LHS of the pattern represents the situation
before the change is executed and the RHS is showing the situation after the change has
been applied. Thus, the semantic of the patterns is equivalent to standard graph trans-
formation patterns. If an element resides on the LHS as well as on the RHS (i.e., the
same variable name is used on the LHS and on the RHS), then it stays in the model. If
an element only resides in the LHS and not in the RHS, it is deleted. Finally, if an ele-
ment only resides in the RHS and not in the LHS, it is created. However, the operational
semantics of such evolution patterns are different to standard graph transformation ap-
proaches. The evolution pattern is not executed by finding a match of the LHS in a
model to rewrite it as given by the RHS to produce a new model version. Instead the
evolution pattern is used to derive a program which detects the application of the de-
scribed change. The detection is done by analyzing the initial and the revised model as
well as the fine-grained changes between them.

Encoding detection rules in Maude. The detection rules for finding the evolution pat-
terns are implemented in Maude based on the Maude operation called evolution, which
has as input parameter a triple of models: (a) model before the change, (b) the model
after the change, and (c¢) the difference model describing the fine-grained changes. The
output is again a model which covers all coarse-grained changes happened between the
initial and the revised model.

Based on the notion of the evolution operation and sketched evolution patterns, e.g.,
cf. Fig. Bl a Maude rule may be developed which searches for the application of the
change. The main mechanism is to match for the set of fine-grained changes which
make up the coarse-grained change. Each change type is represented by its own class
which is instantiated by an accompanying rule.
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(omod cDiff is
op model : Configuration —> Model[ctor]
op evolution : Model Model Model —> Model
class EnrichBinding | binding : 0id, bindingObject : 0id .
rl [EnrichBinding]
evolution (
model( < CO1 : CVObject | > < C02 : CVObject | >
< Bl : Binding | source : CO0l, target : C02 > INITIAL ),
model( < D1 : DELBinding | element : Bl >
< Al : ADDBindingObject | element : B0l >
< A2 : ADDBinding | element : B2 >
< A3 : ADDBinding | element : B3 > DIFF ),
model( < CO1 : CVObject | > < C02 : CVObject | >
< B0l : CVBindingObject | >
< B2 : CVBinding | source : C01, target : B0l >
< B3 : CVBinding | source : C02, target : B0l > REVISED ) )
=> evolution (
model( < COl : CVObject | > < C02 : CVObject | >
< Bl : Binding | source : CO0l, target : C02 > INITIAL ),
model( < EBl : EnrichBinding | binding : Bl, bindingObject : B0l > DIFF ),
model( < CO1 : CVObject | > < C02 : CVObject | >
< B0l : BindingObject | >
< B2 : Binding | source : COl, target : BOl >
< B3 : Binding | source : C02, target : BOl > REVISED ) )
endom )

Example. For detecting EnrichBinding changes, the Maude rule is shown in the above
listing. The LHS of the rule is searching for matches of the evolution pattern of Fig. 3]
by matching it on the initial, diff, and revised models. If a match is found, the atomic
differences in the diff model are consumed and the coarse grained change EnrichBinding
is instantiated instead, linking to the deleted binding in the initial model and to the in-
troduced binding object in the revised model. By using this rule, the atomic differences
computed by Phase 1 can be reduced to just one EnrichBinding change. This result is
further processed for change propagation in order to reflect the coarse-grained change
of one view in depending views which is explained in the next section.

5 Change Propagation by Coupled Transformations

After coarse-grained changes in one viewpoint have been detected, they have to be
propagated to dependent viewpoints. For this purpose, we follow the idea of coupled
transformations—a term originally coined by Ralf Lammel [22]. In particular, we aim
for asymmetric reconciliation of viewpoints by exploiting explicit correspondence links
between viewpoints.

The schema on t.he RHS illustraFes the notion of Pyon (t2) V Py oo
coupled transformations interpreted in the context of A A
viewpoint synchronization. An initiator change, by ex- I I
ecut.ing t1 on the viewpf)ir.lt VPa_?l, produces a new C MLb_Ul (t3) C Mlllb_’l)2
version V' P,_,s. For retaining consistency between the | |
dependent viewpoint V Py_,; and V P, _,2, the reconcil- | |
ing transformation t5 has to be executed on V Pp_,1. \ (t1) \
Furthermore, to consider the modifications in the two VPt ———= VP i
viewpoints, another reconciling transformation ¢3 has to
be executed on the correspondence model C'Mp_y1 .
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Fig. 4. Co-Evolution pattern for the EnrichBinding change

The execution of the initiator transformation is independent, meaning that it does
not dependent on matches of other rules to compute its own matches. In contrast, the
matches of reconciling transformations are based on the matches of the initiator trans-
formations to consider the proper set of elements in dependent viewpoints which have
to be adapted. To identify this proper set of elements, the correspondences between el-
ements involved in the initiator change and elements of dependent viewpoints are the
key information.

