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Abstract. We consider random systems of equatienst --- + xx = a, 0 < a < 2 which are in-
terpreted as equations modwoWe show fork > 15 that the satisfiability threshold of such systems
occurs where the—core has density. We show a similar result for random uniquely extendible con-
straints overt elements. Our results extend previous results of Duboistéa for equations mod 2
andk = 3 and Connamacher/Molloy for uniquely extendible constsagver a domain ol elements
with k& = 3 arguments.

Our proof technique is based on variance calculations gusitechnique introduced Dubois/Mandler.
However, several additional observations (of indepenteatest) are necessary.

1 Introcuction

1.1 Contribution

Often constraints are equations of the tyfie;, ..., z;) = a wherea is an element of
the domain considered arydis a k—ary function on this domain, for example addition
of k elements. Given a formula, which is a conjunctiomotonstraints oven variables
we want to find a solution. It is natural to assume tfidtas the property: Giveh — 1
arguments we can always set the last argument such, thabtis&&int becomes true. In
this case we can restrict attention to thecore. It is obtained by iteratively deleting all
variables which occur at most once. Thus it is the maximafautula in which each
variable occurs at least twice.

We consider the random instané&n, p) : Each equation ovet variables is picked
independently with probability; the domain siz€ and the number of slots per equation
is fixed. We consider the cage= ¢/n*~! and the number of constraints is lineamnimvhp.
(with high probability, that is probability — o(1), n large. ) The density of a formula is
equal to the number of equations divided by the number o&taées. The following is well
known:

Fact 1 ([2]) 1. Conditional on the number of variableSand equationsn’ of the2—core
the 2—core is a uniform random member of all formulas where eaclhakde occurs at
least twice.
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2. There exist’ = n’(c) andm’ = m/(c) such that the number of variables of thecore
isn'(1+ o(1)) and the number of equations' (1 + o(1)) whp.

3. There exists &' such that whp. for < T — ¢ the2—core has densit 1 — ¢ and for

¢ > T +ethe2—core has density 1+ <. T is determined as the solution of an analytical
equation.

The expected number of solutions of thecore isd"~™, n the number of variables,
m the number of equations. When thecore has densit 1+ ¢ whp. no solution exists.
This holds in particular when the density Bfn, p) itself is > 1 + . The formulas con-
sidered here always have densityl. In seminal work Dubois and Mandleg][consider
equations mod 2 :zy + ... + = a,0 < a < 1, k = 3. They show satisfiability whp.
when the2-core has density 1 — . For largerk > 15 a full proof for this result is given
in [5], Appendix C . Thusl'/n*~1 is the threshold for unsatisfiability in this case.

It is a natural conjecture that the same threshold appliesgt@tions as discussed
initially (and to some other types.) However, it seems diffito prove the conjecture in
some generality. One of the difficulties seems to be that we hgparameters: andd.
We make some progress towards this conjecture. We showetfaations mod 3. (The
result is fork > 15, but we think it mainly technical to get it for atl > 3.)

Theorem 2 Let F'(n, p) be the random set of equationsnod 3 : x4+ - -+, = a, 0 <
a <2,z + -+ x; an orderedk — tuple of variables. Ifp < (T — ¢)/n*~! F(n,p) is
satisfiable whp. fok > 15.

The main task is to show thata-core of density< 1 —¢ has a solution with probability
e > 0. Our proof starts as Dubois/Mandler: LEtbe the number of satisfying assignments
of the2—core. Its expectation is d°",d = 3. We show thatZ[X?] < O(E[X])?. This
implies (by Cauchy-Schwartz (or Paley-Zygmund) ineqyatiat the probability to have
a solution is> ¢ > 0. By Factl F(n,p) has a solution with the same probability. We
apply Friedgut-Bourgain’s Theorem (7, p) to show that unsatisfiability has a sharp
threshold. By this the probability becomés- o(1). In [9] Friedgut-Bourgain is applied
to the mod 2—case. It seems that our proof for thenod 3—case is somewhat simpler
(and applies to themod 2—case and other cases.)

To determingZ[ X 2] Dubois/Mandler apply Laplace Method (one ingredient: lubing
a sum through its maximum term.) The main difficulty is to bdarreal function of several
arguments from above. They show that their function has onby local maximum. We
proceed by the same method, but substantial changes aesagcéork > 3.

First, we observe (cf.5], Appendix C) that the function in question is the infi-
mum with respect to certain other parameters. This is based pergeéng functions: If
f(x) = Y cpa® thenc® < f(a)/a*, a > 0,¢; > 0 (a method rarely used in the area, a
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notable exception islf].) Thus to bound the maximum from above we need to find suit-
able parameters and show that the value with respect to jagaeneters is less than the
required upper bound . (This leads to involved, but elemgrdalculus. )

To make this approach work we need appropriate generatmgifuns: X = X,, +
... Xan, Where X, is the indicator random variable of the event that assigiimen
makes the formula true. Thexi? = >~ >, X,X,. To getE£[X?] we need to determine
Pro X, X, = 1]. To this end we observe that the equatignt - - - + z;, = ¢ which is true
undera is true exactly under those assignmeérgach thabky+1k;+2k, = 0 mod 3, and
k; is the number of slots af, +- - - + z, filled with a variabler with b(z) = a(z) +i. Thus
therear® , . oas (k_kl_zzkm) different ways in which an equation can become true
undera, b. The following generating function allows us to deal withsagossibilities ana-
lytically. With w; = exp(2m1/3) the primitive third root of unity anav, = w3 we define
7’(1’0,1’1,3}2) = % [(JIQ + x1 + l’g)k + (.To + Wi, —|—W2l’2)k + (.To + Wox; + Wll’g)k]
then Coeffrt 252 (1, 21, 5)] = (k_kl_ﬁzkl’,w) if k1 = k; mod 3 ando otherwise (easy
from properties;.) Inthe mod 2—case we use/2 [(1+ z)* + (1 — z)*] instead ],
Appendix C.

With the motivation to get an exact threshold of unsatisfigtfor a type of constraint
whose worst-case complexity is NP-complete, Connamadadoy [6] see also the very
recent [L7] introduce uniquely extendible constraints kA-ary uniquely extendible con-
straint is a function fronD* to true, false with the property: Given values frdpfor any
k — 1 argument slots there is exactly one value for the remainioigveghich makes the
constraint true. (Thé > 8 in the following result can be eliminated at the price of some
additional technical effort.)

Theorem 3 Let F'(n, p) be the random formula of uniquely extendible constraintscte
constraint is a randonk—tuple of variables and &—ary uniquely extendible constraint
over D and we pick with probability. For |D| = 4 andp < (T — ¢)/n*~! F(n,p) is
satisfiable whp. fok > 8.

The threshold”/n*~1 is proved fork = 3 and|D| = 4, cf. [17] remark following Theorem
8. Our proof uses the technique as in thaod 3—case, however the details are different.
One of the contributions making is the generating polyndmia

plx) =2 [(1+z)F + (d—1)(1 — $%)*] , asr(wzo, 21, 22) above, not used before.

