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Abstract. We consider random systems of equationsx1 + · · · + xk = a, 0 ≤ a ≤ 2 which are in-
terpreted as equations modulo3. We show fork ≥ 15 that the satisfiability threshold of such systems
occurs where the2−core has density1. We show a similar result for random uniquely extendible con-
straints over4 elements. Our results extend previous results of Dubois/Mandler for equations mod 2
andk = 3 and Connamacher/Molloy for uniquely extendible constraints over a domain of4 elements
with k = 3 arguments.
Our proof technique is based on variance calculations, using a technique introduced Dubois/Mandler.
However, several additional observations (of independentinterest) are necessary.

1 Introcuction

1.1 Contribution

Often constraints are equations of the typef(x1, . . . , xk) = a wherea is an element of
the domain considered andf is a k−ary function on this domain, for example addition
of k elements. Given a formula, which is a conjunction ofm constraints overn variables
we want to find a solution. It is natural to assume thatf has the property: Givenk − 1
arguments we can always set the last argument such, that the constraint becomes true. In
this case we can restrict attention to the2−core. It is obtained by iteratively deleting all
variables which occur at most once. Thus it is the maximal subformula in which each
variable occurs at least twice.

We consider the random instanceF (n, p) : Each equation overn variables is picked
independently with probabilityp; the domain sized and the number of slots per equationk
is fixed. We consider the casep = c/nk−1 and the number of constraints is linear inn whp.
(with high probability, that is probability1 − o(1), n large. ) The density of a formula is
equal to the number of equations divided by the number of variables. The following is well
known:

Fact 1 ([2]) 1. Conditional on the number of variablesn′ and equationsm′ of the2−core
the 2−core is a uniform random member of all formulas where each variable occurs at
least twice.
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2. There existn′ = n′(c) andm′ = m′(c) such that the number of variables of the2−core
is n′(1 + o(1)) and the number of equationsm′(1 + o(1)) whp.
3. There exists aT such that whp. forc ≤ T − ε the2−core has density≤ 1 − ε and for
c ≥ T +ε the2−core has density≥ 1+ε. T is determined as the solution of an analytical
equation.

The expected number of solutions of the2−core isdn−m, n the number of variables,
m the number of equations. When the2−core has density≥ 1+ ε whp. no solution exists.
This holds in particular when the density ofF (n, p) itself is≥ 1 + ε. The formulas con-
sidered here always have density< 1. In seminal work Dubois and Mandler [8] consider
equations mod 2 : x1 + . . . + xk = a, 0 ≤ a ≤ 1, k = 3. They show satisfiability whp.
when the2-core has density≤ 1− ε. For largerk ≥ 15 a full proof for this result is given
in [5], Appendix C . ThusT/nk−1 is the threshold for unsatisfiability in this case.

It is a natural conjecture that the same threshold applies toequations as discussed
initially (and to some other types.) However, it seems difficult to prove the conjecture in
some generality. One of the difficulties seems to be that we have 2 parametersk andd.
We make some progress towards this conjecture. We show it forequations mod 3. (The
result is fork > 15, but we think it mainly technical to get it for allk ≥ 3.)

Theorem 2 LetF (n, p) be the random set of equationsmod 3 : x1+ · · ·+xk = a, 0 ≤
a ≤ 2, x1 + · · · + xk an orderedk − tuple of variables. Ifp < (T − ε)/nk−1 F (n, p) is
satisfiable whp. fork > 15.

The main task is to show that a2−core of density≤ 1−ε has a solution with probability>
ε > 0 . Our proof starts as Dubois/Mandler: LetX be the number of satisfying assignments
of the2−core. Its expectation is≥ dεn, d = 3. We show thatE[X2] ≤ O(E[X ])2. This
implies (by Cauchy-Schwartz (or Paley-Zygmund) inequality) that the probability to have
a solution is≥ ε > 0. By Fact1 F (n, p) has a solution with the same probability. We
apply Friedgut-Bourgain’s Theorem toF (n, p) to show that unsatisfiability has a sharp
threshold. By this the probability becomes1 − o(1). In [9] Friedgut-Bourgain is applied
to the mod 2−case. It seems that our proof for themod 3−case is somewhat simpler
(and applies to themod 2−case and other cases.)

To determineE[X2] Dubois/Mandler apply Laplace Method (one ingredient: bounding
a sum through its maximum term.) The main difficulty is to bound a real function of several
arguments from above. They show that their function has onlyone local maximum. We
proceed by the same method, but substantial changes are necessary fork > 3.

First, we observe (cf. [5], Appendix C) that the function in question is≤ the infi-
mum with respect to certain other parameters. This is based on generating functions: If
f(x) =

∑
ckx

k thenck ≤ f(a)/ak, a > 0, ci ≥ 0 (a method rarely used in the area, a
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notable exception is [16].) Thus to bound the maximum from above we need to find suit-
able parameters and show that the value with respect to theseparameters is less than the
required upper bound . (This leads to involved, but elementary calculus. )

To make this approach work we need appropriate generating functions:X = Xa1 +
. . .Xa3n , whereXai is the indicator random variable of the event that assignment ai
makes the formula true. ThenX2 =

∑

a

∑

b XaXb. To getE[X2] we need to determine
Prob[XaXb = 1]. To this end we observe that the equationx1 + · · ·+ xk = c which is true
undera is true exactly under those assignmentsb such that0k0+1k1+2k2 = 0 mod 3, and
ki is the number of slots ofx1+ · · ·+xk filled with a variablex with b(x) = a(x)+ i. Thus
there are

∑

k1=k2 mod 3

(
k

k−k1−k2,k1,k2

)
different ways in which an equation can become true

undera, b. The following generating function allows us to deal with these possibilities ana-
lytically. With w1 = exp(2πı/3) the primitive third root of unity andw2 = w

2
1 we define

r(x0, x1, x2) =
1
3

[
(x0 + x1 + x2)

k + (x0 + w1x1 +w2x2)
k + (x0 + w2x1 + w1x2)

k
]

then Coeff[xk1
1 xk2

2 , r(1, x1, x2)] =
(

k
k−k1−k2,k1,k2

)
if k1 = k2 mod 3 and0 otherwise (easy

from propertieswj.) In the mod 2−case we use1/2
[
(1 + x)k + (1− x)k

]
instead [5],

Appendix C.

With the motivation to get an exact threshold of unsatisfiability for a type of constraint
whose worst-case complexity is NP-complete, Connamacher/Molloy [6] see also the very
recent [17] introduce uniquely extendible constraints. Ak−ary uniquely extendible con-
straint is a function fromDk to true, false with the property: Given values fromD for any
k − 1 argument slots there is exactly one value for the remaining slot which makes the
constraint true. (Thek > 8 in the following result can be eliminated at the price of some
additional technical effort.)

Theorem 3 LetF (n, p) be the random formula of uniquely extendible constraints: Each
constraint is a randomk−tuple of variables and ak−ary uniquely extendible constraint
overD and we pick with probabilityp. For |D| = 4 and p < (T − ε)/nk−1 F (n, p) is
satisfiable whp. fork > 8.

The thresholdT/nk−1 is proved fork = 3 and|D| = 4, cf. [17] remark following Theorem
8. Our proof uses the technique as in themod 3−case, however the details are different.
One of the contributions making is the generating polynomial
p(x) = 1

d

[
(1 + x)k + (d− 1)(1− x

d−1
)k
]
, asr(x0, x1, x2) above, not used before.

1.2 Motivation

Many computational problems can be naturally formulated asconjunctions of constraints.
And we are interested to find a solution of this conjunction. Algorithmic properties of
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these conjunctions are considered in theoretical research(with remarkable results e. g. in
the realm of approximation[3]) and applied research, e. g. [18]. An additional aspect is the
investigation of conjunctions of randomly picked constraints; [7] is a fundamental study
here. Propositional formulas ink-conjunctive normalform provide an example which has
lead to a rich literature e. g. [1]. One of the characteristic properties of this research is that
its findings can often be related to experimental work by running algorithms on randomly
generated instances.

One of the aspects of random formulas is a threshold phenomenon: If the number
of constraints of a conjunction picked is less than a threshold value the conjunction is
typically satisfiable, if it is more we get unsatisfiability whp. Moreover instances picked
close to the threshold seem to be algorithmically hard, thusbeing candidate test cases for
algorithms. The threshold phenomenon and the possibility to investigate it by experiments
causes physics to become interested in the area e. g. [11]. On the other hand, physical
approaches lead to new algorithms and classical theoretical computer science research, e.
g. [12].

One of the major topics is to determine the value of the threshold in natural cases.
A full solution even in the naturalk−CNF SAT case has not been obtained, but many
partial results, [1] for k = 3. Note thatk−CNF does not have the unique extendability
property as possessed by the constraints considered here. And it seems to be a major open
problem to get the precise threshold for constraints without unique extendibility and not
similar to2−CNF. A mere existence result is the Friedgut-Bourgain theorem [13]. Based
on this theorem thresholds for formulas of constraints overdomains with more than2
elements are considered in [7]. Ordering constraints are considered in [14], only partial
results towards a threshold can be proven. In order to get definite threshold results further
techniques are required. Therefore it is a useful effort to further develop the techniques
with which thresholds can be proven. This is the general contribution of this paper.

A notable early exception, in that the precise threshold canbe proven is themod 2−case
considered above. Historically [8] is the first paper which uses variance calculation based
on Laplace method in this area. Subsequently, fork−CNF SAT this method has lead to
substantial progress in [15]. The contribution here is thatmod 2−proof can be refined
and extended to cover other cases based on observations of independent interest. Note that
random sparse linear systems over finite fields are used to construct error correcting codes,
e. g. [19] or [20], motivating the mod 3−case. A very recent study of themod 2− case
is [21]. More literature can be found in [10], but precise threshold results have not been
obtained.

4



1.3 Contents

I. Equations modulo3
1. Notation and basics
2. Outline of the proof of Theorem5
3. Proof of Theorem9

3.1 Proof of Lemma17
3.2 Proof of Lemma18
3.3 Proof of Lemma19
3.4 Proof of Lemma20

4. Proof of Theorem15
5. Remaining proofs

5.1 Local limit consideration
5.2 The sharp threshold

II. Uniquely extendible constraints
1. Outline
2. Proof of Theorem28 for d = 4, s ≥ 7, λ ≤ 1− 1/d
3. Proof of Theorem28 for d = 4, λ ≥ 1− 1/d, s ≥ 5.

I. Equations modulo 3

1 Notation and basics

We use the abbreviation

M(m,n) :=
∑

v1,...vn ≥2

(
m

v1, . . . vn

)

andN0 := M(km, n). ThenN0 · 3m (1)

is the number of all formulas withk variables per equation andm equations. We consider
the uniform distribution on the set of formulas. Note that the formulas we consider are
2−cores. (Here the same equation to occur several times. This happens with probability
o(1) asm is linear inn and can be ignored. ) LetX be the number of solutions of a formula.
We haveX =

∑

a Xa wherea stands for an assignment of the variables with0, 1, 2 and
Xa(F ) = 1 if F is true undera and0 otherwise. The expectation ofX is 3n−m because
given an assignment each equation is true independently with probability1/3. We assume
thatm = γn, γ bounded above by a constant< 1. As k is also constant, the asymptotics
is only with respect ton. We need to show the following theorem
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Theorem 4 E[X2] ≤ C · 32(n−m)

We have E[X2] =
∑

(a,b) E[Xa ·Xb] where(a, b) refers to all ordered pairs of assignments.

Let W = (W0,W1,W2) be a partition of the set of variables into3 sets.We always use
the notationwi = ♯Wi, w̄ = (w0, w1, w2). For two assignments we writeb = D(a,W )
iff Wi = {x | b(x) = a(x) + i mod 3}. We have thata(x1 + · · · + xk) = b(x1 + · · · +
xk) (Here a(x1 + · · · + xk) is the value ofx1 + · · · + xk undera (analogously forb).)
iff
∑

i=0,1,2 i · ♯{j | xj ∈ Wi} = 0 mod 3. This is equivalent to♯{j | xj ∈ W1} =

♯{j | xj ∈ W2} mod 3. Given l̄ = (l0, l1, l2) with
∑

li = km we letK(l̄) be the set of
all 3×m−matrices(ki,j)0≤i≤2,1≤j≤m with k1,j = k2,j mod 3 and each column sums tok,
that is

∑

i ki,j = k for eachj. Moreover,
∑

j ki,j = li for i = 0, 1, 2 ( the i′th row sums
to li.)

We denote

K(l̄) :=
∑

(ki,j)∈K(l̄)

m∏

j=1

(
k

k0,j , k1,j , k2,j

)

. Then N̂(w̄, l̄) := K(l̄) ·
2∏

i=0

M(li, wi) (2)

is the number of formulasF true under two assignmentsa, b with b = D(a,W ) (with
wi = ♯Wi) and the variables fromWi occupy exactlyli slots ofF. The factorK(l̄) of
N̂(w̄, l̄) counts how theli slots available forWi are distributed over the left-hand-sides of
the equations. The second factor counts how to place the variables into their slots. Note
that the right-hand-side of an equation cannot be chosen, itis determined by the value of
the left-hand-side undera, b.

We abbreviate
(
n
w̄

)
=
(

n
w0,w1,w2

)
. Given an assignmenta, w̄, and l̄, the number of

assignment formula pairs(b, F ) with : There existW with ♯Wi = wi, such thatb ∈
D(a,W ), F is true undera andb, and the variables fromWi occupy exactlyli slots ofF
is

N(w̄, l̄) :=

(
n

w̄

)

· N̂(w̄, l̄). This implies E[X2] = 3n ·
∑

w̄,l̄

N(w̄, l̄) · 1

3m ·N0

. (3)

Theorem4 follows directly from the next theorem:

Theorem 5
∑

w̄,l̄ N(w̄, l̄)/N0 ≤ C · 3(1−γ)n.

One more piece of notation:ωi = wi/n usually is the fraction of variables belonging to
Wi. And λi = li /(km) = li/(kγn) is the fraction of slots filled with a variable fromWi.
We useω̄ = (ω0, ω1, ω2), andλ̄ = (λ0, λ1, λ2). Sometimesωi, λi stand for arbitrary reals,
this should be clear form the context.
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2 Outline of the proof of Theorem5

First, bounds forM(m,n) andK(l̄). We considerq(x) := exp(x)− x− 1 =
∑

j≥2
xj

j!
for

x ≥ 0. Then fora > 0 and allm,n

M(m,n) = Coeff[xm, q(x)n] ·m! < q(a)n · 1

am
·m! ≤ q(a)n

( m

a · e
)m

·O(
√
m) (4)

using Stirling in the formm! < (m/e)m · O(
√
m).

To get rid of the
√
m−factor we letQ(x) := xq′(x)/q(x) with q′(x) the derivative

of q(x), q′(x) = exp(x) − 1 for x > 0. ThenQ′(x) > 0 for x > 0, Q(x) > x, and
Q(x) −→ 2 for x −→ 0. Thus, fory > 2 the inverse functionQ−1(y) > 0 is defined and
differentiable. Lemma6 is proved in Section5.

