Document downloaded from:

http://hdl.handle.net/10251/73301
This paper must be cited as:

Saez Barona, S.; Real Saez, JV.; Crespo, A. (2012). An Integrated Framework for
Multiprocessor, Multimoded Real-Time Applications. En Reliable Software Technologies —
Ada-Europe 2012. Springer. 18-34. doi:10.1007/978-3-642-30598-6_2.

The final publication is available at

http://link.springer.com/chapter/10.1007/978-3-642-30598-6_2

Copyright gpringer

Additional Information

The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-30598-
6_2

Towards an Integrated Framework for
Multiprocessor, Multimoded Real-Time
Applications *

Sergio Saez, Jorge Real, and Alfons Crespo

Instituto de Automaética e Informatica Industrial,
Universitat Politecnica de Valéncia,
Camino de vera, s/n, 46022 Valencia, Spain,
{ssaez, jorge,alfons}@disca.upv.es

Abstract. In this paper we propose an approach for building real-time
systems under a combination of requirements: specification and handling
of operating modes and mode changes; implementation on top of a multi-
processor platform; integration of both aspects within a common frame-
work; and connection with schedulability analysis procedures.

The proposed approach uses finite state machines to describe operat-
ing modes and transitions, and a framework of real-time utilities that
implements the required behaviour in Ada 2012. Automatic code gener-
ation plays an important role: the system is derived from the functional
and timing specification, and implemented according to the abstractions
provided by the framework. Response time analysis enables assessing
the schedulability of the different operating modes and the transitions
between modes.

Keywords: Real-Time Framework, Mode Changes, Multiprocessor Scheduling,
Ada 2012.

1 Introduction

The rest of this paper is organized as follows...

2 Example system

This Section describes an example system to illustrate the concepts introduced
in the rest of the paper. We have chosen to use a real example system, for we
believe it serves better the purpose of explaining our design choices. However,
we have omitted a number of details that would only make the example harder
to follow.

* This work was partially supported by the Vicerrectorado de Investigacién of the
Universitat Politecnica de Valéncia under grant PAID-06-10-2397

2.1 Functional description

The example system is in charge of classifying different mechanical pieces into
two categories: cylinders and cubes. Figure 1 shows the example plant. Pieces are
supplied to the system by means of a conveyor belt. A video camera is located
on top of the conveyor belt and takes images of the first section of the belt.
These images therefore reflect the input load to the system. According to that
input, up to two manipulator robots will pick the pieces from the belt and place
them separately depending on their type (cylinder or cube). In figure 1, this is
represented by other two conveyor belts that we will not consider as a part of the
system. There is also a console screen that shows information about the process.

After considering the physical elements of the system, figure 2 shows the
software elements and their interconnections. A two-stage process (segmentation
and recognition) analyzes the images captured by the camera. The segmentation
part simply detects the type of pieces present in each image frame, and their
positions on the belt. The output from the segmentation stage is inserted in the
Image_Buffer. After segmentation, the recognition stage completes the analysis
by calculating the information needed for the robots to properly catch the pieces
from the belt, such as their exact orientation. The output from the recognition
stage is placed in the ToDo_Buffer, from where they are then collected by one or
two robots, controlled by tasks Robot_0 and Robot_1. Each time a robot removes
one piece from the belt, its corresponding robot task adds the related information
to the Done_Buffer.

The Graph task extracts elements from the Done_Buffer and displays status
information on the console screen (eg. number and type of pieces processed).
Finally, the Belt task controls the belt speed. This task is independent from the
rest of tasks, in the sense that it does not need to exchange information with
them.

Console
Camera G 22e
Il o
Classified
output
I
/S 8 8 8,) Unclassified
el g input
o e D%
Conveyor belt
Robot 0

Fig. 1. View of the example plant

ToDo_Buffer ¢ Image_Buffer

Recog-

M nition

Done_Buffer

Im WA

Fig. 2. Software elements of the example system

2.2 Operating modes

The flow of pieces is variable, and so is the number of pieces that remain to
be removed from the belt. In order to adapt to this input variability, and to
save energy and resources, three operating modes are defined for the system.
The current operating mode depends on the amount of pieces that remain to be
processed at a particular time interval:

Normal Mode During this mode, the number of pieces on the belt is within
the range {1..Threshold}. In this situation, the platform is able to process all
the pieces on the belt by using one single robot. The second robot is kept in
a standby state in order to save energy. The belt advances at normal speed.