1.2 Motivation

Many computational problems can be naturally formulatedogunctions of constraints.
And we are interested to find a solution of this conjunctiotgokithmic properties of
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these conjunctions are considered in theoretical reséaith remarkable results e. g. in
the realm of approximatiofl]) and applied research, e. d.9. An additional aspect is the
investigation of conjunctions of randomly picked consitsj [7] is a fundamental study
here. Propositional formulas #rconjunctive normalform provide an example which has
lead to arich literature e. g1]. One of the characteristic properties of this researchas t
its findings can often be related to experimental work by mgmlgorithms on randomly
generated instances.

One of the aspects of random formulas is a threshold phenaméhthe number
of constraints of a conjunction picked is less than a thrieskalue the conjunction is
typically satisfiable, if it is more we get unsatisfiabilityhp. Moreover instances picked
close to the threshold seem to be algorithmically hard, Haiisg candidate test cases for
algorithms. The threshold phenomenon and the possikalityvestigate it by experiments
causes physics to become interested in the area &1p.Qn the other hand, physical
approaches lead to new algorithms and classical thedretiogputer science research, e.

g.[12].

One of the major topics is to determine the value of the tholesim natural cases.
A full solution even in the naturat—CNF SAT case has not been obtained, but many
partial results, I] for £ = 3. Note thatk—CNF does not have the unique extendability
property as possessed by the constraints considered hedat #eems to be a major open
problem to get the precise threshold for constraints withmigue extendibility and not
similar to2—CNF. A mere existence result is the Friedgut-Bourgain theoji3]. Based
on this theorem thresholds for formulas of constraints @a@nains with more thag
elements are considered i [ Ordering constraints are considered @]} only partial
results towards a threshold can be proven. In order to getitdefhreshold results further
techniques are required. Therefore it is a useful efforutther develop the techniques
with which thresholds can be proven. This is the generalrdmriton of this paper.

A notable early exception, in that the precise thresholduegproven is the mod 2—case
considered above. Historicallg][is the first paper which uses variance calculation based
on Laplace method in this area. Subsequently feCNF SAT this method has lead to
substantial progress ii}]. The contribution here is thatmod 2—proof can be refined
and extended to cover other cases based on observatioreptimdent interest. Note that
random sparse linear systems over finite fields are used straeherror correcting codes,

e. g. [L9 or [20], motivating the mod 3—case. A very recent study of thenod 2— case
is [21]. More literature can be found irl{], but precise threshold results have not been
obtained.
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|. Equations modulo 3

1 Notation and basics

We use the abbreviation

M(m,n) == Y (Ul ”TL‘U ) andNy := M(km,n). ThenNy-3™ (1)

V1, Un 22

is the number of all formulas with variables per equation amd equations. We consider
the uniform distribution on the set of formulas. Note tha fbrmulas we consider are
2—cores. (Here the same equation to occur several times. &pisems with probability
o(1) asm s linear inn and can be ignored. ) Léf be the number of solutions of a formula.
We haveX = ) X, wherea stands for an assignment of the variables With, 2 and
X.(F) = 1if Fis true under and0 otherwise. The expectation of is 3"~ because
given an assignment each equation is true independenthypnabability1 /3. We assume
thatm = ~vyn,y bounded above by a constantl. As k is also constant, the asymptotics
is only with respect ta.. We need to show the following theorem
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Theorem 4 E[X?] < C - 32(n—™)

We have EX?| = >y E[Xa-Xs] Where(a, b) refers to all ordered pairs of assignments.

LetW = (Wy, W1, W3) be a partition of the set of variables itsets.We always use
the notationw; = #W;, w = (wy,w,w;). For two assignments we write= D(a, W)
iff W; = {x|b(x) = a(x) +i mod 3}. We have thati(zy + -+ x1) = b(z; +--- +
xy) (Here a(x; + --- + xx) is the value ofr; + --- + z;, undera (analogously fow).)
iff > 10 #{dla; € Wi} = 0 mod 3. This is equivalent ta{j [z, € Wi} =
tH{jlz; € WQ} mod 3. Givenl = (lo,ll,lz) with Zl = km we let/C(l) be the set of
that ISZZ kij =k for eachj Moreoverzj k;m l; fori = 0,1,2 (thed'th row sums
tol;.)

We denote

2

H(ko - k2> Then N(w,l) == K(I)- [[ M(l;,wi) (2)

(ks j)eK(l) j=1 1=0

is the number of formulag’ true under two assignmentsb with b = D(a, W) (with
w; = ;) and the variables fronil; occupy exactlyi; slots of F. The factorK (1) of
N(w,1) counts how thé; slots available fofV; are distributed over the left-hand-sides of
the equations. The second factor counts how to place thables into their slots. Note
that the right-hand-side of an equation cannot be chosenddtermined by the value of
the left-hand-side under; b.

We abbreviatg”) = (, " ). Given an assignment, w, and/, the number of

wo,W1,W2 ~
assignment formula pair®, F') with : There existV’ with {W; = w;, such thath €
D(a, W), Fis true under andb, and the variables frori’; occupy exactly; slots of
is

N(w, 1) := (”) -N(@, I). Thisimplies Ex? = 3"} N(w, ) (3)

w

3m . NO

Theoremd follows directly from the next theorem:
Theorem 5 Y~ N(w,1)/N, < C 3077,

One more piece of notation; = w;/n usually is the fraction of variables belonging to
W;. And \; = 1; /(km) = 1;/(k~n) is the fraction of slots filled with a variable frof;.
We useo = (wo, wi,ws), andX = (X, A1, X2). Sometimesy;, \; stand for arbitrary reals,
this should be clear form the context.



2 Outline of the proof of Theorem5

First, bounds foV/ (m,n) and K (I). We consider(z) := exp(z) —x — 1 = > iso ”j—’, for
x > 0. Then fora > 0 and allm, n B

1 m o\™
M(m,n) = Coefflz", q(x)"] - m! < qla)"- — -m! < g(a)" (==) " - O(vm) &)
using Stirling in the formm! < (m/e)™ - O(y/m).

To get rid of the,/m—factor we letQ(x) := zq'(x)/q(x) with ¢'(z) the derivative
of ¢(x), ¢'(x) = exp(x) — 1 for x > 0. Then@'(x) > 0 for x > 0, Q(x) > x, and
Q(z) — 2 for z — 0. Thus, fory > 2 the inverse functiod)~!(y) > 0 is defined and
differentiable. Lemm& is proved in Sectiob.

Lemma6 LetCn > m > (2+¢)n, C,e > 0 constants. Then
M(m,n) = 6(1) - (T)m . q(a)™ with a defined byQ(a) =

ae

Throughout we use = s(k,~) uniquely defined by)(s) = ky = kyn/n = km/n.
Note that fork > 3 we can assume thaty > 2 ands always exists. We hav@(s) > s.
We often write() instead ofQ)(s). Recall Ny, = M (km,n) and we get a tight bound on
the number of formulas (cf1j.)

Corollary 7 Ny = O(1) (kyn/(se))™™ - q(s)".