Lemma 6 LetCn ≥ m ≥ (2 + ε)n, C, ε > 0 constants. Then

M(m,n) = Θ(1) ·
(m

ae

)m

· q(a)n with a defined byQ(a) =
m

n

Throughout we uses = s(k, γ) uniquely defined byQ(s) = kγ = kγn/n = km/n.
Note that fork ≥ 3 we can assume thatkγ > 2 ands always exists. We haveQ(s) ≥ s.
We often writeQ instead ofQ(s). RecallN0 = M(km, n) and we get a tight bound on
the number of formulas (cf. (1).)

Corollary 7 N0 = Θ(1) (kγn/(se))kγn · q(s)n.
We treat the sumK(l̄) similarly toM(m,n). Instead ofq(x) we use the function,

r(x̄) :=
∑

k1=k2 mod 3

(
k

k0, k1, k2

)

xk0
0 xk1

1 xk2
2 , x̄ = (x0, x1, x2). Then

K(l̄) =
∑

(ki,j)∈K(l̄)

m∏

j=1

(
k

k0,j , k1,j , k2,j

)

= Coeff[x̄l̄, r(x̄)m ] <
r(c̄)m

c̄l̄
(5)

with the notation̄xl̄ =
∏

i x
li
i andc̄ = (c0, c1, c2) > 0, meaningci > 0 for all i.

For calculations it is useful to have a different representation of r(x̄). Let ı be the
imaginary unit, andw1 := −1/2 + (

√
3/2)ı is the primitive third root of unity,w2 :=

−1/2− (
√
3/2)ı = w1

2. We have

r(x̄) =
1

3

[
(x0 + x1 + x2)

k + (x0 + w1x1 +w2x2)
k + (x0 + w2x1 + w1x2)

k
]
(6)

The preceding equation is well known and easy to prove from basic properties of roots of
unity. Note that in derivativesd

dxi
r(x̄) the roots of unity are treated as constants.
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Forxi, yi > 0 we define (conventionαα = 1 for α = ωi or α = λi andα = 0)

Ψ (ω̄ , λ̄ , x̄ , ȳ ) =
∏

i=0,1,2

(
q(xi)

ωiq(s)

)ωi

·
[
∏

i=0,1,2

(
λis

xiyi

)λi

]kγ

r(y0, y1, y2)
γ

With ωi = λi = 1/3, ai = s(k, γ) = s, andci = 1, we haveΨ (ω, λ, ā, c̄) = 3 · (1/3)kγ ·
((1/3)3k)γ = 31−γ (use (6).)

Lemma 8 N(w̄, l̄)/N0 < Ψ (ω̄ , λ̄ , ā , c̄ )n · O(n)3/2 for anyā, c̄, ai, ci > 0.

Proof.
(
n
w̄

)
≤∏i(1/ωi)

ωin for all w̄, ([24], page 228 )
∏

i=0,1,2M(li, wi)/N0 ≤
∏

i

(
(li/(aie))

liq(ai)
wiO(

√
li)
)
· (es/(kγn))kγn · 1/q(s)n ·O(1) with (4 ) and Corollary7.

Observe thatli = λikγn,
∑

i λi = 1,
∑

ωi = 1. ConcerningK(l̄) apply (5).

For realsa, b we let Uε(a, b) = {(c, d)| |c − a|, |d − b| < ε} be the open square
neighborhood of(a, b). The notation̄λ, ω̄ ∈ Uε(a, b) is used to mean(λ1, λ2), (ω1, ω2) ∈
Uε(a, b). Theorem9 is proved in Section3.

Theorem 9 For anyλ̄ > 0 there exist̄a, c̄ > 0 such that:
(1) Ψ (ω̄ , λ̄ , ā , c̄ ) ≤ 31−γ .
(2) For anyε > 0, if λ̄ /∈ Uε(1/3, 1/3) thenΨ (ω̄ , λ̄ , ā , c̄) ≤ 31−γ − δ for a δ > 0.

Corollary 10 LetU = Uε(1/3, 1/3) then
∑

λ̄/∈U,λi>0,ω̄ N(w̄, l̄)/N0 < C · 3(1−γ)n.

Proof. The sum has onlyO(n4) terms. With Lemma8 and Theorem9 (2) we see that each
term is bounded above by(31−γ − δ)nO(n)3/2.

To treat(λ1, λ2) close to(1/3, 1/3) we need a lemma analogous to Lemma6 for K(l̄).
Let the functionR(x1, x2) = (R1(x1, x2), R2(x1, x2)) be defined byRi(x1, x2) =
= xirxi

(1, x1, x2)/r(1, x1, x2) for i = 1, 2, rxi
(1, x1, x2) is the partial derivative ofr(1, x1, x2)

wrt. xi. The Jacobi Determinant ofR(x1, x2) is > 0 at x1 = x2 = 1 (proof Subsection
5.1.) Thus there is a neighborhood of(1, 1) in which R(x1, x2) is invertible and the in-
verse function is differentiable. We have thatR(1, 1) = (k/3, k/3). Thus for a suitableε
and(λ1, λ2) ∈ Uε(1/3, 1/3) we can define(c1, c2) by R(c1, c2) = (kλ1, kλ2). Moreover,
ci = ci(λ1, λ2) is differentiable. Lemma11 is proved in Subsection5.1.

Lemma 11 There is anε > 0 such that for(λ1, λ2) ∈ Uε(1/3, 1/3)

K(l̄) = O

(
1

n

)

· r(1, c1, c2)
cl11 c

l2
2

with R(c1, c2) = (kλ1, kλ2) definingc1, c2.
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Corollary 12 There isε > 0 such that for(ω1, ω2), (λ1, λ2) ∈ Uε(1/3, 1/3)

N(w̄, l̄)

N0
≤ O

(
1

n2

)

Ψ (ω̄ , λ̄ , ā , c̄ )n

whereQ(ai) = li/wi = λikγ/ωi andc0 = 1 andR(c1, c2) = (λ1k, λ2k).

Comment.Observe thatλikγ/ωi ≈ kγ, ai ≈ s, ci ≈ 1.

Proof. Our restriction on̄ω implies that
(
n
w̄

)
≤ O(1/n)

∏

i(1/ωi)
ωin (Stirling), giving us

oneO(1/n). We get
∏

iM(li, wi)/N0 ≤∏

i

(
(li/(aie))

liq(ai)
wi
)
· (es/(kγn))kγn · 1/q(s)n ·O(1) applying Corollary7 and Lemma

6 for theM(li, wi). ConcerningK(l̄) apply Lemma11 which gives us a second factor
O(1/n). Otherwise the proof is as the proof of Lemma8.

Lemma13 is proved in Section4.

Lemma 13 The functionΨ (ω̄ , λ̄ , ā , c̄ ) with ai, ci given byQ(ai) = λikγ/ωi andc0 = 1
andR(c1, c2) = (λ1k, λ2k) has a local maximum with value31−γ for λi = ωi = 1/3. In
this case we getai = s andci = 1.

Corollary 14 LetU = Uε(1/3, 1/3), ε small enough. Then
∑

ω̄ /∈U,λ̄∈U,λi>0N(w̄, l̄)/N0 <

C · 3(1−γ)n.

Proof. Let ε > 0 be such thatΨ (ω̄, λ̄, ā, c̄) ≤ 31−γ for ā, c̄ as specified in Lemma13 and
ω̄, λ̄ ∈ U. Let ω̄ /∈ U, λ̄ ∈ U. We showΨ (ω̄, λ̄, ā, c̄) ≤ 31−γ − δ for somēa, c̄. This implies
the claim as in the proof of Corollary10.

Let ε′ < ε/3 andU ′ = Uε′(1/3, 1/3). For λ̄ /∈ U ′ the claim follows with Theo-
rem 9 (2). For λ̄ ∈ U ′ we show thatΨ (ω̄, λ̄, ā, c̄) ≤ 31−γ − δ for ai = s and c0 =
1, R(c1, c2) = (kλ1, kλ2). (Recall λ̄ ∈ U.) For Ψ := Ψ (λ̄, λ̄, ā, c̄) with ā, c̄ as required
by Lemma13 we haveΨ ≤ 31−γ . Note,Q(ai) = λikγ/λi = kγ which impliesai = s
andc0 = 1, R(c1, c2) = (kλ1, kλ2). Therefore allai−terms cancel andΨ =

∏
(1/λi)

λi ·
(∏

(λi/ci)
λikγ
)
p(c̄)γ ≤ 31−γ .

As ω̄ /∈ U whereas̄λ ∈ U ′ andε′ ≤ ε/3 we have that
∏
(1/ωi)

ωi ≤
∏
(1/λi)

λi −δ′ for
a δ′ > 0 (proof omitted.) ThenΨ (ω̄, λ̄, ā, c̄) ≤ Ψ − δ′

(∏
(λi/ci)

λikγ
)
p(c̄)γ. If Ψ ≤ 3/2,

we are done. Otherwise we have that
(∏

i(λi/ci)
λikγ
)
p(c̄)γ is bounded below by1/2 (as

∏
(1/λi)

λi ≤ 3) and the claim follows, with withδ = (1/2)δ′.

Theorem15 is proved in Section4 by Laplace method.

Theorem 15 LetU = Uε(1/3, 1/3). There is anε > 0 such that
∑

λ̄,ω̄∈U N(w̄, l̄)/N0 < C · 3(1−γ)n.

9



Proof of Theorem5. Pickε such that Theorem15applies. Use Corollary10, Corollary14,
and Theorem15 and the sum of all termsN(w̄, l̄)/N0 with li > 0 is ≤ C · 3(1−γ)n. Terms
with anli = 0 do not add substantially to the sum (proof omittted.) ⊓⊔

3 Proof of Theorem9

We use the notation̄x = (x0, x1, x2), ȳ = (y0, y1, y2) and define

OPT1(x̄, s) =
q(sx0)

q(s)
+

q(sx1)

q(s)
+

q(sx2)

q(s)

OPT2(x̄, ȳ, s) =

(
1

x0y0 + x1y1 + x2y2

)Q

, x0y0 + x1y1 + x2y2 > 0

OPT3(ȳ, s) = (y0 + y1 + y2)
Q + 2 ·

(
y20 + y21 + y22 − y0y1 − y0y2 − y1y2

)1/2·Q

OPT(x̄, ȳ, s) = OPT1(x̄, s) · OPT2(x̄, ȳ, s) · OPT3(ȳ, s).

Observe that OPT(1, 1, 1, 1, 1, 1, s) = 3(1/3)Q3Q = 3 =OPT1(1, 1, 1, s),OPT(1, 0, 0, 1, 0, 0, s) =
1 · (1/1)Q · 3 = 3 =OPT3(1, 0, 0, s). The following lemma shows the idea of OPT.

Lemma 16 Givenλ̄ > 0 and letλ be the maximum of theλi. Let ai, ci > 0 be such that
Pi := aici = λi/λ. Then

Ψ := Ψ (ω̄, λ̄, ā · s, c̄) ≤ 1

3γ
OPT(ā, c̄, s).

Proof. The factors ofΨ one by one: The first factor: The AGM-inequality gives
∏

i=0,1,2

(
q(ais)
ωiq(s)

)ωi

≤ OPT1(ā, s). (Applies forωi = 0, too.)

The second factor: We haveP0+P1+P2 = a0c0+a1c1+a2c2 = 1/λ andλi/aici = λ
for i = 0, 1, 2. RecallQ = kγ, and the second factor ofΨ =

∏

i=0,1,2

(
λis

aisci

)λikγ

= λkγ =

(
1

a0c0 + a1c1 + a2c2

)Q

= OPT2(ā, c̄, s).

The third factor: We letC1 =
∑

i ci andC2 =
∑

i c
2
i − c0c1 − c0c2 − c1c2. Then

r(c̄) = |r(c̄)| ≤ (1/3)(Ck
1 + 2C

k/2
2 ) by the triangle inequality and as|c0+w1c1+w2c2| =

[(c0−1/2·(c1+c2))
2+(

√
3/2(c1−c2))

2]1/2 = C
1/2
2 . Then|r(c̄)|γ ≤ 1/3γ(Ck

1+2C
k/2
2 )γ ≤

1/3γ(Ckγ
1 + 2γC

γk/2
2 ) ≤ 1/3γOPT3(c̄, s) asQ = kγ, and asxγ is concave (byγ < 1) we

have(y + z)γ ≤ yγ + zγ .

10



The following picture shows OPT(1, a, a, 1, c, c, s), 0 ≤ a, c ≤ 1. The≤ 3−area is
dark. We have a path froma = c = 0 to a = c = 1 through this area. Therefore, for allP
with 0 ≤ P ≤ 1 we have0 ≤ a, c ≤ 1 with P = ac such that OPT(1, a, a, 1, c, c, s) ≤ 3.
In the notation of Lemma16 this corresponds toλ0 ≥ λ1 = λ2 (and visualizes Theorem9
for this case.) The following four lemmas are the technical core of our proof.

Fig. 1.OPT(1, a, a, 1, c, c, s) over the rectangle0 ≤ a ≤ 1, 0 ≤ c ≤ 1 for s = 3 ands = 14.

Lemma 17 Let s ≥ 8, A(x) = A(x, s) := (7/10)Q · x.
(a) OPT(y) :=OPT(1, A(y), A(y), 1, y, y, s) is strictly decreasing for0 ≤ y ≤ 1/(2Q).
The start value is OPT(0) = 3.
(b) Given0 ≤ y ≤ 1/(2Q), OPT(z) := OPT(1, A(y+ z), A(y− z), 1, y+ z, y− z, s) is
decreasing in0 ≤ z ≤ y.

Lemma 18 Let s ≥ 7 , and 7
20

≤ A ≤ 1− 1
Q
. Then

OPT(z) := OPT(1, A, A, 1, 1/(2Q) + z, 1/(2Q)− z , s) ≤ 3 − δ for 0 ≤ z ≤ 1/(2Q).

Lemma 19 Let s ≥ 7, and1/(2Q) ≤ C ≤ 1/2. Then
OPT(z) := OPT(1, 1− 1/Q, 1− 1/Q, 1, C + z, C − z , s) ≤ 3 − δ for 0 ≤ z ≤ C.

Lemma 20 Let s ≥ 15 andA(x) = A(x, s) := 1 + 7/(10Q) · x − 7/(10Q).
(a) OPT(y) :=OPT(1, A(y), A(y), 1, y, y, s) is strictly increasing in4/10 ≤ y ≤ 1. The
final value is OPT(1) = 3.
(b) Given4/10 ≤ y ≤ 1, OPT(z) :=OPT(1, A(y + z), A(y − z), 1, y + z , y − z , s) is
decreasing in0 ≤ z ≤ min{y, 1− y}.

11



Proof of Theorem9 from the preceding lemmas.We prove Theorem9 for λ0 ≥ λ1 ≥ λ2 >
0 first. We denotePi := λi/λ0, then1 ≥ P1 ≥ P2 > 0.
Case 1:P1 + P2 ≤ 7

20Q
. With A(x) from Lemma17 we haveA(x) · x = (7/10)Q · x2.

Thus there existy1 ≥ y2 with Pi = A(yi) · yi. We representyi such that Lemma17 is
applicable.

y :=
y1 + y2

2
, z :=

y1 − y2
2

. Theny1 = y + z, y2 = y − z, 0 ≤ z ≤ y.

We showy ≤ 1
2Q

and Lemma17applies toy, z.