Overload mode When the number of pieces on the belt is greater than the
threshold, the system operates in overload mode. In this mode, both robots
collaborate to remove pieces from the belt, in order for the system to cope
with the larger number of pieces to classify. When the number of remaining
pieces is again within the threshold, the system will switch to normal mode
again. By incorporating the second robot in the overload mode, we can keep
the belt running at normal speed.

Fetch mode When there are no pieces to be processed on the belt (the input
flow has temporarily ceased), both robots standby and the belt moves at fast
speed in order to fetch pieces at the beginning of the belt as fast as possible.
There is no need for the recognition process to run in this mode, since there
are no pieces to recognize. But we still need to run the segmentation process
in order to detect the arrival of new pieces. If the system is in fetch mode
and then an image is taken showing a number of pieces between one and the
threshold, then a switch to normal mode will occur. If the number of pieces

suddenly detected was above the threshold, then the switch is to overload
mode.

2.3 Hardware platform and software workload model

Our assumed hardware platform is a two-core processor, with the two cores
identified as CPU0O and CPU1. A low number of cores keeps the example simple,
while it allows us to demonstrate the ability of the proposed framework to take
advantage of multi-core processors.

The distribution of software tasks among processors depends on the operating
mode. Table 1 shows the use of the two cores in the three defined operating
modes. Note that CPU1 is in standby in modes normal and fetch, where only
CPUO is active. The tasks’ names in table 1 identify the activities described in
Section 2.1.

In overload mode, when the number of pieces to process is large, both CPUs
are used for segmentation and recognition, and each CPU controls one robot.
Hence we double the processing capacity for the system to cope with the input
overload. More details on the timing of tasks will be given in section 3, but let
us anticipate that the periods for these two tasks will be the same in normal and
overload modes. We will however offset the execution of those two tasks in CPU1
by half of their period, effectively doubling the overall processing capacity.

Normal mode Overload mode Fetch mode H
CPUO [CPU1] CPUO [CPU1 CPUO _ [CPU1]
Segmentation Segmentation|Segmentation||Segmentation
Recognition Recognition | Recognition Belt
Robot_0 Robot_0 Robot_1 Graph
Belt Graph Belt
Graph

Table 1. Distribution of tasks across CPUs and modes

Figure 3 gives the details of the workload in overload mode, which deserves
further explanation. Note that both CPUs perform the same sequence of pro-
cessing steps, with the difference that CPUQ executes the graph task while CPU1
controls the belt. Both CPUs execute the segmentation step at the same rate,
but separated by half of the segmentation period. So they actually process dif-
ferent images. The segmentation task is unique, but it is scheduled to execute
consecutive instances in alternate CPUs (it is job-partitioned).

The image buffer is split in two local shared objects, Image_Buffer_0 and
Image_Buffer_1. Each instance (job) of the segmentation task uses the buffer
corresponding to its current CPU.

We then have two instances of the recognition task, identified in figure 3
as Recognition_0 and Recognition_1. The recognition tasks suffer from input jit-

ter: they perform the recognition algorithm on the latest image taken by their
corresponding segmentation task. We will ensure this by setting a deadline for
segmentation equivalent to the maximum input jitter for recognition, and we
will use the results of the schedulability analysis to verify that recognition al-
ways uses fresh data. We could take the same approach with recognition tasks
as we have applied to segmentation, that is, to job-partition recognition among
both processors, and both approaches would require an equivalent schedulability
analysis. But we will make them two different tasks just to illustrate the ability
of the framework to also implement such scheme. Both recognition tasks share
the ToDo_Buffer, which is a global resource since it is used from tasks running
on both processors.

Robot_0 and Robot_1 execute in CPUO and CPU1, respectively. They con-
trol the corresponding robots. Both tasks share the common, global resource
Done_Buffer, where they insert information about pieces already processed. They
also share the ToDo_Buffer among them and with the recognition tasks.

The task Graph collects information from the Done_Buffer to display statis-
tics on the screen. In overload mode, Belt is an independent task running on
CPUL. It is in charge of keeping the belt speed adequate to the current mode. In
modes normal and fetch, Belt runs on CPUO. Hence this serves us to illustrate
task migration between modes.