We treat the suni (1) similarly to M (m, n). Instead of(z) we use the function,

k
r(z) := Z (k bk )xlgoxlflx?, T = (xg,z1,x2). Then
ki=ky mod3 N 071172
ko= 3 11 = coeff, r(zy] < "° (5)
(ki j)eK(l) i=1 Oﬂ’klﬂ’kQJ | ¢

with the notationz’ = [, i ande = (¢, c1, ) > 0, meaningz; > 0 for all .
For calculations it is useful to have a different represiuraof (z). Let 1 be the

imaginary unit, andv; = —1/2 + (+/3/2)1 is the primitive third root of unityw, :=
—1/2 — (v/3/2)1 = w12, We have
1
r(z) = 3 [(zo + @1 + 29)F + (2o + Wiz + Waxo)® + (2 + Wz + wlxg)k} (6)

The preceding equation is well known and easy to prove frosichaoperties of roots of
unity. Note that in derivativeg—r(z) the roots of unity are treated as constants.
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Forz;,y; > 0 we define (convention® = 1 for a = w; ora = \; anda = 0)

kry

vw, N z.5) =[] (q(x"))w-[H (A)] (Y0, Y1, 92)"

i=0,1,2 wiq(s) i—01,2 \TiYi

With w; = \; = 1/3,a; = s(k,v) = s, andc; = 1, we have¥ (w, \,a,¢) = 3 - (1/3)%7 -
((1/3)3%)7 =317 (use 6).)

Lemma8 N(w,l)/Ny < ¥(@, A, a,c)"-O(n)*?foranya,é, a;, c; > 0.

Proof. () <[, (1/w;)~" for all w, ([24], page 228 [,_q 1, M (s, w;)/No <
IT: (i) (aie)iq(a:) O(WL)) - (es/(kyn))k™ - 1/q(s)" - O(1) with (4 ) and Corollary?.

Observe that; = \;kyn, > . A, =1, w; = 1. ConcerningK ({) apply ©).

For realsa,b we letl.(a,b) = {(c,d)| |c — a|,|d — b < e} be the open square
neighborhood ofa, b). The notation\,w € U.(a,b) is used to meafh, \s), (w1, ws) €
U-(a,b). Theorem9 is proved in SectioR.

Theorem 9 For any \ > 0 there existi, ¢ > 0 such that:
Lv¥(@, A ,a,c) <37, )
(2) Foranye > 0,if A ¢ U.(1/3,1/3) then¥(w,\,a,c) < 377 —dforad > 0.

Corollary 10 LetU =U.(1/3,1/3) thenzwwiw@ N(w,1)/Ny < C 301,

Proof. The sum has onlg(n*) terms. With Lemma and Theoren® (2) we see that each
term is bounded above g'~7 — §)"O(n)3/2.

To treat(\;, \2) close to(1/3, 1/3) we need a lemma analogous to Lem@far K (I).
Let the funCtionR(l‘l, ZL’Q) = (Rl (1‘1, ZL’Q), RQ(ZL’l, 1‘2)) be defined b)Ri(ZL'l, 1‘2) =
= x;Ty, (1,21, 22) /7 (1, 21, 20) fOri = 1,2, 7,.(1, x1, x5) is the partial derivative of(1, z;, z5)
wrt. z;. The Jacobi Determinant d®(xq,z2) is > 0 atz; = x5 = 1 (proof Subsection
5.1) Thus there is a neighborhood @f, 1) in which R(xy,z2) is invertible and the in-
verse function is differentiable. We have thatl, 1) = (k/3, k/3). Thus for a suitable
and (A, A2) € U-(1/3,1/3) we can defindcy, c2) by R(cy1, c2) = (kA1, kXy). Moreover,
¢ = ¢i(A1, \2) is differentiable. LemmaZlis proved in Subsectios. 1

Lemma 11 There is are > 0 such that for(A;, \y) € U.(1/3,1/3)

K(l_) =0 (%) . 71(1}1071;202) with R(Cl, 02) = (]{7)\1, ]{Z)\Q) definingCl, Co.
SI)



Corollary 12 There ise > 0 such that for{w;, ws), (A1, A2) € U-(1/3,1/3)

N(w,1) 1 oo -
< () R w n
No — <n2)gj( 4@, ¢)

WhereQ(ai) = ll/wl = )\Z/w/wl andCO =1 andR(Cl, CQ) = ()\1]{7, )\2]{7)

CommentObserve thabh;ky/w; ~ kv, a; = s,¢; =~ 1.

Proof. Our restriction onu implies that(?) < O(1/n) [],(1/w;)*™ (Stirling), giving us
oneO(1/n). We get] [, M (l;,w;)/Ny <

IT: (i) (aie))iq(ai)™) - (es/(kyn))*™-1/q(s)" - O(1) applying Corollary? and Lemma
6 for the M(l;, w;). ConcerningK (l) apply Lemmall which gives us a second factor
O(1/n). Otherwise the proof is as the proof of Lem@a

Lemmal3is proved in Sectiod.

Lemma 13 The function?(w, A, @, ¢) with a;, ¢; given byQ(a;) = M\ikvy/w; andey = 1
and R(cy, c2) = (M\k, A\2k) has a local maximum with valug = for \; = w; = 1/3. In
this case we get; = s andc; = 1.

Corollary 14 LetU = U.(1/3,1/3),e small enough. Thel ./ 5cpr 50 N(W0,1)/No <
C - 3d=n,

Proof. Lete > 0 be such tha¥(w, ), a, ¢)
w, A € U.Letw ¢ U, \ € U. We show? (&,
the claim as in the proof of CorollaO.

Let e’ < ¢/3 andU’ = U.(1/3,1/3). For A\ ¢ U’ the claim follows with Theo-
rem9 (2). ForA € U’ we show that? (@, \,a,¢) < 3™ — ¢ for a; = s andc¢y, =
1, R(cy, o) = (kA k)o). (Recallh € U) For¥ = W(\, )\ a,c) with a, ¢ as required
by Lemmal3we have? < 3'77. Note, Q(a;) = M\kvy/A\; = kv which impliesa; = s
andcy = 1, R(cy, co) = (kAi, kA2). Therefore alla;—terms cancel and = J](1/);)% -
(T4 pe) < 3177,

As@ ¢ U whereas\ € U’ ande’ < ¢/3 we have thaf[(1/w;)* < T(1/\)* & for
ad’ > 0 (proof omitted.) Then (&, A, @,c) < ¥ — &' ([T(Ai/c;)™*) p(e)7. If ¥ < 3/2,
we are done. Otherwise we have tiigf,()\;/c;)**") p(c)” is bounded below by /2 (as
[T(1/X)* < 3) and the claim follows, with witld = (1/2)§".

317 for a, ¢ as specified in Lemma&3 and
a

<
A, a,¢) < 3'77 — g for somea, c. This implies

Theoreml5is proved in Sectiod by Laplace method.

Theorem 15 LetU = U(1/3,1/3). There is are > 0 such that
S soew N(@, 1) /Ny < C 300,



Proof of Theorend. Picke such that Theorerh5 applies. Use Corollarg0, Corollary14,
and Theoremi5and the sum of all term&/(w, [) /N, with [; > 0is < C - 30-)"_ Terms
with an/; = 0 do not add substantially to the sum (proof omittted.) O

3 Proof of Theorem9
We use the notation = (zg, x1, 22), ¥ = (Yo, y1, y2) and define

q(smo) i q(sz1) +€I(5I2)

q(s) qa(s) — aqls)

Q

_ 1

OPT2($= Y, 3) = s ToYo + T1y1 + Tay2 > 0
ToYo + T1Y1 + X2Y2

OPTy(z,s) =

_ 1/2:Q
OPT3(7,s) = (yo+m +y2)Q + 2 (yg + Ui+ Y — Yoy — Yoo — ylyz) /

OPT(z,y,s) = OPTy(z,s) - OPTy(Z, 7, s) - OPT3(y, s).