7

20Q
≥ P1 + P2 =

7

10
Q(y21 + y22) =⇒ y21 + y22 ≤ 1

2Q2
.

(y1 + y2)
2 ≤ 2y21 + 2y22 ≤

1

Q2
andy =

y1 + y2
2

≤ 1

2Q
.

With a0 = c0 = 1, a1 = A(y + z), a2 = A(y − z), c1 = y + z, c2 = y − z we have
aici = Pi. By Lemma16 Ψ := Ψ (ω̄, λ̄, ā · s, c̄) ≤ 1/3γOPT, OPT := OPT(ā, c̄, s). If
P1 ≥ ε for anε > 0 we have OPT< 3− δ′ by Lemma17 and Theorem9 holds.

For smallerP1 we have OPT≤ 3, approaching3. Only (1) of Theorem9 holds. To
get (2) for smallP1 we argue as follows: ForP1 approaching0 we see thatc1 and c2
approach0. We consider the treatment of the factorr(c̄) in the proof Lemma16. Both
C1 andC2 from this proof approach1 in this case. Therefore we have aδ′ > 0 such that
(Ck

1 + 2C
k/2
2 )γ ≤ Ckγ

1 + 2γC
kγ/2
2 − δ′. As a0 = c0 = 1 the first two factors of OPT do not

approach0. And we haveΨ (ω̄, λ̄, ā · s, c̄) ≤ (1/3γ)(OPT− δ′′) ≤ 31−γ − δ and Theorem
9 (2) holds.

Case 2: 7
20Q

≤ P1 + P2 ≤
(

1 − 1
Q

)
1
Q
. To use Lemma18we defineA byA· 1

Q
= P1+P2.

andA is as required by Lemma18. We need to find an appropriatez. AsP1 ≥ P2 there is a
y ≥ 1

2
such thatP1 = A 1

Q
y andP2 = A 1

Q
(1−y).With y = 1

2
+z′ and1−y = 1

2
−z′, z′ ≤ 1

2
,

andP1 = A
(

1
2Q

+ z′

Q

)

, P2 = A
(

1
2Q

− z′

Q

)

Lemma18 applies withz = z′/Q. Again

we seta0 = c0 = 1 anda1 = a2 = A, c1 = 1
2Q

+ z, c2 = 1
2Q

− z. By Lemma16
Ψ (ω̄, λ̄, ā · s, c̄) ≤ 31−γ − δ.

Case 3:
(

1 − 1
Q

)
1
Q

≤ P1 + P2 ≤ 1 − 1
Q
. Let C be given by

(

1 − 1
Q

)

· C = P1+P2

2
.

ThenC is as required by Lemma19. We have a0 ≤ z′ ≤ 1
2

such that

P1 =

(

1 − 1

Q

)

· C · 2
(
1

2
+ z′

)

=

(

1 − 1

Q

)

· (C + 2Cz′),

P2 =

(

1 − 1

Q

)

· (C − 2Cz′).
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With z = 2Cz′ ≤ C Lemma19 applies. We seta0 = c0 = 1 anda1 = a2 = 1 − 1/Q and
c1 = C + z, c2 = C − z and finish the argument as in Case 2.

Case 4:P1+P2 ≥ 1− 1
Q
. WithA(x) as from Lemma20we haveA(x)·x =

(

1− 7
10Q

)

x+
7

10Q
x2 andA(x)x increases from0 to 1 for 0 ≤ x ≤ 1. Let yi be such thatPi = A(yi) · yi.

Theny2 ≤ y1 ≤ 1 and we can representyi such that Lemma20 is applicable.

y :=
y1 + y2

2
, z :=

y1 − y2
2

, andy1 = y + z, y2 = y − z, z ≤ y, 1− y.

We show that1 ≥ y ≥ 4/10 and Lemma20applies toy, z. We haveP1+P2 = A(y1)y1+
A(y2)y2 = y1+ y2+7/(10Q)(y21 + y22 − y1− y2) ≤ y1+ y2. Thereforey = (y1+ y2)/2 ≥
1/2(1 − 1/Q) ≥ 4/10 asQ ≥ s ≥ 15. Settinga0 = c0 = 1, a1 = A(y + z), a2 =
A(y − z), c1 = y + z, c2 = y − z implies the claim.

Now, assume theλi are ordered in a different way. We apply the permutation leading
from λ0 ≥ λ1 ≥ λ2 to the ordering considered to thePi, ai, ci above. The first two factors
of Ψ do not change, onlyr(c̄) may change. But, Lemma16still applies. The three factors,
OPT1, OPT2, OPT3 of OPT(ā, c̄, s) do not change. This refers toC1, andC2, too, and the
argument above forP1 small applies, too. ⊓⊔

In the proofs to come in the following four subsections we usethe notation

L(a, s) =
q(as)

q(s)
=

exp(as)− as− 1

exp(s)− s− 1
, K(a, s) =

q′(as)

q′(s)
=

exp(as)− 1

exp(s)− 1
,

M(a, s) =
exp(as)

exp(s)
.ThenaK(a, s) ≤ L(a, s) ≤ K(a, s) ≤ M(a, s) , 0 ≤ a ≤ 1. (7)

Proof of (7.) p(x) := q′(x), K := K(a, s), L := L(a, s). For a = 0 or a = 1 we have
aK = L. For a > 0, aK ≤ L ⇐⇒ ap(as)/q(as) ≤ p(s)/q(s) ⇐⇒ asp(as)/q(as) ≤
sp(s)/q(s).The preceding inequality holds trivially fora = 1.We show thatasp(as)/q(as)
is strictly increasing ina > 0. We observe thatq(x)/(xp(x)) = 1/x−1/p(x). The deriva-
tive is of the last expression is< 0 iff x2 + 2 < exp(x) + 1/ exp(x). Forx = 0 we have
equality and several differentiations show the inequality.

For a = 0, L ≤ K is true. Fora > 0 L ≤ K ⇐⇒ 1 − sa/p(sa) ≤ 1 − s/p(s). The
last inequality follows froma ≥ p(sa)/p(s) for 0 ≤ a ≤ 1. This follows from convexity.
K(a, s) ≤ M(a, s) is very easy to show. ⊓⊔

We also haveaK(a, s) ≤ 7

10
L(a, s), for 0 ≤ a ≤ 1

2
, s ≥ 4 (proof omitted.) (8)

We recallQ(x) =
xq′(x)

q(x)
=

x(exp(x)− 1)

exp(x)− x− 1
, Q = Q(s) = kγ, Q(s) > s.
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3.1 Proof of Lemma17

Lemma 17 (repeated)Let s ≥ 8, A(x) = A(x, s) := (7/10)Q · x.
(a) OPT(y) := OPT(1, A(y), A(y), 1, y, y, s) is strictly decreasing for0 < y ≤ 1/(2Q).
The start value is OPT(0) = 3.
(b) Given0 ≤ y ≤ 1/(2Q), OPT(z) := OPT(1, A(y + z), A(y − z), 1, y + z, y − z, s)
is decreasing in0 ≤ z ≤ y.
Proof of (a).We have

OPT(y) = (1 + 2L(A(y), s))

(
1

1 + 2A(y) · y

)Q (

(1 + 2y)Q + 2 (1 − y)Q
)

.

We write OPT1(y) = 1 + 2L(A(y), s). Clearly OPT(0) = 3.

We haveA′ :=
d

dy
A(y) =

7

10
Q. And

d

dy
ln OPT(y) >=< 0 ⇐⇒

A′ · 2 ·K(A(y), s)

OPT1(y)
− 2A(y) + 2A′ · y

1 + 2A(y) · y +
2(1 + 2y)Q−1 − 2(1− y)Q−1

(1 + 2y)Q + 2 (1 − y)Q

>=< 0 (9)

The relationship (9) is obtained by taking the derivative and dividing byQ. To get the first
summand we look into the definition ofQ (the formula after8.)

d

dy
ln OPT1(y) =

A′s·2(exp(A(y)s)−1)
q(s)

OPT1(y)
,

1

Q(s)

A′s · 2(exp(A(y)s)− 1)

q(s)
= A′ · 2K(A(y), s)

Observe that the first and third term of (9) is ≥ 0 for 0 ≤ y ≤ 1 whereas the second
term is≤ 0. Moreover,A′ · y = A(y). We have thatd

dy
ln OPT(y) < 0 if the following

two inequalities both hold:

A′ · 2 ·K(A(y), s)

OPT1(y)
<

7
10
A′ · y

1 + 2A(y) · y (10)

2(1 + 2y)Q−1 − 2(1− y)Q−1

(1 + 2y)Q + 2 (1 − y)Q
<

33
10
A′ · y

1 + 2A(y) · y (11)

Note that fory = 0 both sides of the first inequality are equal to0 and of the second
inequality, too. The derivative of OPT(y) is = 0 for y = 0.
Comment:It is important to split up the left-hand-side of inequality(9), otherwise the
calculations get very complicated. Equally important is the step leading to (9). Analogous
steps will occur several times.

14



Proof of (10) for 0 < y ≤ 1/(2Q) , s ≥ 7 . We abbreviateK := K(A(y), s) , L :=
L(A(y), s). Note OPT1(y) = 1 + 2L. AsA′ > 0 we show

2 ·K
1 + 2L

<
7
10
y

1 + 2A(y) · y ⇐⇒ 2K + 4K · A(y) · y − 2
7

10
L · y <

7

10
y.

By (8) we knowK ·A(y) ≤ 7

10
L for s ≥ 4 asA(y) ≤ 1

2
( by y ≤ 1

2Q
.) (12)

Thus (10) follows from 2K + 2K · A(y) · y < 7
10
y. As 2K · A(y) · y ≤ 2K and2K

is convex and2K = 0 for y = 0 we show that2K < (7/20)y for y = 1/(2Q). For
y = 1/(2Q) we haveA(y) = 7/20 and2K = 2(exp((7/20)s) − 1)/(exp(s) − 1). As
1/(2Q) = (exp(s)− s− 1)/(2s(exp(s)− 1)) we have fory = 1/(2Q)

2K <
7

20
y ⇐⇒ 2

(

exp

(
7

20
s

)

− 1

)

<
7

40

exp(s)− s− 1

s

This last inequality holds fors ≥ 7 (but not fors ≤ 4. )

Proof of (11) for y ≤ 1/Q ands ≥ 2. Inequality (11) is equivalent to

2(1 + 2y)Q−1 − 2(1− y)Q−1 <

< A(y)

[
33

10

[

(1 + 2y)Q + 2 (1 − y)Q
]

− 2y ·
[
2(1 + 2y)Q−1 − 2(1− y)Q−1

]
]

(13)

The right-hand-side of (13) is ≥

A(y)

[
33

10

[

(1 + 2y)Q + 2 (1 − y)Q
]

− 33

10
y ·
[
2(1 + 2y)Q−1 − 2(1− y)Q−1

]
]

=
33

10
A(y)

[

(1 + 2y)Q−1 (1 + 2y − 2y) + 2 (1 − y)Q−1 (1− y + y)
]

=
33

10
A(y)

[

(1 + 2y)Q−1 + 2 (1 − y)Q−1
]

.

And (13) follows from
2(1 + 2y)Q−1 − 2(1− y)Q−1

(1 + 2y)Q−1 + 2(1− y)Q−1
<

33

10
A(y)(14)
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Fory = 0 both sides of (14) are equal to0. We show that33/10 ·A′ > the derivative with
respect toy of the left-hand-side of (14.) By elementary calculation

d

dy

2(1 + 2y)Q−1 − 2(1− y)Q−1

(1 + 2y)Q−1 + 2(1− y)Q−1
=

18 · (Q− 1)(1 + y − 2y2)Q−2

[(1 + 2y)Q−1 + 2(1− y)Q−1]2
.

We need to show
33

10

7

10
Q
[
(1 + 2y)Q−1 + 2(1− y)Q−1

]2
> 18(Q− 1)(1 + y − 2y2)Q−2.

Enlarging the right-hand-side,1 ≤ 1 + y − 2y2 for y ≤ 1/Q ≤ 1/s ≤ 1/2(byQ(s) ≥ s)

we show33 · 7
[
(1 + 2y)Q−1 + 2(1− y)Q−1

]2
> 1800(1 + y − 2y2)Q−1

= 1800 ((1 + 2y)(1− y))Q−1

⇐⇒ 231
[

(1 + 2y)2(Q−1) + 4 ((1 + 2y)(1− y))Q−1 + 4(1− y)2(Q−1)
]

>

> 1800 ((1 + 2y)(1− y))Q−1 ⇐⇒ (Division by ((1 + 2y)(1− y))Q−1 )

⇐⇒
(
1 + 2y

1− y

)Q−1

+ 4 + 4

(
1− y

1 + 2y

)Q−1

> 1800/231.

Rescaling the fraction tox the preceding inequality follows from

x+ 4
1

x
> 1800/231− 4 = 3.79 . . . true for x > 0.

Proof of (b).We assume0 ≤ y ≤ 1/(2Q) and0 < z ≤ y.

A(y + z) =
7

10
Q · (y + z) , A(y + z) · (y + z) =

7

10
Q · (y + z)2

A(y + z) · (y + z) + A(y − z) · (y − z) =
7

10
Q · 2(y2 + z2)

OPT(z) = (1 + L(A(y + z), s) + L(A(y − z), s)) ·

·
(

1

1 + 7
10
Q · 2(y2 + z2)

)Q

·
(

(1 + 2y)Q + 2 ·
(
(1− y)2 + 3z2

)Q/2
)

.

d

dz
lnOPT(z) >=< 0 ⇐⇒

7
10
Q ·K(A(y + z), s) − 7

10
Q ·K(A(y − z), s)

1 + L(A(y + z), s) + L(A(y − z), s)
−

7
10
Q4z

1 + 7
10
Q · 2(y2 + z2)

+

6z · ((1− y)2 + 3z2)Q/2−1

(1 + 2y)Q + 2 · ((1− y)2 + 3z2)Q/2
>=< 0.

The first term of the sum is obtained as the first term of (9.) The first and third term of the
left-hand-side of the preceding inequality are≥ 0 for 0 ≤ z ≤ y whereas the second term
is≤ 0.
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Analogously to (10) and (11) d
dz
lnOPT(z) < 0 is implied by

7
10
Q [K(A(y + z), s) − K(A(y − z), s)]

1 + L(A(y + z), s) + L(A(y − z), s)
<

9
10

28
10
Qz

1 + 14
10
Q(y2 + z2)

(15)

6z · ((1− y)2 + 3z2)Q/2−1

(1 + 2y)Q + 2 · ((1− y)2 + 3z2)Q/2
<

1
10

28
10
Qz

1 + 14
10
Q(y2 + z2)

(16)

Proof of (15) for y ≤ 1/(2Q) ands ≥ 3.5. The denominator of the right-hand-side fraction
is maximal fory = z = 1/(2Q). In this case it is1 + 7/(10Q) < 1 + 1/Q. We lower the
denominator of the left-hand-side simply to1. The claim follows from

K(A(y + z), s) − K(A(y − z), s) <
18
5
z

1 + 1
Q

The left-hand-side of the preceding inequality is convex inz for all y < 1/(2Q) (based
on the convexity ofexp(x) − exp(−x).) For z = 0 both sides are= 0. Therefore it is
sufficient to show that the inequality holds forz = y wherey ≤ 1/(2Q). Settingz = y
yieldsK(A(y − z), s) = 0 and we show

K(A(2y), s) <
18
5
y

1 + 1
Q

Again by convexity of the left-hand-side it is sufficient to show the inequality fory =
1/(2Q). In this case we need to show

K(A(1/Q), s) =
exp

(
7
10
s
)
− 1

exp(s)− 1
<

18

10

1

Q+ 1

By (7) we know
exp

(
7
10
s
)
− 1

exp(s)− 1
≤ exp

(

− 3

10
s

)

.