_________ @822
(> B

Robot_0 Graph

/

Recog-

nition /

Image_
Buffer_0

CPUO

? CPU1

Segmen-
tation

ToDo_Buffer Done_Buffer

[

A A
Recog- / / Robot_1 Belt

nition

CPUO
CPU1

Fig. 3. Workload details in overload mode

3 Schedulability Analysis

3.1 Steady-state analysis

Table 2 shows the tasks’ timing parameters and the worst-case response time
analysis of the different operating modes, considered in isolation. We refer to
this analysis as the steady-state analysis, because it does not consider transitions
between modes. All tasks are periodic and the time units used are abstract. For
each mode and CPU, the table shows the tasks’ worst-case execution time ('),
period (P), deadline (D), and input jitter (J), as well as the calculated worst-
case response time (R). This response time has been obtained using the classical
response time analysis equations [1, 2], with higher priorities assigned to shorter
deadlines, and assuming blocking times of 2 time units for all shared resources.
Note that all tasks are schedulable in the steady state, that is, in the absence of
mode changes: all worst-case response times are below their respective deadlines.
Table 2 also shows the utilization ratios for each CPU and mode. Note that the
overload mode could not be scheduled in a single CPU, since the total utilization
is greater than 100 %.

Normal Overload Fetch H
[CPU| Task name/C[T [D[J[R|[C[T[D[J[R[C]T][D[JR]
Segmentation| 3 | 50 | 10 8 || 3 [100] 10 8 113125(25]| |5
Recognition|20| 50 | 50 |10] 39
Recognition_Ov 40(100|100|10| 66
crPuo ¢ Robot 0 3 |10 10 5131010 5
Belt| 2 |50 | 50 10 2125025 |2
Graph|50({500[{500| [250(|50|500({500| [257|{50|500|500| (65
CPUO Utilization 90 % 83 % 30 %
Segmentation 3 (100| 10 8
Recognition Ov 40(100|100|10| 68
CPUL ¢ Robot_1 311010 5
Belt 25050 10
CPU1 Utilization 0% 77 % 0 %
I Total utilization 90 % I 160 % I 30 % |

Table 2. Parameters and steady-state analysis of tasks in both CPUs and in all modes.
Columns are C' for worst-case execution time; T for period; D for deadline; J for input
jitter; R is the calculated worst-case response time, after running the schedulability
analysis.

Segmentation runs at different periods. A short period of 25 units in fetch
mode, since the belt moves at fast speed during fetch. A medium period of
50 units in normal mode, that accommodates the normal speed of the belt
in this mode. And a larger period of 100 units in overload. In overload mode
however, the segmentation task runs in both processors. Hence the effective rate

of segmentation is the same in modes normal and overload. In mode overload,
an initial offset of 50 time units for segmentation in CPU1 will ensure that
segmentation runs once every 50 time units in one or the other CPU — see the
mode-change analyses in Section 3.2.

Recognition requires more processing time in overload than in normal mode
(40 vs. 20 units), since there are more pieces to be analyzed on the belt during an
overload. The recognition task is modeled with two different task descriptions:
we use Recognition to describe the task in mode normal, with C = 20, and
Recognition Ov for the overload mode, with C = 40. Note that this is just an
analysis artifact: our model for mode-change analysis allows changes in all tasks’
parameters, except in C. There are several reasons that justify this approach [3].

The input jitter of 10 units for recognition tasks models the required behavior
that recognition always uses the freshest image pre-processed by segmentation.
This input jitter is set equal to the deadline for segmentation tasks. In practical
terms, the Image_Buffers behave like a one-item stack, written with push and
read with a blocking pop. So recognition is blocked until there is a new item in
the Image_Buffer.

3.2 Transition analyses

Figure 4 shows the possible transitions between modes for the example system.
A total of 5 transitions are possible, and they must be all analyzed for schedu-
lability. The transition analysis must be applied to both CPUs, hence there is
a total of 5 transitions x 2 CPUs = 10 analyses to consider. Some of them are
however trivial. For example, all mode switches in CPU1 are schedulable because
there is only one active mode in that CPU: there are no old-mode tasks when
switching from normal or fetch to overload; there are no new-mode tasks in a
switch from overload to normal; and there are no tasks at all involved in switches
between normal and fetch in CPU1. Hence all transitions are guaranteed by the
steady-state analysis on CPUL.