Observe that OP(T, 1,1,1,1,1,s) = 3(1/3)939 = 3 =0PT,(1, 1,1, s),OPT(1,0,0,1,0,0, s) =
1-(1/1)?.3 =3 =0PT;(1,0,0, s). The following lemma shows the idea of OPT.

Lemma 16 Given\ > 0 and let\ be the maximum of the. Let a;,¢; > 0 be such that
P, :=a;c; = )\z/)\ Then

V=¥ (w,\a-sc) < —0PTa,¢,s).

1
3y
Proof. The factors of/ one by one: The first factor: The AGM-inequality gives
o2 (Z(Z(Z))) ' < OPTy(a, s). (Applies forw; = 0, t00.)

The second factor: We havg + P, + P, = agco+ arc1 +azco = 1/ A and); /a;c; = A
fori =0,1,2. RecallQ = kv, and the second factor @f =

)\i Aiky 1 Q
I1 ( 5 ) — k= < ) — OPTy(a, ¢, s).
a;Sc; apgCo + a1c1 + aqcy

i=0,1,2

The third factor: We leC; = Y, ¢; andCy = Y. ¢ — cocr — coca — cic2. Then
r(c) = |r(e)| < (1/3)(CF + 2(]5/2) by the triangle inequality and &g +wic; + waco| =
[(co—1/2-(er4¢2))2+(V3/2(c1— )% = Cy*. Then|r (@) < 1/37(CF 420577 <
1/37(CF + 27(];'“/2) < 1/3"0PT;(¢, s) as@ = kv, and ase” is concave (byy < 1) we
have(y + 2)7 < y7 + 2.
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The following picture shows ORT, a,a,1,¢,¢,s), 0 < a,c < 1. The< 3—area is
dark. We have a path from= ¢ = 0to a = ¢ = 1 through this area. Therefore, for &
with 0 < P < 1 we have) < a,c < 1 with P = ac such that OPTl, a,a,1,¢, ¢, s) < 3.
In the notation of Lemma®6 this corresponds td, > A\; = )\, (and visualizes Theoref
for this case.) The following four lemmas are the technicaéof our proof.

OPT(1.a.a.1.c.c.3)

0<a<l, 0<c<1

Fig. 1.0PT(1,a,a, 1, ¢, ¢, s) over the rectangleé < a < 1,0 < ¢ < 1for s =3 ands = 14.

Lemma 17 Lets > 8, A(x) = A(x, ) (7/10)Q - T

(@) OPTy) :=OPT(1, A(y), A(y), 1,y, y, s)isstrictly decreasing fob <y < 1/(2Q).
The start value is OPD) = 3.

(b) Given0 <y < 1/(2Q), OPT(z) :=OPT(1,A(y + 2), A(y — 2), LLy+2,y—=z, s)is
decreasing i) < z < y.

Lemma 18 Lets > 7 ,and+ < A <1-— %. Then
OPT(2) := OPT(L, A, A, 1,1/(2Q) + 2, 1/(2Q) — 2, s) <3 — dfor 0 < = < 1/(2Q).

Lemma 19 Lets > 7,and1/(2Q) < C < 1/2.Then
OPT(z) :=OPT(1,1-1/Q,1—-1/Q, 1,C+ 2, C —z,s) <3 — dfor0< z < C.

Lemma 20 Lets > 15and A(z) = A(z,s) := 1+ 7/(10Q) - x — 7/(10Q).

(@) OPTy) :=OPT(1, A(y), A(y), 1, y,y, s) is strictly increasing it4/10 < y < 1. The
final value is OPTL) = 3.

(b) Given4/10 < y < 1, OPT(2) :=OPT(1,A(y + 2), Ay — 2), L,y + z,y — z, s) IS
decreasing i) < z < min{y, 1 — y}.
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Proof of Theoren® from the preceding lemmad/e prove Theorer for \y > A\; > A\ >
0 first. We denoteP, := \;/ )\, thenl > P, > P, > 0.

Case 1:P, + P, < 20Q With A(z) from Lemmal7 we haveA(z) -z = (7/10)Q - z*.
Thus there exisy; > y» with P, = A(y;) - y;. We represeny; such that Lemmd7 is
applicable.

- ylér?/z’ z = %.Thenyl =y+zp=y—20<z<uy.
We showy < 55 and Lemmadl7 applies toy, 2.
i > P+ P = 7Q(yf+y§):>y%+y§ <L
20Q 10 20?2
(g1 +12)® < 207 + 22 < éandy: yl‘;‘yz - 222.

With ag = ¢ = 1,00 = Ay + 2),a0 = A(ly — 2),c1 = y+ 2,c0 = y — z we have
a;c; = P. By Lemmalé ¥ := ¥(0,\,a - s,¢) < 1/370OPT, OPT := OPT(a,c,s). If
P, > e forane > 0 we have OPk 3 — ¢’ by Lemmal7 and Theoren® holds.

For smallerP, we have OPT< 3, approaching. Only (1) of Theoren® holds. To
get (2) for smallP, we argue as follows: FoP; approaching) we see that; andc,
approachD. We consider the treatment of the factqr) in the proof Lemmal6. Both
C, and(C, from this proof approach in this case. Therefore we havefa> 0 such that
(Ch 42052y < P 1 29C? — 5. As ag = ¢y = 1 the first two factors of OPT do not
approact). And we havel (o, \,a - s,¢) < (1/37)(OPT— §") < 3'=7 — § and Theorem
9 (2) holds.

Case 255 < P+ P < <1 — &) & Touse Lemma8we defined by A-5 = P+ P.
andA is as required by LemmE8. We need to find an appropriateAs P, > P2 thereisa

y > 1 suchthat’, = AlyandP2 Ai(l—y) Withy = 142/ andl—y =12 2 < 1,
andP, = A <2Q ) P, =A (— — —) Lemmal8 applies withz = 2’ /Q). Again

L _ 2. By Lemmal6

we setag = ¢ = 1l anda; = ay = A,¢q = 2Q + 2,0 = 35

(0, N\ a-s,¢) <377 =4
Case 35(1 - é)% <P+P<1- %. Let C' be given by<1 — é) O = Db
ThenC'is as required by LemmE9. We have & < 2/ < % such that

e - g)eaie) - (g e ren

P, = (1 _ %) (C —207).
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With z = 2C2' < C' Lemmal9 applies. We seiy = ¢ = 1 anda; = ay, =1 —1/Q and
c1 = C+ z,¢0 = C — z and finish the argument as in Case 2.

Case4:P+P, > 1—%. With A(z) as from Lemm&0we haveA(z)-z = (1 - @) T+

ﬁxz andA(z)z increases from to 1 for 0 < = < 1. Lety; be such thaP; = A(y;) - v;.