And exp

(

− 3

10
s

)

<
18

10

1

Q + 1
holds (proof omitted) fors ≥ 3.5.

Proof of (16) for s ≥ 8. We show

(1 + 2y)Q + 2 · ((1− y)2 + 3z2)Q/2

6z · ((1− y)2 + 3z2)Q/2−1
>

1 + 14
10
Q(y2 + z2)
1
10

28
10
Qz

.

Cancelingz in the denominator , settingz = y on the right-hand-side, this follows from

(1 + 2y)Q

6 · ((1− y)2 + 3z2)Q/2−1
+

1

3
((1− y)2 + 3z2) >

1 + 14
5
Qy2

28
100

Q
=

100

28Q
+ 10y2

As (1− y)2 + 3z2 ≤ 1− 2y + 4y2 < 1 by y ≤ 1/(2Q), Q ≥ s ≥ 8

this follows from
1

6
(1 + 2y)Q +

1

3
(1− y)2 >

100

28Q
+ 10y2
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The last inequality holds forQ ≥ 8, y ≥ 0 and then the claim holds asQ ≥ s.

3.2 Proof of Lemma18

Lemma 18 (repeated)Let s ≥ 7 and 7
20

≤ A ≤ 1− 1
Q
. Then

OPT(z) := OPT(1, A, A, 1, 1/(2Q) + z, 1/(2Q)− z , s) ≤ 3 − δ for 0 ≤ z ≤ 1/(2Q).

Proof. OPT(z) =

(1 + 2 · L(A, s))
(

1

1 + A
Q

)Q

·





(

1 +
1

Q

)Q

+ 2

((

1− 1

2Q

)2

+ 3z2

)1/2·Q




is increasing inz. We show the claim forz = 1/(2Q). Let from now on OPT(A) =
OPT(1, A, A, 1, 1/Q, 0, s) =

(1 + 2 · L(A, s))
(

1

1 + A
Q

)Q

·
[(

1 +
1

Q

)Q

+ 2

(

1− 1

Q
+

1

Q2

)1/2·Q
]

First, we show that OPT(A) has exactly one extremum in0 ≤ A ≤ 1 which is a
minimum.

d

dA
lnOPT(A) >=< 0 ⇐⇒ 2K(A, s)

1 + 2L(A, s)
−

1
Q

1 + A
Q

>=< 0.

Concerning the first term of the preceding sum we refer to the explanation following (9.)
ForA = 0 the first term is= 0 and the derivative is< 0. ForA = 1 the first term is= 2/3,
whereas the second term is1/(Q + 1) < 2/3 for Q > s > 2, and the derivative is> 0.
We show that the derivative is= 0 for exactly one0 < A < 1 which must be a minimum.

The second fraction of the derivative is decreasing inA. We check that the first fraction
is increasing. AbbreviatingL = L(A, s), L′ = d

dA
L(A, s) and analogously forK, we get

d

dA

2K(A, s)

1 + 2L(A, s)
> 0 ⇐⇒ 2K ′(1 + 2L) > 2K2L′ ⇐⇒

(Multiplication with (exp(s)− s− 1)(exp(s)− 1), division by2 ands.)

(exp(s)− s− 1) exp(sA) + exp(sA)2(exp(sA)− sA− 1) > 2(exp(sA)− 1)2

⇐⇒ (exp(s)− s− 2sA) exp(sA) > − exp(sA) + 2

⇐⇒ exp(s)− s− 2sA > −1 + 2/ exp(sA)

which is true fors > 2, 0 < A < 1 by convexity of2/ exp(sA).
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We need to show the claim for the boundary valuesA = 7/20 andA = 1−1/Q. First,
A = 7/20 :

1 + 2L(A, s) ≤ 1 + 2M(A, s) = 1 + 2 exp(−13/20 · s) (by (7).)

With the derivative of the logarithm and the Mean Value Theorem we can show that
(

1 + 1
Q

1 + A
Q

)Q

is increasing inQ towards its limitexp(13/20).
2
(

1− 1
Q

+ 1
Q2

)1/2·Q

(

1 + A
Q

)Q

is decreasing inQ = Q(s) ≥ 2 (proof by standard calculus methods) and therefore

also ins towards its limit2 exp(−17/20). ForQ = 7 we get a value≤ 0.9

Therefore, for all≥ s ≥ 7( asQ(s) ≥ s)

OPT(A) < (1 + 2 exp(−13/20 · 7))(exp(13/20) + 0.9) = 2.87 . . . .

Now,A = 1− 1/Q :

1 + 2L(A, s) ≤ 1 + 2M(A, s) = 1 + 2 exp

(

− s

Q

)

= 1 + 2 exp

(

−exp(s)− s− 1

exp(s)− 1

)

decreasing ins to 1 + 2 exp(−1).

Fors = 7 we get1 + 2L(A, s) ≤ 1.7404 . . .
(

1 + 1
Q

1 + A
Q

)Q

=

(

1 + 1
Q

1 + 1
Q

− 1
Q2

)Q

is decreasing inQ = Q(s)

(elementary proof omitted) and therefore ins to 1.

ForQ = 7 we get1.1344 . . . . As Q(s) ≥ s this bound applies tos = 7, too.

2
(

1− 1
Q
+ 1

Q2

)1/2·Q

(

1 + 1
Q
− 1

Q2

)Q
is again decreasing (proof omitted) in

Q ands to 2 exp(−3/2). ForQ = 7 we get0.564 . . .

Altogether forQ(s) ≥ s ≥ 7

OPT(A) ≤ 1.741 · (1.135 + 0.565) = 2.9597.

3.3 Proof of Lemma19

Lemma 19 (repeated)Let s ≥ 7 and1/(2Q) ≤ C ≤ 1/2. Then
OPT(z) := OPT(1, 1− 1/Q, 1− 1/Q, 1, C + z, C − z , s) ≤ 3 − δ for 0 ≤ z ≤ C.
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Proof. We abbreviateA = 1 − 1/Q. First, analogously to the proof of Lemma18 we can
restrict attention toz = C. OPT(z) =

= (1 + 2L(A, s))

(
1

1 + 2AC

)Q
[
(1 + 2C)Q + 2((1− C)2 + 3z2)1/2·Q

]

Let from now on OPT(C) = OPT(1, A, A, 1, 2C, 0, s) =

= (1 + 2L(A, s))

(
1

1 + 2AC

)Q

·
[
(1 + 2C)Q + 2(1 + 4C2 − 2C)1/2·Q

]

OPT(C) has exactly one extremum, which is a minimum for0 ≤ C ≤ 1.

d

dc
lnOPT(C) >=< 0 ⇐⇒

− 2A

1 + 2AC
+

2(1 + 2C)Q−1 + (8C − 2)(1 + 4C2 − 2C)1/2·Q−1

(1 + 2C)Q + 2(1 + 4C2 − 2C)1/2·Q
>=< 0 ⇐⇒

2A
(
(1 + 2C)Q + 2(1 + 4C2 − 2C)1/2Q

)
−

− 2AC
(
2(1 + 2C)Q−1 + (8C − 2)(1 + 4C2 − 2C)1/2·Q−1

)
=

= 2A
[
(1 + 2C)Q−1 + (2− 2C)(1 + 4C2 − 2C)1/2·Q−1

]
< = >

< = > 2(1 + 2C)Q−1 + (8C − 2)(1 + 4C2 − 2C)1/2·Q−1 ⇐⇒

2A < = >
2(1 + 2C)Q−1 + (8C − 2)(1 + 4C2 − 2C)1/2·Q−1

(1 + 2C)Q−1 + (2− 2C)(1 + 4C2 − 2C)1/2·Q−1
⇐⇒

A < = >
(1 + 2C)Q−1 + (4C − 1)(1 + 4C2 − 2C)1/2·Q−1

(1 + 2C)Q−1 + (2− 2C)(1 + 4C2 − 2C)1/2·Q−1

ForC = 0 the right-hand-side fraction is equal to0 < A and OPT(C) is decreasing. For
C = 1 the right-hand-side fraction is greater than1 > A and OPT(C) is increasing.

Next we show that the preceding fraction is increasing in0 < C < 1, and equality is
attained for only oneC which must be a minimum.

Rewriting4C − 1 = (2− 2C) + 6C − 3 the fraction is rewritten as

1 +
(6C − 3)(1 + 4C2 − 2C)1/2·Q−1

(1 + 2C)Q−1 + (2− 2C)(1 + 4C2 − 2C)1/2·Q−1

Rescaling1/2 ·Q− 1 toQ ( thenQ− 1 scales to2Q+ 1) and2C to C we get

1 +
(3C − 3)(1 + C2 − C)Q

(1 + C)2Q+1 + (2− C)(1 + C2 − C)Q

Dividing through3(C − 1)(1 + C2 − C)Q the preceding fraction is certainly increasing if

(1 + C)2Q+1

3(C − 1)(1 + C2 − C)Q
and

2− C

3(C − 1)
are both decreasing for0 < C < 2, C 6= 1.
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The second fraction is easily seen to be decreasing. We show that the inverse of the first
fraction is increasing. The numerator of its derivative is

[
(1 + C2 − C)Q + (C − 1)(2C − 1)Q(1 + C2 − C)Q−1

]
· (1 + C)2Q+1 −

− (C − 1)(1 + C2 − C)Q · (2Q+ 1)(1 + C)2Q = (1 + C)2Q(1 + C2 − C)Q−1 ·
[
(1 + C)(1 + C2 − C) + (1 + C)(C − 1)(2C − 1)Q − (2Q+ 1)(C − 1)(1 + C2 − C)

]

The expression in square brackets can be rewritten as

(1 + C)(C − 1)(2C − 1)Q − 2Q(C − 1)(1 + C2 − C) + (−C + 1 + C + 1)(1 + C2 − C)

= Q(1− C)2 + 2(1 + C2 − C) > 0

Now it is sufficient to show the claim for the boundary values,C = 1/(2Q) and
C = 1/2. The first case is contained in Lemma18. Let C = 1/2. We proceed as in the
proof of Lemma18, caseA = 1− 1/Q.

1 + 2L(A, s) ≤ 1.7404 for s ≥ 7
(

1 + 2C

1 + 2CA

)Q

=

(

2

2 − 1
Q

)Q

is decreasing inQ = Q(s)

(elementary proof omitted) and therefore ins to exp(−1/2).

ForQ = 7 we get1.67993 . . . . AsQ(s) ≥ s this bound applies tos = 7, too.

2(1 + 4C2 − 2C)1/2·Q

(1 + 2AC)Q
=

2

(2− 1
Q
)Q

decreasing to0

ForQ = 7 we get0.02624 . . .

Altogether OPT(C) ≤ 1.75 · (1.68 + 0.027) = 2.98 for s ≥ 7.

3.4 Proof of Lemma20

Lemma 20(repeated)Let s ≥ 15 andA(x) = A(x, s) := 1+7/(10Q) ·x − 7/(10Q).
(a) OPT(y) :=OPT(1, A(y), A(y), 1, y, y, s) is strictly increasing in4/10 ≤ y < 1. The
final value is OPT(1) = 3.
(b) Given4/10 ≤ y ≤ 1, OPT(z) :=OPT(1, A(y + z), A(y − z), 1, y + z, y − z, s) is de-
creasing in0 ≤ z ≤ min{y, 1− y}.
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Proof of (a).We have OPT(y) =

(1 + 2L(A(y), s))

(
1

1 + 2A(y) · y

)Q (

(1 + 2y)Q + 2 (1 − y)Q
)

We write OPT1(y) = 1 + 2L(A(y), s). Clearly OPT(1) = 3

We haveA′ :=
d

dy
A(y) =

7

10

1

Q
.

d

dy
ln OPT(y) >=< 0 ⇐⇒ (See comment to (9.))

A′ · 2 ·K(A(y), s)

OPT1(y)
− 2A(y) + 2A′ · y

1 + 2A(y) · y +
2(1 + 2y)Q−1 − 2(1− y)Q−1

(1 + 2y)Q + 2 (1 − y)Q
>=< 0

Observe that the first and third term of the preceding sum are≥ 0 for 0 ≤ y ≤ 1 whereas
the second term is≤ 0.

We have thatd
dy

ln OPT(y) > 0 if the following two inequalities both hold:

A′ · 2 ·K(A(y), s)

OPT1(y)
>

2A′ · y
1 + 2A(y) · y (17)

2(1 + 2y)Q−1 − 2(1− y)Q−1

(1 + 2y)Q + 2 (1 − y)Q
>

2A(y)

1 + 2A(y) · y (18)

Note that fory = 1 both sides of the first inequality are equal to7/(10Q) · 2/3 and of the
second inequality2/3. Therefore the derivative of OPT(y) is= 0 for y = 1.

Proof of (17) for 1 > y ≥ 0 , s ≥ 4 . Let K = K(A(y), s) andL = L(A(y), s).

As A′ > 0 we need to show
K

1 + 2L
>

y

1 + 2A(y) · y .

⇐⇒ K + 2K · A(y)y − 2L · y > y

AsK ≥ L by (7) this follows from

K (1 + 2A(y) · y − 2y) = K

(

1 + 2
7

10Q
y2 − 2

7

10Q
y)

)

> y (19)

Fory = 1 both sides of (19) are= 1. Fory = 0 (19) holds asK > 0 in this case.
K considered as a function iny is convex, increasing and> 0. The second term on the

left-hand-side of (19), 1 − 2 7
10Q

y2 + 2 7
10Q

y, is convex,> 0, and increasing fory > 1/2.

Therefore the left-hand-side of (19) is convex for1/2 < y < 1. We next show that the
derivative of the left-hand-side aty = 1 is< 1. This implies that (19) holds for1/2 ≤ y <
1.
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d

dy
K

(

1 + 2
7

10Q
y2 − 2

7

10Q
y)

)

=
s · 7

10Q
· exp(sA(y))

exp(s)− 1

·
(

1 + 2
7

10Q
y2 − 2

7

10Q
y

)

+
exp(sA(y))− 1

exp(s)− 1
·
(

4
7

10Q
y − 2

7

10Q

)

.

Plugging in y = 1 yields
7

10Q

(
s exp(s)

exp(s)− 1
+ 2

)

(20)

For s = 4 (20) is 0.9837 · · · < 1. As (20) is in decreasing ins (proof omitted) (19) holds
for all s ≥ 4 and1/2 ≤ y < 1.

1 − 2 7
10Q

y2 + 2 7
10Q

y is decreasing fory < 1/2. Therefore, for0 ≤ y ≤ 1/2, we can
bound the left-hand-side of (19) from below by

K

[(

1 + 2
7

10Q
y2 − 2

7

10Q
y

)

y=1/2

]

This function (the argumenty occurs only inK) is convex iny . Fory = 1/2 it is > y by
the previous argument. Fory = 1 it is < y. Therefore it is> y for 0 ≤ y ≤ 1/2. The claim
is shown.