In the following, a high-level notation is introduced for coupling transformations
which represents coarse-grained changes on different viewpoints. The notation extends
the evolution patterns for coupling different evolution patterns to model co-evolution
patterns. Subsequently, it is shown how co-evolution patterns are implemented in Maude.

5.1 Sketching Coupled Transformations

Co-evolution patterns, e.g., as shown in Fig. 4f comprise the following structure. First
the initiator transformation (¢;) has to be specified. This is done by reusing an already
evolution pattern which describes the change as discussed in the previous section. Hav-
ing the initiator transformation as a basis, we may define new or reuse existing evolution
patterns for describing reconciliator transformations (t2 and ¢3). For determining the
exact matches of the reconciliator transformations, links between elements of the dif-
ferent patterns are used. In case of modeling languages offering explicit correspondence
models, these links are expressed by additional correspondence models interlinking el-
ements of two evolution patterns.

Example. For the EnrichBinding change, we may reuse the evolution pattern of Fig.[3]
as the initiator transformation for defining the co-evolution pattern. Bindings in the
CV are linked to Channels in the NV via correspondences. So when a Binding is
deleted—this is actually the case when an EnrichBinding transformation is executed—
there remain correspondences linking to missing elements in the CV. Thus, reconcil-
iator changes are necessary to reestablish a link to proper CV elements. In case of
EnrichBinding, the correspondences from Channels have to be relinked from missing
Bindings to newly introduced BindingObjects. This reconciliation is specified
in the co-evolution pattern of Fig. d by modeling another transformation for the cor-
respondence model (middle layer). However, for finding the correspondences to adapt,
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Fig. 5. Co-Evolution pattern for the MergeComponent change

the Channels of the NV are needed. Therefore another layer is introduced on top. No
change in the NV is necessary, so one Channel is shown in the LHS and in the RHS
to find the proper set of correspondences to relink.

A more complex example concerning the reconciliation of multi-viewpoints is the
MergeComponent change. When it is detected in the CV, not only the correspondences,
but also the NV has to be modified. This also involves to have sets of elements in the
evolution patterns which are marked in our notation by the star operator. For instance,
as sketched in Fig. [l if two CVObjects named AC and BC are merged in a final
CVObject CC, the union of their interfaces and bindings (cf. union (I1,I2) and
union (D1, D2))are required for CC. Similarly, when two BEOs are merged to reflect
the change also in the NV, the union of their links to channels has to be build as well
(cf. union (C1,C2) in Fig.[3).

5.2 Encoding Coupled Transformations in Maude

We describe the co-evolution of multi-viewpoints in Maude as an operation named mul-
tievolution that when applied to a particular configuration of viewpoints, produces a new
configuration of them as a result.

(omod Reconciliator is
op multievolution : Configuration Configuration Configuration —> Configuration .
. endom)

Although more than one viewpoint may evolve at the same time, for the sake of
simplicity, we assume here that there is only one base view that initializes the change.
Thus, for each initiator change type, we use a Maude rule to trigger the evolution of
other viewpoints related to the changed viewpoint. Of course, changes in one viewpoint
will require the definition of several rules—one rule for each of the viewpoints that
might be affected by the change—which describe how the system must continue to
evolve in order to reach a reconciliation state between all viewpoints. The following
listing sketches the general form of a propagation rule.
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rl [nameRule]

multievolution( --- detection of the initiator change
evolution ( --- V2: dependent viewpoint
model( V2—BEFORE ), model( V2—REST ), model( V3—AFTER ) ),
evolution ( --- correspondences
model( CORR—BEFORE ), model( CORR—REST ), model( CORR—AFTER ) ),
evolution ( --- V1: viewpoint originating the change
model( V1-BEFORE ), model( V1-REST ), model( V1—AFTER ) )
) =>
multievolution( --- execution of the reconciliation change
evolution ( --- V2: dependent viewpoint evolves
model( V2—BEFORE ), model( V2’—REST ), model( V3’—AFTER ) ),
evolution ( --- correspondences evolve
model( CORR—BEFORE ), model( CORR—REST’ ), model( CORR-AFTER’ ) ),
evolution ( --- V1: viewpoint originating the change

model( V1-BEFORE ), model( V1-REST ), model( V1—AFTER ) )

The LHS of the rule contains the evolution models for the initiator and the related
viewpoint and the correspondences relating them. For the viewpoint initiating the evo-
lution, the composite operation representing the initiator change has to be identified.
In this way, the RHS contains the effect of propagating the change to the other view-
points and to the correspondences, again defined in terms of the high-level composite
operations.