Theny, < y; < 1 and we can represept such that Lemma0is applicable.

Y = Y1+ Y2 L. T
2 2
We show that > y > 4/10 and Lemm&0 applies toy, z. We haveP, + P, = A(y;)y1 +
Ay2)y2 = y1 + 12+ 7/(10Q) (Y7 + 5 — y1 — y2) < y1 +yo. Thereforey = (y1 +12)/2 >
1/2(1 —1/Q) > 4/10 as@ > s > 15. Settingay = ¢p = 1,a1 = Ay + 2),a2 =
Aly — z),c1 =y + z,¢c0 = y — z implies the claim.

Now, assume theg; are ordered in a different way. We apply the permutationitead
from Ay > \; > )\, to the ordering considered to tl#®, a;, ¢; above. The first two factors
of ¥ do not change, only(¢) may change. But, Lemnik5 still applies. The three factors,
OPT;, OPT;, OPT; of OPT(a, ¢, s) do not change. This refers @, andC,, too, and the
argument above foP; small applies, too. O

In the proofs to come in the following four subsections we thgenotation

sandy, =y +z, o=y —2,2<y,1—y.

q(as)  exp(as) —as—1 q'(as)  exp(as) —1

Ho =06 = e —s -1 MO Tt T e -1
M(a,s) = ee}z)T@.ThenaK(a, s) < L(a,s) < K(a,s) < M(a,s),0<a<1. (7)

Proof of (7.) p(z) := ¢'(x), K := K(a,s),L := L(a,s). Fora = 0 ora = 1 we have
aK = L.Fora > 0, aK < L < ap(as)/q(as) < p(s)/q(s) <= asp(as)/q(as) <
sp(s)/q(s). The preceding inequality holds trivially far= 1. We show thatisp(as)/q(as)
is strictly increasing i, > 0. We observe thaj(z)/(zp(x)) = 1/x —1/p(x). The deriva-
tive is of the last expression is 0 iff 22 + 2 < exp(z) + 1/ exp(x). Forz = 0 we have
equality and several differentiations show the inequality

Fora =0,L < Kistrue.Fora > 0 L < K <=1 —sa/p(sa) <1 —s/p(s). The
last inequality follows fromu > p(sa)/p(s) for 0 < a < 1. This follows from convexity.
K(a,s) < M(a, s) is very easy to show. 0

1 .
We also have K (a, s) < %L(a, s), for0 <a < 35 >4 (proof omitted.) (8)

We recallQ(z) = xjéff)) = eif?;<i);j>l,Q = Q(s) = kv, Q(s) > s.

13



3.1 Proof of Lemmal?

Lemma 17 (repeated)Lets > 8, A(z) = A(x,s) := (7/10)Q - x.

(@) OPTy) :=O0PT(1, A(y), A(y), 1, y, y, s) is strictly decreasing fab < y < 1/(2Q).
The start value is ORD) = 3.

(b) Given0 <y < 1/(2Q), OPT(z) :=OPT(1,A(y + 2), Aly —2), L, y + 2z, y — 2, )
is decreasing in < z < y.

Proof of (a).We have

Q
OPT(y) = (1 +2L(A(y). 5)) (%) (1 +2)% +20 - 9)?).

We write OPT(y) = 1+ 2L(A(y), s). Clearly OPT0) = 3.

p_4d _ T d _
We haveA’ := a0 Aly) = 10@. And W In OPT(y) >=< 0 <
A2 K(Aly),s)  24A(y) +24"-y 201 +2y)% " —2(1 —y)9!
OPT,(y) 1+2A(y) -y (14 29)° +2(1 — y)°

>=< 0 (9)

The relationship9) is obtained by taking the derivative and dividing®@yTo get the first
summand we look into the definition &f (the formula afteB.)

A's-2(exp(A(y)s)—1)
a(s) 1 A’s-2(exp(A(y)s) —

OPTi(y)  Q(s) q(s)
Observe that the first and third term &) (s > 0 for 0 < y < 1 whereas the second

term is< 0. Moreover,A" - y = A(y). We have thatd% In OPT (y) < 0 if the following
two inequalities both hold:

d
4y 1 OPT1(y) =

Y _ o aK(Al), s)

A2 K(AW),s) LAy
< 10
OPT,(y) [+ 24(y) -y (19)
Q-1 _ 9(1 _ )@-1 33 4/

A+20° +2(1 = y)@ 1+240y) -y

Note that fory = 0 both sides of the first inequality are equalt@and of the second
inequality, too. The derivative of ORY) is = 0 for y = 0.

Comment:lt is important to split up the left-hand-side of inequal{8), otherwise the
calculations get very complicated. Equally important s slep leading to9). Analogous

steps will occur several times.
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Proof of (10) for 0 < y < 1/(2Q), s > 7 . We abbreviatek' := K(A(y),s) ,L :=
L(A(y),s). Note OPT(y) = 1 +2L. As A’ > 0 we show

2-K =y 7 7

< <— 2K +4K - Aly)-y—2—L -y < —
1+2L ~ 14240y -y * ) 10 Y 10y

By (8) we knowK - A(y) < 1—70Lfor s>4asA(y) < = (byy < @ ) (12)

Thus (L0) follows from 2K + 2K - A(y) - y < 15y. As 2K - A(y) - y
is convex an2K = 0 for y = 0 we show tha12K < (7/20)y for y
y = 1/(2Q) we haveA(y) = 7/20 and2K = 2(exp((7/20)s) — 1)/(ex
1/(2Q) = (exp(s) —s —1)/(2s(exp(s) — 1)) we have fory = 1/(2Q)

< 2K and2K
= 1/(2Q). For
p(s) —1). A

7 7 7 exp(s) —s—1
2K<2—0y<:>2<exp<20)—1)<4—0 .

This last inequality holds fas > 7 (but not fors < 4.)
Proof of (11) fory < 1/Q ands > 2. Inequality (L1) is equivalent to
2(142y)97" = 2(1 - y) ot

<
[(1 +2y)? +2(1 — y)ﬂ — 2y [201+ 2% —2(1 — ] (13)
The right-hand-side oﬂ(3) is >

33

<4 {10

33 33

A(y)[ [(1+2y) +2(1—y)ﬂ——y 201+ 2% — 21—y }
)

10

= AW [+ 292 2y —29) + 20 - )2 (1 -y ty

- 33A( ) [(1 +2y)97t +2(1 - y)Q_l} .
2(1 +2¢)9° 1 —2(1 —y)9t 33

And (13) follows from — = o= — 5o < [pAWI4)
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Fory = 0 both sides of14) are equal t®). We show thaB3/10- A’ > the derivative with
respect tgy of the left-hand-side ofl(4.) By elementary calculation
d2(1+2y)° ' —21—y< ! 18- (Q—-1)(1+y—2y*)%2

dy (1+29)9 1 +2(1— )91 [(142y)@ 1 +2(1 — )@ 1>
We need to ShO\A{% 10@ [(142)%7" +2(1 — )97 > 18(Q — 1)(1 +y — 2¢%)?2
Enlarging the right-hand-sidé,< 1+ y — 2y* fory < 1/Q < 1/s5 < 1/2(by Q(s) > s
we showd3 - 7 [(1 +2)9 7 +2(1 — »)?7']* > 1800(1 + y — 2*)"
= 1800((1+2y)( )"
— 231 [(1 F29)2Q 4 ((1429)(1— )" + 41— ] >