Proof of (18) for y ≥ 4/10 ands ≥ 3.5. Inequality (18) is equivalent to

2(1 + 2y)Q−1 − 2(1− y)Q−1 >

> 2A(y)
[

(1 + 2y)Q + 2 (1 − y)Q − y ·
[
2(1 + 2y)Q−1 − 2(1− y)Q−1

]]

=

= 2A(y)
[
(1 + 2y)Q−1(1 + 2y − 2y) + 2(1− y)Q−1(1− y + y)

)

= 2A(y)
[
(1 + 2y)Q−1 + 2(1− y)Q−1

]
⇐⇒ (1 + 2y)Q−1 − (1− y)Q−1

(1 + 2y)Q−1 + 2(1− y)Q−1
> A(y)(21)

Fory = 1 both sides of (21) are equal to1. Fory < 1 (21) can be rewritten as
(
1 + 2y

1− y

)Q−1

>
2A(y) + 1

1−A(y)
. With y =

4

10
this becomes3Q−1 >

30

7
Q − 2.

The preceding inequality holds forQ > s ≥ 3.5. and we have the claim fory = 4/10.
To show the claim for4/10 < y < 1 we show that the left-hand-side of (21) is concave

in y. The derivative of the left-hand-side is

9(Q− 1)
(1 + y − 2y2)Q−2

[(1 + 2y)Q−1 + 2(1− y)Q−1]2
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This is a decreasing function iny ≥ 4/10 because the numerator is decreasing in this case
whereas the denominator is increasing and> 0.

Proof of (b).Some preparatory calculations:

A(y + z) = A(y) +
7

10Q
z , A(y − z) = A(y) − 7

10Q
z

A(y + z) · (y + z) = A(y)y + A(y)z +
7

10Q
zy +

7

10Q
z2

A(y − z) · (y − z) = A(y)y −A(y)z − 7

10Q
zy +

7

10Q
z2

A(y + z) · (y + z) + A(y − z) · (y − z) = 2A(y) · y + 14

10Q
z2

We denote

OPT1(z) = 1 + L(A(y + z), s) + L(A(y − z), s)

Then OPT(z) = OPT1(z) ·

·
(

1

1 + 2A(y) · y + 14
10Q

z2

)Q

·
(

(1 + y)Q + 2 ·
(
(1− y)2 + 3z2

)Q/2
)

.

We proceed to show thatd
dz
ln OPT(z) < 0 for z > 0. Some derivatives first.

d

dz
A(y + z) =

7

10

1

Q
,

d

dz
A(y − z) = − 7

10

1

Q
,

d

dz

(

1 + 2A(y) · y + 14

10Q
z2
)

=
28

10Q
z

d

dz

(
(1 + y)Q + 2 · ((1− y)2 + 3z2)Q/2

)
= 6z ·Q · ((1− y)2 + 3z2)Q/2−1.

d

dz
lnOPT(z) >=< 0 ⇐⇒ (Recall comment to (9).)

7
10Q

K(A(y + z), s) − 7
10Q

K(A(y − z), s)

OPT1(z)
−

28
10Q

z

1 + 2yA(y) + 14
10Q

z2
+

6z · ((1− y)2 + 3z2)Q/2−1

(1 + y)Q + 2 · ((1− y)2 + 3z2)Q/2
>=< 0.

Observe that the first and third term of the preceding inequality are≥ 0 for 0 ≤ z ≤
min{y, 1− y}, whereas the second term is≤ 0.
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We have thatd
dz
ln OPT(z) < 0 if the following two inequalities both hold:

7
10Q

(K(A(y + z), s) − K(A(y − z), s))

OPT1(z)
<

11
10Q

z

1 + 2yA(y) + 14
10Q

z2
(22)

6z · ((1− y)2 + 3z2)Q/2−1

(1 + y)Q + 2 · ((1− y)2 + 3z2)Q/2
<

17
10Q

z

1 + 2yA(y) + 14
10Q

z2
(23)

Note that forz = 0 both sides of the preceding inequalities are equal to0 and the derivative
of lnOPT(z) is= 0. Moreover, we have1+2yA(y)+ 14

10Q
z2 ≤ 1+2y and the inequalities

follow when they are shown with the denominator1 + 2y in the right-hand-side fraction.
To get this, observe that

2yA(y) +
14

10Q
z2 = 2y +

14

10Q

(
y2 − y + z2

)
≤ 2y,

asz ≤ min{y, 1− y} we havez2 ≤ y(1− y) or y(y − 1) + z2 ≤ 0.

Proof of (22) for 0 < z < min{y, 1− y}, 0 ≤ y ≤ 1, s ≥ 5 . We enlarge the left-hand-side
of (22) first:

K(A(y + z), s) − K(A(y − z), s) =
1

exp(s)− 1
(exp(A(y + z) · s) − exp(A(y − z) · s))

=
exp(A(y)s)

exp(s)− 1

[

exp

(
7

10Q
sz

)

− exp

(

− 7

10Q
sz

)]

OPT1(z) = 1 + L(A(y + z), s) + L(A(y − z), s) = 1 +
1

exp(s)− s− 1
·

·[exp(A(y + z)s) − A(y + z)s − 1 + exp(A(y − z)s) − A(y − z)s − 1]

≥ ( AsA(y + z), A(y − z) ≤ 1.)

1 +
1

exp(s)− 1
[exp(A(y + z)s) + exp(A(y − z)s) − 2s − 2] =

1

exp(s)− 1
·

·
[

exp(s) − 2s − 3 + exp(A(y)s)

(

exp

(
7

10Q
sz

)

+ exp

(

− 7

10Q
sz

))]

≥ (As A(y)s ≤ s ands ≥ 2 so thatexp(s)− 2s− 3 > 0.)
exp(A(y)s)

exp(s)− 1

[
exp(s) − 2s − 3

exp(s)
+ exp

(
7

10Q
sz

)

+ exp

(

− 7

10Q
sz

)]

≥ exp(A(y)s)

exp(s)− 1

[

0.9 + exp

(
7

10Q
sz

)

+ exp

(

− 7

10Q
sz

)]

,
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as(exp(s)− 2s− 3)/ exp(s) ≥ 0.9 for s ≥ 5. The denominator of the right-hand-side of
(22) is enlarged by1 + 2y ≤ 3. We set

u = exp

(
7

10Q
sz

)

> 1 and show (simple algebra from (22))
u− 1

u

0.9 + u+ 1
u

<
11

3 · 7z

We havez = (ln u)
10

7

Q

s
> (lnu)

10

7
( by Q > s.)

Therefore it is enough to show
u− 1

u

0.9 + u+ 1
u

< (ln u)
10

7

11

21

Elementary means show that this is true foru > 1.

Proof of (23 ) for s ≥ 15, 1 ≥ y ≥ 2/10 , 0 < z ≤ min{y, 1− y}. Inequality (23) follows
from

6z · ((1− y)2 + 3z2)Q/2−1

(1 + y)Q
<

17
10Q

z

1 + 2y

⇐⇒ 60Q(1 + 2y)((1− y)2 + 3z2)Q/2−1 < 17(1 + y)Q (24)

Fory ≤ 1/2 we havez ≤ y and (24) follows from

60Q(1 + 2y)(1− 2y + 4y2)Q/2−1 < 17(1 + y)Q

The preceding inequality holds forQ ≥ s ≥ 15 and1/2 ≥ y ≥ 2/10 (proof omitted.)
Fory ≥ 1/2 we havez ≤ 1− y and (24) follows from

60Q(1 + 2y)(4(1− y)2)Q/2−1 < 17(1 + y)Q

This inequality holds forQ ≥ s ≥ 10 andy ≥ 1/2 (details omitted.)
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4 Proof of Lemma13and Theorem15

We considerΨ (ω̄ , λ̄) = Ψ (ω̄ , λ̄ , ā , c̄ ) as function ofwi, λi, i = 1, 2 in a neighborhood
of (ω1, ω2) = (λ1, λ2) = (1/3, 1/3). The parametersai, ci are given byQ(ai) = λikγ/ωi,
andc0 = 1, R(c1, c2) = (λ1k, λ2k). Subsection5.1 shows that this is well defined and
ai, ci is differentiable inλi, ωi. Forλi = 1/3, ωi = 1/3 we haveai = s, ci = 1 (Q(s) = kγ
definings.) We show that the partial derivatives oflnΨ (ω̄ , λ̄) are0 for ωi = λi = 1/3
and the Hessian matrix is negative definite. This implies Lemma13.

For i = 1, 2 the first derivatives are, witha′i, c
′
i denoting the right derivatives ofai, ci

resp. and recalling thatQ(x) = xq′(x)
q(x)

, q(x) = exp(x)− x− 1, R(x1, x2) =
(

x1rx1(1,x1,x2)

r(1,x1,x2)
,

x2rx2 (1,x1,x2)

r(1,x1,x2)

)

d lnΨ (ω̄, λ̄)

dωi

=− ln q(a0) + ω0
a′0q

′(a0)

q(a0)
+ lnω0 + 1 +

+ ln q(ai) + ωi
a′iq

′(ai)

q(ai)
− lnωi − 1−

−kγλ0
a′0
a0

− kγλi
a′i
ai

= lnω0 − lnωi + ln q(ai)− ln q(a0) ( usingQ(ai) = kγλi/ωi). (25)

d lnΨ (ω̄, λ̄)

dλi

= ω0
a′0q

′(a0)

q(a0)
+ ωi

a′iq
′(ai)

q(ai)
+

kγ

(

− lnλ0 − 1 + ln a0 − λ0
a′0
a0

+

+ lnλi + 1− ln ai − λi
a′i
ai

−

− ln ci − λ1
c′1
c1

− λ2
c′2
c2

)

+

γ
c′1rc1(1, c1, c2) + c′2rc2(1, c1, c2)

r(1, c1, c2)

= kγ(lnλi − lnλ0 + ln a0 − ln ai − ln ci) (26)

( using R(c1, c2) = (kλ1, kλ2), Q(ai) = kγλi/ωi))

For λ̄ = ω̄ = (1/3, 1/3) the terms in (25) and (26) yield 0.

27



The second derivatives (withi, j ∈ {1, 2}, i 6= j) are (observe that some of the subse-
quent terms are equal as the derivative does not depend on theordering of the variables)

d2 lnΨ (ω̄, λ̄)

dλi, λi

= kγ

(
1

λi

+
1

λ0

+
a′0
a0

− a′i
ai

− c′i
ci

)

(27)

d2

dλi, λj

= kγ

(
1

λ0

+
a′0
a0

− c′i
ci

)

(28)

d2 lnΨ (ω̄, λ̄)

dωi, ωi
=− 1

ω0
− 1

ωi
+

a′iq
′(ai)

q(ai)
− a′0q

′(a0)

q(a0)
(29)

d2 lnΨ (ω̄, λ̄)

dωi, ωj

=− 1

ω0

− a′0q
′(a0)

q(a0)
(30)

d2 lnΨ (ω̄, λ̄)

dωi, λi
=

a′iq
′(ai)

q(ai)
− a′0q

′(a0)

q(a0)
(31)

d2

dωi, λj
=−a′0q

′(a0)

q(a0)
(32)

d2 lnΨ (ω̄, λ̄)

dλi, ωi
= kγ

(
a′0
a0

− a′i
ai

)

(33)

d2 lnΨ (ω̄, λ̄)

dλi, ωj
= kγ

a′0
a0

(34)

In (27) - (34) we need severala′i andc′i. We get these from the defining equationsQ(ai)
andR(c1, c2).

Derivative ofa0. By Q(ai) = kγλi/ωi we have

a0q
′(a0)

q(a0)
=

kγλ0

ω0
⇔ a0

kγλ0
=

q(a0)

ω0q′(a0)

Taking the derivative of both sides wrt.ωi yields

a′0
kγλ0

=
a′0q

′(a0)ω0q
′(a0)− q(a0) (−q′(a0) + ω0a

′
0q

′′(a0))

ω2
0q

′(a0)2

=
a′0
ω0

+
q(a0)

ω2
0q

′(a0)
− a′0q

′′(a0)q(a0)

ω0q′(a0)2

⇐⇒ a′0q
′(a0)

q(a0)
=

1

ω0

(
ω0

kγλ0

+ q′′(a0)q(a0)
q′(a0)2

− 1
)
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The last step is obtained by collecting all terms witha′0 on the left, multiplying with
q′(a0)/q(a0) and dividing through the term in brackets. We define

C(x) :=

(
q(x)

xq′(x)
+

q′′(x)q(x)

q′(x)2
− 1

)

.

UsingQ(ai) = kγλi/ωi the preceding equation becomes

a′0,ω1
q′(a0)

q(a0)
=

a′0,ω2
q′(a0)

q(a0)
=

1

ω0

(
q(a0)

a0q′(a0)
+ q′′(a0)q(a0)

q′(a0)2
− 1
) =

1

ω0C(a0)
.

We use equationQ(ai) = kγλi/ωi again to get

kγ
a′0ω1

a0
= kγ

a′0ω2

a0
=

1

λ0

(
q(a0)

a0q′(a0)
+ q′′(a0)q(a0)

q′(a0)2
− 1
) =

1

λ0C(a0)

Derivative ofa1. As for a0 we get

kγ
a′1ω1

a1
= − 1

λ1

(
q(a1)

a1q′(a1)
+ q′′(a1)q(a1)

q′(a1)2
− 1
) = − 1

λ1C(a1)

a′1ω1
q′(a1)

q(a1)
= − 1

ω1

(
q(a1)

a1q′(a1)
+ q′′(a1)q(a1)

q′(a1)2
− 1
) = − 1

ω1C(a1)
.

The remainingai−derivatives can be calculated in a similar way. Forωi = λi =
1
3

(then
ai = s, ci = 1) we get

kγ
a′i
ai

and
a′iq

′(ai)

q(ai)
is

3

C(s)
for i = 0 and − 3

C(s)
for i = 1, 2. (35)

Derivatives ofci By R(c1, c2) = (kλ1, kλ2) we have

c1rc1(1, c1, c2)

r(1, c1, c2)
= kλ1 ⇐⇒ c1

k
=

λ1r(1, c1, c2)

rc1(1, c1, c2)

Taking the derivative wrt.λ1 leads to (omitting the argument1)

c′1λ1

(
1

k
− λ1 + λ1

r(c1, c2)rc1,c1(c1, c2)

rc1(c1, c2)
2

)

=

= λ1c
′
2λ1

(
rc2(c1, c2)

rc1(c1, c2)
− r(c1, c2)rc1,c2(c1, c2)

rc1(c1, c2)
2

)

+
r(c1, c2)

rc1(c1, c2)
(36)
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Also byR(c1, c2) = (kλ1, kλ2) we have

c2rc2(c1, c2)

r(c1, c2)
= kλ2 ⇐⇒ c2

kλ2
=

r(c1, c2)

rc1

Taking the derivative wrt.λ1 again leads to

c′2λ1

(
1

kλ2

− 1 +
r(c1, c2)rc2,c2(c1, c2)

rc2(c1, c2)
2

)

=

= λ1c
′
1λ1

(
rc1(c1, c2)

rc2(c1, c2)
− r(c1, c2)rc2,c1(c1, c2)

rc2(c1, c2)
2

)

(37)

Again we consider the pointλ1 = λ2 = 1
3

thenc1 = c2 = 1 and equations (36) and (37)
yield

2c′1λ1
= c′2λ1

+ 9 and 2c′2λ1
= c′1λ1

.