@

Fig. 4. Possible mode transitions

From the system description given in Table 2, we analyze the schedulability
of transitions using the algorithms proposed in [3]. We have slightly modified

those tools to enable setting an initial offset in the new mode, since we needed
that for our segmentation and recognition tasks in CPU1 in mode overload. The
tool analyzes the transition and, if it is not schedulable, it finds appropriate
offsets to new-mode tasks so that no deadlines are missed in the mode switch.
For tasks with a changing period, this offset is relative to the time when the
mode change request occurs. For tasks that keep their activation pace across
modes, the offset is relative to the first activation of the task on the new mode.

There is no space available here for showing all the mode-change analyses
results in detail. We will just note that all transitions proved schedulable after
applying appropriate offsets when needed. Table 3 shows the results for a par-
ticular transition in CPUO, from overload to normal mode, before applying any
offsets to new-mode tasks (the new mode is normal). Under these circumstances,
new-mode tasks recognition and graph are not schedulable.

Old mode tasks
Task name|[P[C[T [D [R™“] X [Sched?
Robot 0{4{3[10[10| 5 0 Yes
Segmentation|3| 3 [100| 10| 8 0 Yes
Recognition_-Ov|2{40{100{100| 79 1 Yes
Graph|1{50({500{500{ 490 1 Yes
New mode tasks
Task name|P|C| T [D [RM®|Offset[Sched?
Robot 0[5{3|10[10| 5 Yes
Segmentation|4|3 |50 | 10| 8 0 Yes
Belt|3|2 (50|50 | 14 0 Yes
Recognition|2{20| 50 | 50 | 114 | O No
Graph|1{50(|500{500| 740 No

Table 3. Analysis of transition from overload (old mode) to normal (new mode) before
applying offsets. P is priority; C is worst-case execution time; T is period; D is deadline;
RMC is the worst-case response time during the mode-change transition; X is the worst-
case phasing of the mode change request for old-mode tasks; Offset is the delay since the
mode change request until the incorporation of the new-mode task. Empty offset cells
mean that the corresponding task executes unchanged since the old- and new-mode
periods are the same. The Sched column shows whether or not the task is schedulable
during the transition.

Table 4 shows the schedulability analysis results for the transition from over-
load to normal after applying offsets to some new-mode tasks, in order to make
the transition schedulable. There are other offset assignments that make the
transition schedulable. For example, applying an offset of 64 units to recognition
and a Z offset of 79 units to graph. This assignment however does not take into
account the precedence relationship between segmentation and recognition. It
is preferable to offset both tasks by the same amount to keep their activations

synchronized. The offset on task graph, given as Z=76, is an offset relative to
the first activation of task graph in the new mode (normal).

Old mode tasks
Task name[P[C| T [D [RM] X [Sched?
Robot 0{4{3[10[10| 5 0 Yes
Segmentation|3| 3 (100 10| 8 0 Yes
Recognition_Ov|2{40{100{100| 76 1 Yes
Graph|1{50(|500{500| 350 1 Yes
New mode tasks
Task name[P[C| T [D [RM“[Offset[Sched?
Robot 0[5{3[10[10| 5 Yes
Segmentation|4|3 |50 | 10| 8 50 Yes
Belt{3[2]50 (50| 8 0 Yes
Recognition|2]20| 50 | 50 | 50 50 Yes
Graph|1(50(|500({500| 250 |Z=76| Yes

Table 4. Analysis of transition from overload (old mode) to normal (new mode) with
offsets. The transition is schedulable by offsetting both segmentation and recognition
by 50 time units with respect to the mode-change request instant, and by delaying the
first activation of graph 76 units with respect to its activation instant. The indication
Z=76 denotes that the offset is relative to the task’s first activation time in the new
mode, instead of being relative to the mode-change request time.

4 High-level system specification
5 Implementation within the Real-Time Framework
6 Conclusions

References

1. Joseph, M., Pandya, P.: Finding response times in a real-time system. British
Computer Society Computer Journal 29(5) (1986) 390-395

2. Audsley, N., Burns, A., Richardson, M., Tindell, K., Wellings, A.J.: Applying new
scheduling theory to static priority pre-emptive scheduling. Software Engineering
Journal 8(5) (1993) 284-292

3. Real, J., Crespo, A.: Mode Change Protocols for Real-Time Systems: A Survey and
a new Proposal. Real-Time Systems 26(2) (March 2004) 161-197