Q-

> 1800 (1 + 2y)(1 — y))? "' < (Division by ((1 + 2y)(1 —y)® ")
Q-1 . Q-1
— <1+2y) +4+ 4(1 y) > 1800/231.
1—y 142y
Rescaling the fraction to the preceding inequality follows from

x+4% > 1800/231 —4 =3.79... trueforz > 0.
Proof of (b).We assum® <y < 1/(2Q) and0 < z < y.
Aly+2)= 1@ (y+2) L Aly+2) (y+2) = 150 (y+2)
Aly+2) - (y+2) + Aly—2)- (y—2) = 1@ 207 + )
OPT(z) = (1 + L(A(y + 2),s) + L(A(y — 2),5)) -

'<1+%Q-2

d%anPT(z) >=< (0 <=
B K(AW+2)s) - 50 K(AW—2)s) £z
1+ L(A(y+ 2),s) + L(A(y — =), s) 1+%Q-2(y2—|—z2)
6z - ((1 —y)? + 322)Q/21
(1+29)9 + 2 ((1 —y)2? + 322)Q/2
The first term of the sum is obtained as the first termOgf The first and third term of the

left-hand-side of the preceding inequality aré) for 0 < z < y whereas the second term
is<0.

>=< 0.
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Analogously to {0) and (1) £ In OPT(z) < 0 is implied by

%Q[K(A(y_‘_z)as) - K(A(y_z)vs)] %%Qz (15)
1+ L(A(y + 2),s) + L(A(y — 2), s) 1—1—% (y? + 2?)
6z - ((1 —y)? + 322)Q/21 %O%QZ (16)

(142y)9 + 2-((1 — y)? + 322)9/2 1+ 2Q(y* + 2?)
Proof of (L5) fory < 1/(2Q) ands > 3.5. The denominator of the right-hand-side fraction
is maximal fory = z = 1/(2Q)). In this case itisl + 7/(10Q) < 1+ 1/Q. We lower the

denominator of the left-hand-side simplytoThe claim follows from

18,

K(A(y+2),s) — K(Ay — 2),8) < >
1+ 5

The left-hand-side of the preceding inequality is convex ifior all y < 1/(2@Q)) (based

on the convexity okxp(z) — exp(—z).) For z = 0 both sides are= 0. Therefore it is

sufficient to show that the inequality holds for= y wherey < 1/(2Q). Settingz = y

yields K (A(y — z), s) = 0 and we show

Y
1+3
Again by convexity of the left-hand-side it is sufficient tbosv the inequality fory =
1/(2Q). In this case we need to show

K(A(2y),s) <

exp (1—705) —1 18 1

K(A(1/Q),s) = op(s) -1 10011

Ts)—1
exp(s) — 1 10

And exp (—1%3) < 1—2# holds (proof omitted) fos > 3.5.
Proof of (L6) for s > 8. We show
(14+2y9)? +2- (1 —y)?+32)92 1+ 50y +2%)
62 - ((1 —y)? + 322)@/2-1 - =280z '
Cancelingz in the denominator , setting= y on the right-hand-side, this follows from

(1+2y)° 1 ) ) 1+ 2Qy? 100 )
~((1— 322) > = 10
6 (1= g+ st 3435 > g 1

As(1—y)*+32" < 1—-2y+4y°> <1byy<1/(2Q),Q >s>8

) 1 1 100
this follows from=(1 +2¢)¢ + =(1 —¢)? > —— + 10¢?
6( +2y)~ + 3( y) 28Q+ Y
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The last inequality holds fap) > 8,y > 0 and then the claim holds 8% > s.

3.2 Proof of Lemmal8

Lemma 18 (repeated)Lets > 7 andL < A<1-— 5- Then
OPT(2) := OPT(1, A, A, 1,1/(2Q) + 2, 1/(2Q) — z,5) <3 — dfor0 < » < 1/(2Q).

Proof. OPT(z) =

sl ol

is increasing inz. We show the claim for = 1/(2Q). Let from now on OPTA) =

OPT(1,4,4,1,1/Q,0,s) =
1\% 11\
(1vg) 2047 ) ]

Q
1
14+ 2-L(A — .
(1 + (4,9)) <1+é>

First, we show that OR[) has exactly one extremum ih < A < 1 which is a
minimum.

d 2K (A, s) 5
— InOPT(A) >= -
nOPT(4) > <O<:>1+2L(A,s) 1+5

JA >=< 0.

Concerning the first term of the preceding sum we refer to Xipéa@ation following 0.)
For A = 0 the first term is= 0 and the derivative is: 0. For A = 1 the first termis= 2/3,
whereas the second termlig(@Q + 1) < 2/3 for @ > s > 2, and the derivative is- 0.
We show that the derivative is 0 for exactly oné) < A < 1 which must be a minimum.
The second fraction of the derivative is decreasing.iiVe check that the first fraction
is increasing. Abbreviating = L(4, s), L' = L L(A, s) and analogously fok, we get

d 2K(A,s)
dA1+2L(A,s)
(Multiplication with (exp(s) — s — 1)(exp(s) — 1), division by2 ands.)
(exp(s) — s — 1) exp(sA) + exp(sA)2(exp(sA) — sA —1) > 2(exp(sA) — 1)?
<= (exp(s) — s —2sA) exp(sA) > —exp(sA) + 2
< exp(s) —s —2sA > —1+2/exp(sA)
which is true fors > 2,0 < A < 1 by convexity of2/ exp(sA).

> 0 <= 2K'(1+2L) > 2K2L' <—

18



We need to show the claim for the boundary valdes 7/20 andA = 1 —1/Q. First,
A=17/20:

1+ 2L(A,s) <1+4+2M(A,s) =1+ 2exp(—13/20-s) (by (7).)
With the derivative of the logarithm and the Mean Value Tleeome can show that

1/2:Q
9 1 1
<1 Q Q2>

<1 + g)Q
is decreasing i) = Q(s) > 2 (proof by standard calculus methods) and therefore
also ins towards its limit2 exp(—17/20). For ) = 7 we get a value< 0.9
Therefore, forall> s > 7(asQ(s) > s)

OPT(A) < (1+ 2exp(—13/20 - 7))(exp(13/20) +0.9) = 2.87... .

Q

1+ 3

(1 n CA)) is increasing inQ towards its limitexp(13/20).
Q

Now,A=1-1/Q:

|4 2L(A,5) < 14 2M(A,s) = 1+ 2exp (%)

exp(s) —s—1
exp(s) — 1

Fors =T7wegetl +2L(A,s) <1.7404...

(1 - é>Q = (iyz is decreasing id) = Q(s)

1+ 5 l+5 -

(elementary proof omitted) and thereforesito 1.

For@ = 7we getl.1344.... As Q(s) > sthis bound applies te = 7, too.

1/2~Q
1 1

(5-)
() andsto2exp(—3/2). ForQ = 7 we get0.564 . . .
Altogether forQ(s) > s > 7

OPT(A) < 1.741 - (1.135 + 0.565) = 2.9597.