Therefore we have
c′
1λ1

c1
= 6 and

c′
2λ1

c2
= 3. Analogously for the derivatives wrt.λ2 we get

c′
1λ2

c1
= 3 and

c′
2λ2

c2
= 6.

Putting the derivatives together we get from (27) - (34) the following Hessian-Matrix
of lnΨ (ω̄, λ̄) at the pointωi = λi = 1/3 , abbreviatingD = 3/C(s),

H =







−2(1
3
+D) −(1

3
+D) 2D D

−(1
3
+D) −2(1

3
+D) D 2D

2D D −2(8
3
kγ +D) −(8

3
kγ +D)

D 2D −(8
3
kγ +D) −2(8

3
kγ +D)







H is negative definite iff−H is positive definite.

Lemma 21 (Jacobi) A matrixA = AT = (aij) ∈ R
n×n is positive definite iff the deter-

minants of istn main-sub-matricesSi are positive.

S1 = a11, S2 =

(
a11 a12
a21 a22

)

, ..., Sk =






a11 . . . a1k
...

...
ak1 . . . akk




 , ..., Sn = A
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By Lemma21−H is positive definite, asD > 0 asC(x) > 0 for x > 0, and

detS1 = 2

(
1

3
+D

)

> 0

detS2 = 3

(
1

3
+ 2D + 3D2

)

> 0

detS3 =
16

9
kγ +

2

3
D +

32

3
kγD + 2D2 + 16kγD2 > 0

det S4 = det(−H) =
64

9
k2γ2 +D2 + 64k2γ2D2 + 16kγD2 +

+
128

3
k2γ2D +

16

3
kγD > 0.

Theorem 15 (repeated) LetU = Uε(1/3, 1/3). There is anε > 0 such that
∑

λ̄,ω̄∈U N(w̄, l̄)/N0 < C · 3(1−γ)n.

Proof. For λ̄, ω̄ ∈ U andai given byQ(ai) = λikγ/ωi and c0 = 1 andR(c1, c2) =

(λ1k, λ2k)we haveN(w̄,l̄)
N0

≤ O
(

1
n2

)
Ψ (ω̄ , λ̄ , ā , c̄ )n by Corollary12. Let x̄ = (x1, . . . , x4)

andh(x̄) = lnΨ (ω̄ , λ̄ , ā , c̄ ) with ω1 = x1, ω2 = x2, λ1 = x3, λ2 = x4 andai, ci as be-
fore for ω̄, λ̄ ∈ U. Let 1/3 = (1/3, 1/3, 1/3, 1/3) thenh(1/3) = ln 31−γ , hxi

(1/3) = 0
and−Hess(h)(1/3) ,Hess(h) the Hessian matrix ofh, is positive definite ( proved above,
note Hess(h)(1/3) = H.) We abbreviatehi,j = hxi,xj

(1/3) and by Taylor’s Theorem we
have for

∑

i x
2
i → 0

h(1/3 + x̄) = h(1/3) − 1

2

∑

i

∑

j

−hi,jxixj + o(
∑

i

x2
i )

≤ h(1/3) − 1

2

(
∑

i

−(hi,i + δ)x2
i +

∑

i

∑

j 6=i

−hi,jxixj

)

(38)

with δ arbitrarily small for
∑

i x
2
i small enough. We pickδ such that−(Hess(h)(1/3)+δI)

is still positive definite.
We consider (38) with x1 = w1/n − 1/3, x2 = w2/n − 1/3 andx3 = l1/(kγn) −

1/3 x4 = l2/(kγn)− 1/3. Then
∑

ω̄,λ̄∈U

Ψ (ω̄ , λ̄ , ā , c̄ )n =
∑

ω̄,λ̄∈U

exp(h(x1, x2, x3, x4)n)

≤ 3(1−γ)n ·
∑

ω̄,λ̄∈U

exp

[

− 1

2

(
∑

i

−(hi,i + δ)x2
i +

∑

i

∑

j 6=i

−hi,jxixj

)

n

]

(39)
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Note thatωi = wi/n, λi = li/(kγn), wi, li integer. We distribute the factorn into thexi

multiplying eachxi with
√
n : x1

√
n = w1/

√
n − √

n/3 andx3

√
n = l1/(kγ

√
n) −√

n/3. As wi, li are integers, the sum in (39) multiplied with 1/(
√
n
4
(kγ)2) is a Rieman-

nian sum of the integral
∫ ∫ ∫ ∫

exp[−(1/2)(−(hi,i+δ)x2
i +
∑

i

∑

j 6=i−hi,jxixj)]dx1dx2dx3dx4

with bounds−∞, ∞ for eachxi. Following [22], page 71, the integral evaluates to
(2π)2/

√
D whereD > 0 is the determinant of(−hi,j) + δI. Thus forn large the sum

in (39)is (2π)2/
√
D(1 + o(1))

√
n
4
(kγ)2 = O(n2). The claim follows.

5 Remaining proofs

5.1 Local limit consideration

Lemma 6 (repeated)Let Cn ≥ m ≥ (2 + ε)n, C, ε > 0 constants. Then

M(m,n) = Θ(1) ·
(m

ae

)m

· q(a)n with a defined byQ(a) =
m

n

Proof. AsQ(x) is increasing the assumptions form/n imply thata is bounded away from
0 and∞. Let X = X(x) be a random variable with Prob[X = j] = (xj/j!)/q(x), for
j ≥ 2, and letX1, . . . , Xn be independent copies ofX. Then

∑

li≥2

(
m

l1, . . . , ln

)

= Prob[X1 + · · ·+Xn = m] · q(x)
n

xm
·m!.

We have E[X ] = xq′(x)/q(x) = Q(x). We pickx = a then E[X ] = m/n, E[X1 + · · ·+
Xn] = m. The bounds ona imply thatC > VAR[X ] > ε > 0 (constantsε, C not the
same as above.) Therefore the Local Limit Theorem for lattice type random variables ,

cf. [4] , Theorem 5. 2, page 112, implies that Prob[X1 + · · · + Xn = m] = Θ
(

1√
m

)

.

Applying Stirling’s formula in the formm! = Θ(
√
m)
(
m
e

)m
yields the claim.

We come to Lemma11. First we show thatR(c1, c2) = (R1(c1, c2), R2(c1, c2)) =

(kλ1, kλ2) with Ri(x1, x2) =
xirxi(1,x1,x2)

r(1,x2,x2)
definesci = ci(λ1, λ2) and thatci is differen-

tiable with respect toλi for (λ1, λ2) ∈ Uε(1/3, 1/3). By the theory of implicit function of
several variables we need to show that the Jacobian Determinant ofR(x1, x2) is 6= 0 for
x1 = x2 = 1. The Jacobian Matrix ofR(x1, x2) is , omitting the argumentsxi, recalling
thatr = r(1, x1, x2) is our polynomial,

J =
1

r2





(rx1
+ x1rx1,x1

)r − x1r
2
x1

x1rx1,x2
r − x1rx1

rx2

x2rx1,x2
r − x2rx1

rx2
(rx2

+ x2rx2,x2
)r − x2r

2
x2



 .
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For x1 = x2 = 1 we get the following values:r = r(1, 1, 1) = 3k−1, rx1
= rx2

=
k3k−2, rx1,x1

= rx2,x2
= rx1,x2

= k(k − 1)3k−3. ¿From this we get that the determinant of
J for x1 = x2 = 1 is .... 6= 0.

Lemma 11 (repeated)There is anε > 0 such that for(λ1, λ2) ∈ Uε(1/3, 1/3)

K(l̄) = O

(
1

n

)

· r(1, c1, c2)
cl11 c

l2
2

with R(c1, c2) = (kλ1, kλ2) definingc1, c2.

Proof. The previous consideration shows that(c1, c2) is close to(1, 1) and well-defined.
Let (X, Y ) = (X(x1, x2), Y (x1, x2)) be the random vector with

Prob[(X, Y ) = (k1, k2)] =

(
k

k−k1−k2, k1, k2

)
xk1
1 xk2

2

r(1, x1, x2)
if k1 = k2 mod 3

and0 otherwise. ThenE(X, Y ) = (R1(x1, x2), R2(x1, x2)). We considerm independent
copies(Xi , Yi) of (X, Y )with (x1, x2) = (c1, c2). ThenE [

∑

i (Xi, Yi)] = (kλ1m, kλ2m) =
(l1, l2). Let DCo be the determinant of the covariance matrix of(X, Y ). We show below
that for(c1, c2) close to(1, 1) we have thatDCo > 0 for constants. The Local Limit The-
orem for lattice random vectors [23], Theorem 22.1, Corollary 22.2 withk = 2 shows that
Prob[

∑

i (Xi, Yi) = (kλ1m, kλ2m)] = Θ(1/m). This implies the claim.
The covariance matrix of(X, Y ) is defined as

Co =





EX2 − (EX)2 E[XY ]− E[X ]E[Y ]

E[XY ]− E[X ]E[Y ] EY 2 − (EY )2



 .

For (X, Y ) = (X(x1, x2), Y (x1, x2)) we get

EX2 =
x1(x1rx1,x1

(1, x1, x2) + rx1
(1, x1, x2)

r(1, x1, x2))
,

EY 2 =
x2(x2rx2,x2

(1, x1, x2) + rx2
(1, x1, x2)

r(1, x1, x2))
,

E[XY ] =
x1x2rx1x2

(1, x1, x2)

r(1, x1, x2)
.

This leads to a matrix similar to the Jacobian Matrix above: For x1 = x2 = 1 its determi-
nant is positive.
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5.2 The sharp threshold

To prove the sharp threshold we apply a general theorem. LetA ⊆ {0, 1}N and letam be
the number of elements ofA with exactlym 1′s. We letµp(A) =

∑N
m=0 am · pm · (1 −

p)N−m be the probability ofA, noteam ≤
(
N
m

)
. If A is a non-trivial, monotone set we have

thatµp(A) is a strictly increasing, continuous, differentiable function in 0 ≤ p ≤ 1. In this
case for0 ≤ τ ≤ 1 we have thatpτ is well defined byµpτ (A) = τ. Not letA = (An)n≥1

and let beAn be monotone. We say thatA has a coarse threshold iff there exist constants
0 < ρ < τ < 1 such that(pτ − pρ)/pρ ≥ ε for a constantε (and infinitely manyn.)
We can assume thatpτ = O(pρ) otherwise the threshold is clearly coarse. Moreover, we
assume thatp1−o(1) = o(1).

Theorem 22 ( Bourgain, [13] , Theorem 2.2 ) There exist functionsδ = δ(C, τ) > 0
and K = K(C, τ) such that the following holds: LetA = An with A ⊆ {0, 1}N be
a monotone set withτ ≤ µp(A) ≤ 1 − τ for constant1/2 > τ > 0 and assume that
p · dµp(A)

dp
< C. Then at least one of the following two possibilities holds:

1.

Probp[a ∈ A ; ∃b ∈ A , |b| ≤ K , b ⊆ a] > δ

2. There existsb ∈ {0, 1}N , b /∈ A , |b| ≤ K such that the conditional probability

Probp[a ∈ A | b ⊆ a] > Probp[A] + δ.

Corollary 23 A = (An) has a sharp threshold ifp1−o(1) = O(pτ ) for all τ > 0, and for
each1/2 > τ > 0, δ > 0, ε > 0, K, pτ < p < p1−τ and all sufficiently largen the
following two statements hold:
1.

Probp[a ∈ A ; ∃b ∈ A , |b| ≤ K , b ⊆ a] < δ.

2. If b ∈ {0, 1}N , b /∈ A , |b| ≤ K with the conditional probability Probp[a ∈ A | b ⊆
a] > Probp[A] + δ then Probp(1+ε)[A] > 1− τ

Proof. Assume, thatA has a coarse threshold. Let1 > α > β > 0 be such that(pα −
pβ)/pβ ≥ ε. We abbreviateq = (pα + pβ)/2. By strict monotonicity ofµp(A) we have
µq(A) = γ for a α > γ > β. We have thatγ−β

q−pβ
= dµp(A)

dp
|p = p∗ for a pβ < p∗ < q

(by the Mean Value Theorem.) We have that(q − pβ)/p
∗ ≥ ε′ asp∗ = O(pβ). Therefore

γ−β
q−pβ

· p∗ =
(

dµp(A)
dp

|p = p∗
)

· p∗ ≤ C for a constantC. The preceding theorem applies to

p∗. Our assumption implies that the first item of the theorem doesnot hold.
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Therefore the second item of the preceding theorem must holdfor p = p∗. We have that

p∗+
pα−pβ

2
< pα. Thereforep∗

(

1 +
pα−pβ
p∗·2

)

< pα. Moreoverpα−pβ
p∗·2 > ε′′ asp∗ = O(pβ).

Our second assumption shows that the preceding statement cannot hold. Therefore the
second item of the preceding theorem does not hold, too. ThereforeA cannot have a coarse
threshold.

LetF (n, p) be the random formula of equationsy1 + · · ·+ yk = a mod 3, 0 ≤ a ≤ 2
overn variables where each equation is picked with probabilityc/nk−1 independently.

Lemma 24 Unsatisfiability ofF (n, p) has a sharp threshold.

Proof. We apply Corollary23. Let p = c/nk−1. Observe thatF (n, p) is unsatisfiable
whp. for c > 1 by expectation calculation. Concerning the first item of thecorollary we
show thatF (n, p) does not contain a subformula over a bounded number of variables such
that each variable occurs at least twice. The expected number of such subformulas over
1 ≤ l ≤ B, B constant variables is bounded above by

(
n
l

)
·
(
c/nk−1

)2l/k ≤ O(1) ·n(2/k−1)l.
As k ≥ 3 and l ≥ 1 the geometric series shows that the expectation of the number of
such subformulas with≤ B variables iso(1). As each unsatisfiable formula contains a
subformula where each variable occurs at least twice we haveno unsatisfiable subformula
of bounded size whp. The first item of the corollary holds.

Concerning the second item, letB be a fixed satisfiable formula and letp < 1/nk−1.
We assume that Prob[UNSAT(B ∪ F (n, p))] > Prob[UNSAT(F (n, p))] + δ. UNSAT(F )
is the event thatF is unsatisfiable. With high probabilityF (n, p) contains only equations
with 1 or none variables fromB (asp < 1/nk−1 and the number of variables ofB is
constant. )

Consider a fixed satisfiable formulaF over the variables not inB We pick each equa-
tion with exactly one variable inB with probabilityp = c/nk−1 independently. We assume
that the resulting random formula is unsatisfiable with probability δ > 0. We show that
this implies that the random instance obtained fromF by addingeach equation with prob-
ability ε/nk−1, independently,ε > 0 constant. is unsatisfiable with high probability. This
directly implies that the second item of Corollary23holds.