Example. Let us consider the Maude rule for propagating the EnrichBinding change
from CV to NV. As mentioned before, the NV needs no adaptation, but the correspon-
dences may have to be updated. Thus, the following rule matches for an occurrence
of the EnrichBinding change that has not been propagated yet, using the third evolu-
tion pattern in the LHS. The first and the second evolution patterns are used to find the
elements that are involved in the reconciliation. Thus, the LHS has to find the correspon-
dence which link a channel with the enriched binding. In the RHS, the first and the third
evolution patterns are equivalent to the LHS patterns, but the second evolution pattern
is not. It takes care of relinking the correspondence to the created BindingObject.

rl [EnrichBinding2NV]
multievolution(
evolution ( --- engineering viewpoint
model( < Chan : Channel | > ENG-BEFORE ),
model( ENG—REST ),
model( < Chan : Channel | > ENG-AFTER ) ),
evolution ( --- correspondences
model( < Cl : Correspondence | source : Bl, target : Chan > CORR—BEFORE ),
model( CORR—REST ),
model( < Cl : Correspondence | source : Bl, target : Chan > CORR—AFTER ) ),
evolution ( --- computational viewpoint originates the change
model( < COl : CVObject | > < C02 : CVObject | >
< Bl : Binding | source : CO0l, target : C02 > INITIAL—REST ),
model( < EBl : EnrichBinding | binding : Bl, bindingObject : BOl, propagated—
<NV : false > DIFF—REST ),
model( < COl : CVObject | > < C02 : CVObject | >

< B0l : BindingObject | > ... REVISED-REST ) )
) =
multievolution(
evolution ( --- engineering viewpoint same as in LHS ),
evolution ( --- correspondences are updated

model( < Cl : Correspondence | source : Bl, target : Chan > CORR—BEFORE ),
model( CORR—REST ),
model( < Cl : Correspondence | source : B0l, target : Chan > CORR—AFTER ) ),
evolution ( --- computational viewpoint same as in LHS
--- except < EBl : EnrichBinding | propagated-NV : true > )
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Let us now consider the Maude ruld! for propagating the MergeComponent change.
The third evolution pattern of the LHS matches for MergeComponent change in the CV
that has not been propagated, yet. If a match is found, the NV and the correspondences
start to evolve as the RHS of the rule dictates. Since each computational object that
is not a binding object corresponds to a set of one or more basic engineering objects
(and any channels which connect them), the coarse-grained MergeComponent operator
causes that the Branch and ATM BEOs in the NV must also be merged. Finally, in order
to preserve the system correspondences, the rule throws a final reconciliator evolution
in the correspondences model to reestablish proper links between the new elements
generated in the CV and the NV models. The reader should note that, at this point,
a similar rule will also be required to define the effects of the MergeBEO composite
operator in the entire system specification that we omit here for the sake of simplicity.

rl [MergeComponent2NV]
multievolution(
evolution ( --- engineering viewpoint
model( < AN : BEO | > < BN : BEO | > ENG—BEFORE ),
model( ENG—REST ),
model( < AN : BEO | > < BN : BEO | > ENG-AFTER ) ),

evolution ( --- correspondences
model( < Cl : Correspondence | source : AC, target : AN >
< C2 : Correspondence | source : BC, target : BN > CORR—BEFORE ),
model( CORR—REST ),
model( < Cl : Correspondence | source : AC, target : AN >
< C2 : Correspondence | source : BC, target : BN > CORR-AFTER ) ),

evolution ( --- computational viewpoint originating the change
model( < AC : CVObject | > < BC : CVObject | > COMP—BEFORE ),
model( < MC : MergeComponent | target : CC, sourcel : AC, source2 : BC,
<—spropagated—NV : false > COMP—REST ),
model( < CC : CVObject | > COMP—AFTER ) )
) =>
multievolution(
evolution ( --- engineering viewpoint
model( < AN : BEO | > < BN : BEO | > ENG—BEFORE ),
model( < XN : MergeBEO \ target : CN, sourcel : AN, source2 : BN, propagated—
—TV : false > ENG—REST ),
model( < CN : BEO | > ENG-AFTER ) ),
evolution ( --- correspondences
model( < Cl : Correspondence | source : AC, target : AN >
< C2 : Correspondence | source : BC, target : BN > CORR—BEFORE ),

model( CORR—REST ) , --- replaces both correspondences by a new one
model( < C3 : Correspondence | source : CC, target : CN > CORR-AFTER ) )
evolution ( --- computational viewpoint same as in LHS