= 1+ 2exp (— ) decreasing i to 1 + 2exp(—1).

is again decreasing (proof omitted) in

3.3 Proof of Lemmal9

Lemma 19 (repeated)Let s > 7and1/(2Q) < C < 1/2. Then
OPT(2) :=OPT(1,1-1/Q,1-1/Q,1,C+ 2, C—z,s5) <3 —dfor0 <z < C.
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Proof. We abbreviated = 1 — 1/Q. First, analogously to the proof of Lemm& we can
restrict attention ta = C. OPT(z) =

1 Q
= (1+2L(4A,s)) (m) [(1+20)2 + 2((1 — €)% + 32%)1/29]

Let from now on OPTC) = OPT(1, 4, A, 1,2C,0,s) =

1 @
_ . Q 2 1/2-Q
= (1+2L(A, s)) (71 5 C) [(1+20)% + 2(1+4C% —20)"/*€]

OPT(C) has exactly one extremum, which is a minimum@o< C' < 1.

diln OPT(C) >=< 0 <=
C
2A 2(1 +20)21 4+ (8C — 2)(1 + 4C2 — 20)1/2Q-1
a + S=< (=
1+ 2AC (142C)Q + 2(1+4C? —2C)1/2Q

2A (1 +20)9 + 2(1 +4C% — 2C)'/*@) —
—2AC (2(1+20)°7" + (8C —2)(1+4C* —20)"/*97") =
=24 [14+20)97" + (2-2C)(1 +4C* - 2C)*97] < = >
<=>2(1+20)9" + (8C —2)(14+4C% - 20)"/*¢7! =
2(1+2C)971 + (8C — 2)(1 +4C? — 2C)H/*Q!
2A < => —
(142C)Q"1 + (2 —20)(1 4 4C2 — 2C)1/2@-1
(1+20)97" 4+ (4C —1)(1 +4C* — 20)1/2Q1
(1+2C)@~1 + (2 —2C)(1 +4C2 — 20)1/2Q-1
For C' = 0 the right-hand-side fraction is equal@< A and OPTC) is decreasing. For
C' = 1 the right-hand-side fraction is greater than A and OPTC) is increasing.
Next we show that the preceding fraction is increasing ka C' < 1, and equality is
attained for only on€' which must be a minimum.

A<=>

Rewriting4C — 1 = (2 — 2C') + 6C — 3 the fraction is rewritten as
(6C — 3)(1 4 4C? — 2C)1/2Q-1
(14+20)9-1 + (2 —-20)(1 +4C? —20)1/2Q-1
Rescalingl/2- Q@ — 1to @ (then@ — 1 scales t@Q + 1) and2C to C' we get
(3C =3)(1+C?—-0)?
(1+02RL+(2-C)(1+C%2-0C)
Dividing through3(C — 1)(1 + C? — )€ the preceding fraction is certainly increasing if
(1+ C)2Q+1
3(C—-1)(1+C%2-0C)

1+

1+

3 and are both decreasing for< C' < 2,C # 1.

—C
3(C — 1)
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The second fraction is easily seen to be decreasing. We staivihie inverse of the first
fraction is increasing. The numerator of its derivative is

[(1+C*=C)° + (C-1)(2C-1)Q(1+C*—C)?'] - 1+ O)*@*H —
—(C-1DA+C*-0)?-2Q+1)(1+0)? = (1+0)°(1+C*-C)9 .
[(1+C)(1+C*=0C) + 14+ O)(C-1)(2C -1)Q — (2Q+ 1)(C—1)(1+C* - C)]
The expression in square brackets can be rewritten as
1+CO)(C-1)2C-1)Q —2Q(C-1)1+C*-C) + (-C+1+C+1)(1+C*-0C)
= Q-0 +21+C*-0C) >0

Now it is sufficient to show the claim for the boundary valués,= 1/(2Q) and
C = 1/2. The first case is contained in Lemri& Let C' = 1/2. We proceed as in the
proof of Lemmal8, cased = 1 — 1/Q.

1+2L(A,s) <1.7404fors > 7

1420 \© 2 \°
<m) = (q) IS decrea5|ng ”62 = Q(S)
(elementary proof omitted) and thereforesitio exp(—1/2).
For@ = 7we getl.67993.... AsQ(s) > sthis bound applies te = 7, too.
2(1+4C* —20)2@ 2 .
(1524000 = (Q—é)Q decreasing to
For@ = 7 we get0.02624 . ..
Altogether OPTC') < 1.75- (1.68 4+ 0.027) = 2.98 for s > 7.

3.4 Proof of LemmaZ20

Lemma 20 (repeated)Let s > 15 andA(z) = A(z,s) := 1+7/(10Q) -z — 7/(10Q).
(@) OPTy) :=0OPT(1, A(y), A(y), 1, y,y, s) is strictly increasing int/10 < y < 1. The
final value is OPTL) = 3.

(b) Given4/10 < y < 1, OPT(z) :=OPT(1, A(y + 2), Ay — 2), L,y + z,y — z,s) is de-
creasing i) < z < min{y, 1 — y}.
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Proof of (a).We have OPTy) =

o) (0207 420 - 9)

0+22040)9) (1557
We write OPT(y) = 1 + 2L(A(y), s). Clearly OPT1) = 3
VR
We haved’ := a0 Ay) = 100"
d%ln OPT(y) >=< 0 < (See comment tdX))
A2 K(Ay),s)  2A(y) + 24"y | 2(1+2y)97" —2(1 —y)¥!
OPT,(y) 1+2A(y) -y (14 29)° +2(1 — y)?

Observe that the first and third term of the preceding sumrabdor 0 < y < 1 whereas
the second term is 0.
We have thatd% In OPT (y) > 0 if the following two inequalities both hold:

>=< 0

A2 K(A(y), s) 2A" -y
OPT.(y)  ~ 1+24(y)-y &
2(1+2y)%" = 2(1 — )9 2A(y) (18)

(1+29)% +2(1 -y ~ 1+2A(y) -y

Note that fory = 1 both sides of the first inequality are equaltq10Q) - 2/3 and of the
second inequalitg /3. Therefore the derivative of OR¥) is = 0 for y = 1.

Proofof @7)for1 >y > 0, s>4.LetK = K(A(y),s)andL = L(A(y), s).

)
As A’ > (0 we need to show > )
1+2L 1+2A(y) -y

— K + 2K -Aly)y — 2Ly >y
As K > L by (7) this follows from

K1+ 2Ay)-y —2y) = K (1 +2$y2 - 2&@) >y (29

Fory = 1 both sides of19) are= 1. Fory = 0 (19) holds asiK” > 0 in this case.

K considered as a function jnis convex, increasing and 0. The second term on the
left-hand-side of19), 1 — 2@% + Q&y, is convex,> 0, and increasing foy > 1/2.
Therefore the left-hand-side 0f9) is convex forl/2 < y < 1. We next show that the
derivative of the left-hand-side at= 1 is < 1. This implies that{9) holds forl /2 < y <
1.
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dK< 7 7 )) _ s 05 - eXP(sA(y))

PR S T LA T L exp(s) — 1
7 7 exp(sA(y)) — 1 7 7
'(1 g7 - @y) T Tep(s) -1 (410@” - 210@)'
Plugging in y = 1 yields 100 (eipezs(i)l + 2) (20)

Fors =4 (20)is0.9837--- < 1. As (20) is in decreasing i (proof omitted) (9) holds
forall s > 4and1/2 <y<l.