Consider a fixed variablex of F. We throw in the equations containingx with ε/nk−1,
We show below that the resulting random formula is unsatisfiable with probabilityδ′ > 0,
δ′ constant. Throwingeachequation with probabilityε/nk−1, the expected number of
variablesx such that the equations containingx lead to unsatisfiability ofF is δ′n. For
x 6= x′ the equations withx orx′ are nearly independent. Tschebycheff’s inequality shows
that we even have a linear number of variablesx whose equations yield unsatisfiability
whp.
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We show the statement above concerning the fixed variablex. When throwing in the
equations with one variable inB with p = c/nk−1 we get with probabilityδ a setU such
thatF ∪ B ∪ U is unsatisfiable. With probability slightly lower, but still constant> 0 we
can assume thatU is of bounded size. Now consider a satisfying assignmenta of B. We
replace the variable fromB in each equation by its value undera and get a set of equations
with k − 1 variables each. When we add these equations toF the resulting formula is
unsatisfiable.

Now consider our variablex from F and throw in each equation containingx with
probabilityε/nk−1. With constant probability> 0 we get the a setU ′ obtained from a set
U as above by replacing the variable fromB by x. With the same probability we getU0

instead ofU ′ whereU0 is obtained as follows: LetE be an equation ofU such that the
variable fromB has the valuej in the satisfying assignmenta from B. The variable from
B is replaced withx in E and we subtractj from the right hand side. The resulting formula
is unsatisfiable for all assignments which havex = 0. U1 is defined by adding1− j to the
right hand-side. The resulting formula is unsatisfiable forx = 1. U2 is defined by adding
2 − j and the resulting formula is unsatisfiable forx = 2. With constant probability> 0
we get one such setUj.

To get unsatisfiability for all3 values ofx we observe that with probability roughly
δ3 we get three setsU, V,W with one variable inB which are disjoint and each of them
causes unsatisfiability. This implies that with constant probability> 0 we get three sets
U0, V1,W2 of equations withx. The resulting formula is unsatisfiable for any value ofx.
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II. Uniquely extendible constraints

1 Outline

A uniquely extendible constraintC on a given domainD is a function fromDk to true,
false with the following restriction: For any argument listwith a gap at an arbitrary posi-
tion, like (d1, . . . di−1,−, di+1, . . . , dk) there is a uniqued ∈ D such that
C(d1, . . . d, . . . , dk) evaluates to true. Note thatC(d1, . . . , d, . . . , dk) = true implies that
C(d1, . . . , d

′, . . . , dk) = false for d 6= d′. The random constraint is a uniform random
member from the set of all uniquely extendible constraints over D. Let Γ be the set of
all such constraints. Typical examples of such constraintsare linear equations withk vari-
ables, modulo|D|. A threshold result analogous to Lemma24 can be proved by similar
arguments based on symmetry properties of uniquely extendible constraints.

Given a set ofn variables a clause is an orderedk-tuple of variables equipped with a
uniquely extendible constraint. The number of all formulaswith m clauses isM(km, n) ·
|Γ |m, we denoteN0 = M(km, n) (notation cf. (1).) A random formula is a uniform ran-
dom element of the set of all formulas. The random variableX gives the number of so-
lutions of a formula and E[X ] = (1/d)(1−γ)n, m = γn. This follows from symmetry
considerations. For two assignmentsa, b we study E[XaXb] whereXa is = 1 iff the for-
mula is true undera. It turns out that E[XaXb] depends only on the number of variables
which have different values undera, b. Let DIFF(a, b) = the set of variables with different
values undera andb.

Given ak-tuplea of values fromD and anotherk-tupleb differing from a in exactly
i, 0 ≤ i ≤ k, slots, we letpi be the probability that the random constraint is true under
b conditional on the event that it is true undera. The following very simple generating
polynomial for the

(
k
i

)
· pi is the observation making our proof possible.

Lemma 25 (a) (From [6]) p0 = 1, pi+1 = 1
d−1

(1− pi) .
(b)

Let p(z) =
1

d

(

(1 + z)k + (d− 1)

(

1− z

d− 1

)k
)

thenp(z) =
∑

i

(
k

i

)

pi · zi
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Proof. (b) We need to show thatpi = 1
d

(

1 + (−1)i
(

1
d−1

)i−1
)

. This holds fori = 0, i =

1. For i > 1 we get by induction:

pi =
1

d− 1
(1− pi−1) =

1

d− 1

(

1 − 1

d

(

1 + (−1)i−1

(
1

d− 1

)i−2
))

=

=
1

d− 1
− 1

d(d− 1)
− 1

d
(−1)i−1

(
1

d− 1

)i−1

=
1

d

(

1 + (−1)i
(

1

d− 1

)i−1
)

.

We letCj =
|Γ |
d

·
(
k

j

)

· pj for 0 ≤ j ≤ k , K(l) =
∑

j1+···+jm=l

Cj1 · · ·Cjm.

ThenN̂(w, l) = M(l, w)M(km − l, n− w)K(l)

is the number of formulasF true under two assignmentsa, b with |DIFF(a, b)| = w and
the variables with different values occupy exactlyl slots ofF. The factors

(
k
j

)
of Cj count

how to distribute thel slots. The factorM(l, w)M(km − l, n − w) counts how to place
the variables into these slots. The factors|Γ |

d
· pj count the number of constraints such that

the formula becomes true undera, b. Given an assignmenta the number of assignment
formula pairs(b, F ) with |DIFF(a, b)| = w, F is true undera, b, and the variables from
DIFF(a, b) occupy exactlyl slots is

N(w, l) =

(
n

w

)

(d− 1)w · N̂(w, l). And E[X2] = dn
∑

w,l

N(w, l) · 1

N0 · |Γ |m

The next theorem is analogous to Theorem5.

Theorem 26
∑

w,l N(w, l)/(N0|Γ |m) ≤ Cd(1−2γ)n , k ≥ 8, m = (1− γ)n.

We letλ = l/km andω = w/n with w, l always having the meaning above. The proof of
Theorem26 follows the pattern of Theorem5. We omit all steps referring to the summa-
tion, they are quite analogous. The details to bound the summands are however different.
We have

K(l) = Coeff[zl, p(z)m] ·
( |Γ |

d

)m

≤
(
p(c)|Γ |

d

)m

· 1
cl

for c > 0.

We defineΨ (ω, λ, x, y, z ) :=

(
(d− 1)q(x)

q(s)ω

)ω (
q(y)

q(s)(1− ω)

)1−ω

·
(
λs

xz

)λkγ (
(1− λ)s

y

)(1−λ)kγ

·
(
p(z)

d

)γ

.
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We haveΨ (1−1/d, 1−1/d, s, s, d−1) = d1−2γ , s is given byQ(s) = kγ, cf. discus-
sion around Lemma6. As Lemma8 we have the next Lemma; the subsequent Theorem is
as Theorem9.

Lemma 27 N(w, l)/(N0|Γ |m) ≤ Ψ (ω, λ, a, b, c) · O(n) for a, b, c > 0.

Observe that forQ(s) = kγ ≥ 8 we haves ≥ 7.

Theorem 28 Letd = 4 ands ≥ 7. For anyλ > 0 there exista, b, c > 0 such that:
(1) Ψ (ω, λ, a, b, c) ≤ d1−2γ .
(2) For anyε > 0, λ notε−close to1− 1/d, Ψ (ω, λ, a, b, c) ≤ d1−2γ − δ.

Two realsa, b are ε−close iff |a − b| < ε. To treatλ close to(d − 1)/d we consider
the functionP (z) = zp′(z)/p(z) (cf. discussion after Corollary10.) We haveP (d− 1) =
k(1−1/d) and the derivativeP ′(d−1) > 0. Thus we can definec = c(λ) for λ ε−close to
1−1/d byP (c) = kλ. And c(λ) is differentiable. As Lemma11, Corollary12, and Lemma
13 we get the next3 items. To prove Lemma31 the Hessian matrix ofΨ (ω, λ, a, b, c) is
considered (calculation analogously to [5].)

Lemma 29 There is anε > 0 such that forω, λ ε−close to1 − 1/d we haveK(l) =
O(1/

√
n) · (p(c)|Γ |/d)m · 1/cl with P (c) = kλ.

Corollary 30 There is anε > 0 such that forω, λ beingε−close to1−1/dN(w, l)/(N0|Γ |m) ≤
O(1/n) · Ψ (ω, λ, a, b, c) with Q(a) = l/w,Q(b) = (km− l)/(n− w), P (c) = λk.

Lemma 31 The functionΨ (ω, λ, a, b, c) with a, b, c given byQ(a) = l/w,Q(b) = (km−
l)/(n − w), P (c) = λk has a local maximum with valued1−2γ for λ = ω = 1 − 1/d. In
this case we havea = b = s andc = d− 1.

We define OPT1(x, y, s) = (d− 1) · q(sx)
q(s)

+
q(sy)

q(s)
,

OPT2(x, y, z, s) =

(
1

y + xz

)Q

, y + xz > 0

OPT3(z, s) = (1 + z)Q + (d− 1) ·
∣
∣
∣
∣
1 − z

d− 1

∣
∣
∣
∣

Q

, Q = Q(s)

OPT(x, y, z, s) = OPT1(x, y, s) · OPT2(x, y, z, s) · OPT3(z, s).

As Lemma16 we have the next Lemma. We prove Theorem28 based on this lemma. We
cannot proceed analogously to the proof of Theorem9 because the polynomialp(z) is not
as symmetric asr(x0, x1, x2). The two casesλ small (in Section2) andλ large (in Section
3) are treated separately.
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Lemma 32

Let a, b, c > 0 be such that
λ

1− λ
=

ac

b
. Then Ψ (ω, λ, as, bs, c) ≤ 1

d2γ
OPT(a, b, c, s).

2 Proof of Theorem28 for d = 4, s ≥ 7, λ ≤ 1 − 1/d

We restrict attention tod = 4 fix b = 1 and considerc, a with 0 ≤ c ≤ 3 and0 ≤ a ≤ 1.
With these values OPT(a, b, c, s) leads to the following notation used in this Section.

OPT1(a, s) = 3 · q(sa)
q(s)

+ 1 , OPT2(a, c, s) =

(
1

1 + ac

)Q

OPT3(c, s) = (1 + c)Q + 3 ·
(

1 − c

3

)Q

OPT(a, c, s) = OPT1(a, s) · OPT2(a, c, s) · OPT3(c, s).

The values of OPT(a, c, s) at the corners of the rectangle for0 ≤ c ≤ 3, 0 ≤ a ≤ 1 are:

OPT(0, 0, s) = 4 , OPT(0, 3, s) = 4Q

OPT(1, 0, s) = 42 , OPT(1, 3, s) = 4 (40)

Fig. 2. OPT(a, c, s) over the rectangle0 ≤ a ≤ 1, 0 ≤ c ≤ 3 for s = 3 ands = 14.

We prove four lemmas. Observe thatA(c, s) in Lemma33 is a flat linear function in
c ≥ 0 fromA(0, s) = 1− 7

10Q
to A(3, s) = 1.
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Lemma 33

Let s ≥ 7 and letA(c) = A(c, s) =
7

Q · 10 · 3 · c + 1 − 7

10 ·Q.

Then OPT(A(c), c, s ) is strictly increasing in1 ≤ c < 3.

A(c, s) in the subsequent Lemma is a steep linear function starting at A(0, s) = 0.

Lemma 34

Let s ≥ 6 and letA(c) = A(c, s) =
Q

2
· c .

Then OPT(A(c), c, s) is strictly decreasing for0 < c ≤ 1

Q

Lemma 35 (a) For each constant0 ≤ a ≤ 1 OPT(a, c, s) as a function inc with 0 ≤ c ≤
3 has a unique local minimum.
(b) For each constant0 ≤ c ≤ 3 OPT(a, c, s) as a function ina with 0 ≤ a ≤ 1 has a
unique local minimum.

Lemma 36 Let s ≥ 6 then OPT(a, c, s ) < 4− δ for (a, c) =

=

(
1

2
,

1

Q

)

,

(
1

2
,
2

Q

)

,

(
2

3
,
2

Q

)

,

(
2

3
,
3

Q

)

,

(

1 − 7

15Q
,
3

Q

)

,

(

1 − 7

15Q
, 1

)

Proof of Theorem28 for λ ≤ 1 − 1/d. (cf. proof of Theorem9 after Lemma20.) We
haveλ ≤ 1 − 1/d ⇐⇒ λ/(1 − λ) ≤ d − 1. Using Lemma32 we need to show that for
eachP ≤ d − 1 we have a decompositionP = ac such that OPT(a, c, s) ≤ 4 of 4 − δ.
Lemma33 treats1 − 7/(15Q) ≤ P ≤ d − 1. Lemma36 together with Lemma35 treat
1 − 7/(15Q) ≥ P ≥ 1/(2Q). Finally Lemma34 treats1/(2Q) ≥ P > 0. Observe that
OPT(0, 0, s) = 4 and we need to look into the proof of Lemma32 to get the−δ required
for smallP. ⊓⊔

2.1 Proof of Lemma33

Lemma 33 (repeated)

Let s ≥ 7 and letA(c) = A(c, s) =
7

Q · 10 · 3 · c + 1 − 7

10 ·Q.

Then OPT(A(c), c, s ) is strictly increasing in1 ≤ c < 3.
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Proof.

Some notation: PPLUS3(x, y) = (1 + x)y + 3
(

1− x

3

)y

, x ≤ 3

PMINUS(x, y) = (1 + x)y −
(

1− x

3

)y

, x ≤ 3 (41)

d

dc
lnPPLUS3(c, Q) = Q · PMINUS(c, Q− 1)

PPLUS3(c, Q)
,

A = A(c), A′ =
d

dc
A =

7

10 · 3 ·Q ,
d

dc
lnOPT(A, c, s) =

=
3 exp(As)−1)
exp(s)−s−1

· sA′

OPT1(A, s)
− Q · A

′c + A

1 + Ac
+ Q · PMINUS(c, Q− 1)

PPLUS3(c, Q)
>=< 0

⇐⇒
3 exp(As)−1

exp(s)−1
· A′

OPT1(A, s)
− A+ A′c

1 + Ac
+

PMINUS(c, Q− 1)

PPLUS3(c, Q)
>=< 0 (42)

(Division withQ =
s(exp(s)− 1)

exp(s)− s− 1
.)

For c = 3 the derivative is= 0, A(3, s) = 1 ( OPT(1, 3, s) = 4.)

We split the right-hand-side of (42) into two additive terms. Inequalities (43) and (44)
imply that the d

dc
OPT(A, c, s) > 0. For c = 3 both left-hand-sides are= 0.

3 exp(As)−1)
exp(s)−1

·A′

OPT1(A, s)
− A′c

1 + Ac
> 0 (43)

− A

1 + Ac
+

PMINUS(c, Q− 1)

PPLUS3(c, Q)
> 0 (44)

Proof of (43) for 0 ≤ c < 3 ands ≥ 7.