--- except < MC : MergeComponent | propagated-NV : true > )

6 Related Work

Multi-Viewpoint Integration and Synchronization. A large number of approaches ad-
dress the problem of multi-viewpoint integration and synchronization [7]. We have
works on synchronizing artifacts in software engineering, mostly influenced by orig-
inal works on multi-view consistency [11/13] using a generic representation of mod-
ifications and relying on users to write code to handle each type of modification in
each type of view. This idea influenced later efforts on model synchronization

! Building the union of the links (cf. union (C1,C2) in Fig.[) requires an additional rule for
filtering reflexive links as well as duplicates which is not shown for sake of simplicity.
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frameworks in general [[19120] and in particular bi-directional model transformations
[33137]]. Other approaches use so-called correspondence rules for synchronizing models
in the contexts of RM-ODP and MDWE [3/10/32]]. More theoretical works propose to
use different kind of lenses [8.9/12/15]].

All these approaches have in common that they consider only atomic changes when
reconciling models. Thus, the goal of the reconciliation is to change the models in a way
that they satisfy again the given constraints. However, when structuring the changes to
composite changes, more appropriate reconciled models may be found. The reason for
this is that the semantics of the changes, modeling languages, and modeling domains
are considered instead of reasoning with generic atomic changes for generic model ele-
ments. For example, when merging two elements into one may be represented by three
atomic changes, namely deleting both elements and adding a new element which rep-
resents the two merged elements. When considering each atomic change in isolation,
depending elements in other views may be deleted and a new element may be added if
we have a one-to-one correspondence to fulfill between the views. However, the infor-
mation of the deleted elements is lost. By using our approach, we are able to specify
the rules for the reconciliation without information loss by merging also dependent el-
ements in the other views instead of deleting them. The only work we are aware of
allowing to propagate more complex changes is [29], however, in this approach it is
required to record the initiator changes during model editing.

Metamodel/Model and Model/Instances Co-evolution. This involves synchronization
between models of different abstraction levels [34]. In the general case, semantics-
preserving transformations must be developed manually, based on the understanding of
the semantic intent of the change. Several dedicated languages for metamodel/model
co-evolution have been recently developed for specifying semantic-preserving trans-
formations [SU14125031]]. Most related to our approach is [36], where the composition
of atomic differences to composite differences is discussed for Ecore-based metamod-
els. Having composite differences between metamodel versions is considered to be the
prerequisite for finding the appropriate co-evolution for the model level. However, the
propagation of the composite changes to the instances has not been presented. Our
approach is generic in the sense that also metamodel/model co-evolution may be sup-
ported. In particular, the coupling between the metamodel changes and model changes
is similar as the coupling of changes between different views.

Coarse-grained changes for models. Most existing approaches for defining coarse-
grained changes focus solely on model refactorings. The work in [35] defined a set
of UML refactorings on the conceptual level by expressing pre- and post-conditions
in OCL, and [2]] presented a refactoring browser for UML supporting the automatic
execution of pre-defined UML refactorings. While these two approaches focus on pre-
defined refactorings only, other approaches [21I28[38] allow the introduction of user-
defined refactorings by using dedicated textual languages. A similar idea is followed
in [1J24] but instead of textual languages, graph transformations are used to describe
refactorings. However, the proposed approaches cover mostly single-view evolution and
focus on the implementation of semi-automatically executable refactorings. Only some
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first ideas for tackling consistency between different views in the context of coarse-
grained changes have been presented. For instance, [23|] proposed to refactor UML
class diagrams, also adapting attached OCL constraints.

7 Conclusions and Future Work

We have presented an approach for expressing, executing, and synchronizing viewpoint
changes at a high-level of abstraction. We structure atomic changes into coarse-grained
changes that represent the conceptual units that domain experts are used to, and are
coupled for propagating the semantics of one change in one viewpoint into related view-
points. A major strength of our approach comes from the use of Maude and its expres-
sive power. Although coarse-grained changes and coupled transformations have been
used in previous works, the composition of fine-grained changes into coarse-grained
changes for viewpoint synchronization using coupled transformation is novel and rep-
resents an alternative to constraint-based model synchronization.

As future work, we want to investigate a hybrid synchronization approach by using
in the first phase the presented approach for propagating coarse-grained changes and
in the second phase a constraint-based approach for propagating atomic changes which
could not be composed into coarse-grained changes. In addition, applying the approach
to other modeling domains will provide us extensive feedback. These experiences will
be used to establish a model synchronization benchmark based on real-life scenarios
coming from different application domains.
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