K :=
exp(sA)− 1

exp(s)− 1
, L :=

exp(sA)− sA− 1

exp(s)− s− 1

We need to show
3KA′

3L+ 1
>

A′c

1 + Ac
⇐⇒ 3K

3L+ 1
>

c

1 + Ac
⇐⇒ 3 (K +KAc− Lc) > c (For c = 3 both sides are= 3.) (45)

By (7) we haveL ≤ K and (45) is implied by

3K (1 + Ac− c) > c (For c = 3 both sides are= 3.) (46)
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K ≥ 0 is increasing and convex,1 + Ac − c is > 0, and increasing forc > 3/2, and
convex. Therefore the left-hand-side of (46) is convex forc ≥ 3/2. Therefore, forc ≥ 3/2,
it follows from

(
d

dc
3K (1 + Ac− c)

)

|c=3

<

(
d

dc
c

)

|c=3

= 1. (47)

d

dc
3K (1 + Ac− c) =

3 exp(sA) · s · 7
30Q

exp(s)− 1
· (1 + Ac− c) +

3(exp(sA)− 1)

exp(s)− 1
·
(

7

30Q
c+

7

30Q
c+ 1− 7

10Q
− 1

)

.

Therefore
d

dc
3K (1 + Ac− c)|c=3 =

7 exp(s)(exp(s)− s− 1)

10(exp(s)− 1)2
+

21(exp(s)− s− 1)

10s(exp(s)− 1)
(48)

For s = 7 we get that (48) is < 0.995. Moreover it is decreasing ins (proof omitted) and
(47) holds for alls ≥ 7 andc ≥ 3/2. For c ≤ 3/2 we argue as in the proof of Lemma
20(a) cf. the argument following (20).

Proof of (44) for 1 ≤ c < 3 ands ≥ 5 .

We need to show
A

1 + Ac
<

PMINUS(c, Q− 1)

PPLUS3(c, Q)

⇐⇒ A · PPLUS3(c, Q) < (1 + Ac)PMINUS(c, Q− 1)

⇐⇒ A · (PPLUS3(c, Q) − c · PMINUS(c, Q− 1)) = A · PPLUS3(c, Q− 1)

< PMINUS(c, Q− 1)

⇐⇒ A <
PMINUS(c, Q− 1)

PPLUS3(c, Q− 1)
=

(1 + c)Q−1 − (1− c
3
)Q−1

(1 + c)Q−1 + 3(1− c
3
)Q−1

(49)

(For c = 3 both sides of (49) are = 1.)

For c = 1 inequality (49) becomes

1− 7

15Q
<

2Q−1 −
(
2
3

)Q−1

2Q−1 + 3
(
2
3

)Q−1
= 1− 4

(
1
3

)Q−1

1 + 3
(
1
3

)Q−1

As 4

(
1

3

)Q−1

<
7

15Q
for Q ≥ 5, (49) holds forc = 1 ands ≥ 5 asQ ≥ s.
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To show that (49) holds for all3 > c ≥ 1 we show that the right-hand-side is concave
for c > 1.

Numerator of
d

dc

PMINUS(c, Q− 1)

PPLUS3(c, Q− 1)
=

(Q− 1) ·
(

(1 + c)Q−2 +
1

3

(

1− c

3

)Q−2
)

·
(

(1 + c)Q−1 + 3
(

1− c

3

)Q−1
)

−

− (Q− 1) ·
(

(1 + c)Q−1 −
(

1− c

3

)Q−1
)

·
(

(1 + c)Q−2 −
(

1− c

3

)Q−2
)

= (Q− 1) · (1 + c)Q−2 ·
(

1− c

3

)Q−2

·
((

1

3
+ 1

)

(1 + c) +
(

1− c

3

)

· (1 + 3)

)

= (Q− 1) · (1 + c)Q−2 ·
(

1− c

3

)Q−2

·
(
1

3
+ 3 + 2

)

(50)

We have that(1 + c) ·
(

1− c

3

)

is decreasing forc > 1, and PPLUS3(c, Q− 1) is increasing.

Therefore the right-hand-side of (49) is concave.
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2.2 Proof of Lemma34

Lemma 34 (repeated)

Let s ≥ 6 and letA(c) = A(c, s) =
Q

2
· c .

Then OPT(A(c), c, s) is strictly decreasing for0 < c ≤ 1

Q

Proof. Analogously to (43) and (44) this follows from (51) and (52.) (Notation cf. (41.)

with A = A(c), A′ = Q/2
3 exp(As)−1)

exp(s)−1

OPT1(A, s)
A′ − A′c

1 + Ac
< 0, (51)

− A

1 + Ac
+

PMINUS(c, Q− 1)

PPLUS3(c, Q)
< 0. (52)

Proof of (51) for s ≥ 5.55 and0 < c ≤ 1/Q

K :=
exp(sA)− 1

exp(s)− 1
, L :=

exp(sA)− sA− 1

exp(s)− s− 1

We need to show
3KA′

3L+ 1
<

A′c

1 + Ac
⇐⇒ 3K

3L+ 1
<

c

1 + Ac
⇐⇒ 3 (K +KAc− Lc) < c For c = 0 both sides are= 0. (53)

As AK ≤ L by (7) we get that (53) is implied by3 · K < c. For c = 0 both sides of
3 · K < c are0. The left-hand-side is convex. It is sufficient to show3 · K < c. for
c = 1/Q. Plugging in the definition of1/Q for c andA(1/Q , s) = 1/2 into K we need
to show

3 exp(s/2)− 1

exp(s)− 1
<

exp(s)− s− 1

s(exp(s)− 1)
⇐⇒ 3s exp(s/2) < exp(s)− 1

Fors ≥ 6 the preceding inequality holds by simple consideration.

Proof of (52) for s ≥ 2 andc ≤ 1/Q Analogously to the proof of (49) we need to show

A =
Q

2
c >

PMINUS(c, Q− 1)

PPLUS3(c, Q− 1)
=

(1 + c)Q−1 − (1− c
3
)Q−1

(1 + c)Q−1 + 3(1− c
3
)Q−1

(54)

For c = 0 both sides of the preceding inequality are= 0
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We show, thatA′ > the derivative wrt.c of the right-hand-side of (54). Using (50) we need
to show

Q

2
·
(

(1 + c)Q−1 + 3
(

1− c

3

)Q−1
)2

> (Q− 1) · (1 + c)Q−2 ·
(

1− c

3

)Q−2

· 16
3
.

Note Q · (1 + c)Q−1 ·
(

1− c

3

)Q−1

· 16
3

≥ (Q− 1) · (1 + c)Q−2 ·
(

1− c

3

)Q−2

· 16
3

as (1 + c) ·
(

1− c

3

)

≥ 1 for 0 ≤ c ≤ 1/Q < 2.

Enlarging the right-hand-side it is sufficient to show

3

(

(1 + c)Q−1 + 3
(

1− c

3

)Q−1
)2

> (1 + c)Q−1 ·
(

1− c

3

)Q−1

· 32.

⇐⇒ 3

(

1 + 3

(
1− c

3

1 + c

)Q−1
)2

> 32 ·
(
1− c

3

1 + c

)Q−1

Settingx =
(

1− c
3

1+c

)Q−1

it is easy to see that the preceding inequality holds forx ≥ 0, and

therefore clearly forc ≤ 1/Q < 3.

2.3 Proof of Lemma36 and Lemma35

Lemma35 follows by elementary consideration, see the analogous situation in the proof
of Lemma18(a) and Lemma19 (a).

Lemma 36 (repeated)Let s ≥ 6 then OPT(a, c, s ) < 4− δ for (a, c) =

=

(
1

2
,

1

Q

)

,

(
1

2
,
2

Q

)

,

(
2

3
,
2

Q

)

,

(
2

3
,
3

Q

)

,

(

1 − 7

15Q
,
3

Q

)

,

(

1 − 7

15Q
, 1

)

Proof. The claim fora = 1
2
, c = 1

Q
is included in Lemma34.
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FIRSUM(a, c, s) = (1 + c)QOPT2(a, c, s) =

(
1 + c

1 + ac

)Q

SECSUM(a, c, s) = 3
(

1− c

3

)Q

OPT2(a, c, s) = 3

(
1− c

3

1 + ac

)Q

then

OPT(a, c, s) = OPT1(a, s) · [FIRSUM(a, c, s) + SECSUM(a, c, s)] .

Forx, y ≥ 0 we have FIRSUM

(

x,
y

Q
, s

)

=

(

1 + y
Q

1 + x · y
Q

)Q

=

=

(

1 +

y
Q
(1− x)

1 + x y
Q

)Q

≤ exp

(

y(1− x)

1 + x y
Q

)

≤ exp(y(1− x)) (55)

We have that OPT1(a, s)is decreasing ins for constanta < 1. (56)

Let a =
1

2
, c =

2

Q
.

We have by (55) FIRSUM(a, c, s) < exp(1)

SECSUM(a, c, s) is decreasing ins ≥ 0.

(As can be shown by elementary means.)

OPT1(a, s) (SECSUM(a, c, s) + exp(1)) < 3.913 for s = 5

and decreasing ins with (56)

Let a =
2

3
, c =

2

Q
.

We have FIRSUM(a, c, s) < exp(2/3)

SECSUM(a, c, s) is decreasing ins ≥ 0.

OPT1(a, s) (SECSUM(a, c, s) + exp(2/3)) < 3.962 for s = 4

and decreasing ins with (56)

Let a =
2

3
, c =

3

Q
. We have FIRSUM(a, c, s) < exp(1)

SECSUM(a, c, s) is decreasing ins ≥ 2.

OPT1(a, s) (SECSUM(a, c, s) + exp(1)) < 3.985 for s = 6

and decreasing ins with (56)
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Let a = 1− 7/(15Q), c = 3/Q.

OPT1(a, s) is increasing ins to 3 exp(−7/15) + 1.

FIRSUM (a, c, s), SECSUM(a, c, s)are both decreasing ins.

(3 exp(−7/15) + 1) (SECSUM(a, c, s) + FIRSUM(a, c, s)) < 3.9 for s = 4

The casea = 1 − 7
15Q

andc = 1 is included in Lemma33.

3 Proof of Theorem28 for d = 4, λ ≥ 1 − 1/d, s ≥ 5.

We fix a = 1. Observe thatB(1/c) in the subsequent lemma goes from1 to 1 − 1/(2Q)
for c ≥ 3.

Lemma 37 LetB(x) = B(x, s) = 1 + 3/(2Q)x − 1/(2Q). Then OPT(1, B(1/c), c, s)
is strictly decreasing inc ≥ 3.

Proof of Theorem28 for λ ≥ 1 − 1/d. We haveλ/(1− λ) ≥ d− 1. For eachP ≥ d − 1
we havec such thatP = c

B(1/c)
. As OPT(1, 1, 3, s) = 4 the Theorem follows. ⊓⊔

Proof of Lemma37. We rewrite OPT(1, B(1/c), c, s) first. We multiply OPT2 with cQ and
OPT3 with 1/cQ and get (usingc ≥ 3 to get rid of the absolute value) OPT(1, B(1/c, s), c, s) =

=

(

3 +
q(B(1/c, s)s)

q(s)

)(

1
B(1/c,s)

c
+ 1

)Q((
1

c
+ 1

)Q

+ 3

(
1

3
− 1

c

)Q
)

.

We substitutec for 1/c in the preceding equation. The claim follows from
(

3 +
q(B(c))s)

q(s)

)(
1

B(c)c+ 1

)Q
(

(c+ 1)Q + 3

(
1

3
− c

)Q
)

increases in0 < c < 1/3. (57)

48



We use the following notation in the sequel:

OPT1(b, s) = 3 +
q(sb)

q(s)
, OPT2(b, c, s) =

(
1

bc+ 1

)Q

,

OPT3(c, s) = (c+ 1)Q + 3

(
1

3
− c

)Q

, c ≤ 1

3

OPT(b, c, s) = OPT1(b, s)OPT2(b, c, s)OPT3(c, s).

For b = 1, c =
1

3
we haveOPT(b, c, s) = 4. We abbreviate

PM(x, y) = (x+ 1)y − 3

(
1

3
− x

)y

, x ≤ 1

3

PP(x, y) = (x+ 1)y + 3

(
1

3
− x

)y

, x ≤ 1

3

B = B(c, s), B′ =
∂

∂c
B =

3

2Q
, q′(x) = exp(x)− 1

q(x) = exp(x)− x− 1,
∂

∂c
ln(OPT(B, c, s) >=< 0

⇐⇒
B′sq′(sB)

q(s)

3 + q(sB)
q(s)

−Q
B′c +B

1 +Bc
+Q

PM(c, Q− 1)

PP(c, Q)
> 0

⇐⇒
B′q′(sB)

q′(s)

3 + q(sB)
q(s)

− B′c+B

1 +Bc
+

PM(c, Q− 1)

PP(c, Q)
>=< 0.( Division byQ.) (58)

For c = 1
3

we haveOPT(B, 1/3, s) = 4, and the derivative is0. We split (58) into two
additive terms. The following two inequalities directly imply (57.)

B′q′(sB)
q′(s)

3 + q(sB)
q(s)

− B′c

1 +Bc
> 0 (59)

PM(c, Q− 1)

PP(c, Q)
− B

1 +Bc
> 0 (60)

Proof of (59) for s > 2 . Let K = q′(sB)
q′(s)

andL = q(sB)
q(s)

. By (7) we haveL ≤ K, and as
B′ > 0 it is sufficient to show

K

3 +K
>

c

1 +Bc
⇔ K(1 +Bc− c) > 3c.
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Fig. 3.OPT(b, c, s) over the rectangle0 ≤ b ≤ 1, 0 ≤ c ≤ 1/3 for s = 3 ands = 14.

For c = 1
3

both sides of the preceding inequality are= 1. It is easy to observe that
K(1 +Bc− c) is convex inc for c > 1/(3 · 2). (Cf. proof of Lemma20) and3c is a linear
function. If atc = 1

3
the derivative of3c is greater than the derivate ofK(1 +Bc− c) the

second intersection of both sides (if any) lies at some pointc > 1
3

and the claim holds for
1/(3 · 2 < c < 1

3
. For c < 1/(3 · 2) we argue as in the proofs of the Lemmas mentioned

above. Therefore it is sufficient to show that atc = 1
3

∂

∂c
K(1 +Bc− c) <

∂

∂c
3c.

We have

K ′ =
B′s exp(sB)

exp(s)− 1
.

and atc = 1/3

K ′(1 +Bc− c
︸ ︷︷ ︸

=1

) + K
︸︷︷︸

=1

(B′c+B − 1
︸ ︷︷ ︸

=1/2Q

) < 3

⇔ 3(exp(s)− s− 1) exp(s)

2(exp(s)− 1)2
+

exp(s)− s− 1

2s(exp(s− 1)
< 3 (61)

We omit the proof that inequality (61) holds fors ≥ 2.

Proof of (60) for s ≥ 5. As in (49) inequality (60) is equivalent to

B <
PM(c, Q− 1)

PP(c, Q− 1
(62)
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The left hand side is a linear function in c and the right hand side a strictly increasing,
concave function inc. Forc = 1

3
both sides of (62) are1. So we must show that (62) holds

for c = 0. Settingc = 0 leads to

1− 1

2Q
<

1− 3
(
1
3

)Q−1

1 + 3
(
1
3

)Q−1
=

1−
(
1
3

)Q−2

1 +
(
1
3

)Q−2
.

For Q = 5 we get 9
10

< 13
14

. We omit the argument that the last inequality holds for all
Q ≥ 5 and therefore asQ > s for all s ≥ 5.
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