1- 2 y + 2—Qy is decreasing foy < 1/2. Therefore, forl0 < y < 1/2, we can
bound the Ieft hand-side o19) from below by

7 7
<1 +2m - @ )y:1/2]

This function (the argumentoccurs only inK) is convex iny . Fory = 1/2itis > y by
the previous argument. For= 1itis < y. Therefore itis> y for 0 < y < 1/2. The claim
is shown.

K

Proof of (18) for y > 4/10 ands > 3.5. Inequality (L8) is equivalent to
201+ 2997 —2(1 — )97 >
> 24(y) [(1+ 2% +2(1 = 9 — y- 20 +29)° " =201 - y)27]] =
= 2A(y) [(1+29)97 ' 1+ 2y —2y) + 21— ) (1 —y +y))

-1 1 14 29)9" 1 — (1 —q)@-1
= 24() [0 +29)°7 " + 201 - y)° 7] = ((1 n zyy))cz—l n 2<(1 —yy))cz_l

Fory = 1 both sides ofZ1) are equal td.. Fory < 1 (21) can be rewritten as
1+2y\9! 24 +1
l—y 1—Ay)

The preceding inequality holds f@r > s > 3.5. and we have the claim far = 4/10.
To show the claim fod /10 < y < 1 we show that the left-hand-side &1 is concave
in y. The derivative of the left-hand-side is
(14+y—2y»)92
[(1+2y)91 + 2(1 - y)-1°

> A(y)21)

. 4 . 30
With y = o this becomeg®~! > 7@ - 2.

9(Q—1)
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This is a decreasing function in> 4/10 because the numerator is decreasing in this case
whereas the denominator is increasing and.

Proof of (b).Some preparatory calculations:

Aly+2) = AW + g Al =2) = AG) = 75°
Aly+2) - (y+2) = Aly)y + Ay)z + &zy + &22
Aly—2)-(y—2) = Aly)y — Aly)z — &zy + &22

Aly+2)-(y+2) + Aly —2) - (y —2) = 2A(y) y+%zz

We denote
OPTi(z) = 1 4+ L(A(y + 2),s) + L(A(y — 2), 9)
Then OPTz) = OPT,(z) -
Q
1 2 2\Q/2
.<1+2A(y)-y+%z2> '((1+y)Q +2-((1—y)* + 327 )

We proceed to show that In OPT(z) < 0 for z > 0. Some derivatives first.

71 d 71
1—067 EA(?J—Z) = _E@’

d 14 28
£(1+2A(y)~y+@2) = mz

d
e (1492 +2- (1 —y)? +322)92) = 62-Q- (1 —y)? +3:2)/*,
dianPT(Z) >=< 0 <= (Recall comment to9).)

z
g K (Al +2).5) — gK(Aly —2),s) E .
OPT,(2) 1+ 2yA(y) + %zz
6z - ((1—y)? +32%)@/2!

(1+4)@ + 2- (1 —y)?+322)Q2

Observe that the first and third term of the preceding inetyuaie > 0 for 0 < z <
min{y, 1 — y}, whereas the second termss0.

d
~ A —
7 (y+2)

>=< 0.
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We have thatl In OPT (z) < 0 if the following two inequalities both hold:

100 (K(A(y +2),5) — K(A(y — 2),9)) _ 1667 22)
OPT(z) 1+ 2yA(y) + 1522
62 - (1 —y)* +3:2)9/2" Hel
(1+y)Q + 2 ((1 —y)?+ 322)Q/2 S 1y 2yA(y) + 157> (23)

Note that forz = 0 both sides of the preceding inequalities are equakind the derivative
of In OPT(z) is= 0. Moreover, we have +2y A(y) +%z2 < 1+2yand the inequalities
follow when they are shown with the denominatof 2y in the right-hand-side fraction.

To get this, observe that

14 14
2y A — 22 =4+ — (y? — 2) <2
y (y)+10Qz y+10Q(y y+2%) <2y,

asz < min{y, 1 —y} we havez* < y(1 —y) ory(y — 1) + 2* < 0.

Proof of 22) for 0 < z < min{y,1 —y},0 <y < 1,s > 5. We enlarge the left-hand-side
of (22) first:

1

KAy + 2),s) — K(A(y — 2),s) = W (exp(A(y+2)-s) — exp(A(y — 2) - 9))
_ =p(A{y)s) ex Lsz —exp | — Lsz
~ exp(s) — 1 { P (10@ ) p( 10Q) )}

OPTi(2) = 1 + L(A(y +2),5) + L(Aly —2),5) =1+ eXp(S)l— s—1

Jlexp(A(y + 2)s) — Ay +2)s — 1 + exp(A(y — 2)s) — Ay — 2)s — 1]
> (AsA(y+2),Aly—2) < 1)

1+ ﬁ[exp(fl(ijz)s) + exp(A(y — 2)s) — 25 —9] — $
. {exp(s) — 25 — 3 + exp(A(y)s) <eXp (&sz) T exp (-%@):

> (As A(y)s < sands > 2 so thatexp(s) — 2s — 3 > 0.)

o ST

exp(s) — 1 exp(s) @82 10Q
exp(A(y)s) 7 7
> W [09 + exp (mSZ) + exp <—@SZ>:| s
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as(exp(s) — 2s — 3)/exp(s) > 0.9 for s > 5. The denominator of the right-hand-side of
(22) is enlarged byl + 2y < 3. We set

e ! > 1 and show (simple algebra frord2)) - % < 1

u = ex — =Sz z
P\10g ble a9 09+u+l 3.7

We have: = (lnu)?% > (lnu)g (by@ > s.)

. u—1 1011
Therefore it is enough to show——*— < (lnu)——
0.9+u+ 721

Elementary means show that this is truedor 1.

Proof of @3) for s > 15,1 >y > 2/10, 0 < z < min{y, 1 — y}. Inequality @3) follows

from

_ 17
6 (1= y?+32)921 152

(1+y)@ 1+ 2y
— 60Q(1+2y)((1 —y)? + 322)9* 1 < 17(1 4 y)? (24)

Fory < 1/2 we havez < y and @4) follows from
60Q(1 + 2y)(1 — 2y + 4y*)??7 < 17(1 + )@

The preceding inequality holds far > s > 15and1/2 > y > 2/10 (proof omitted.)
Fory > 1/2 we have: < 1 — y and @4) follows from

60Q(1 + 2y)(4(1 — y)*)¥*™ " < 17(1 4 y)?

This inequality holds fofy > s > 10 andy > 1/2 (details omitted.)

26



4 Proof of Lemmal3and Theorem15

We conside® (v, \) = ¥(w, A, a, ¢) as function ofw;, \;, i = 1,2 in a neighborhood
of (w1, wa) = (A1, A2) = (1/3, 1/3) The parameters;, ¢; are given byQ(a;) = \jkvy/wi,
andcg = 1, R(eq, ) = (Mk, A2k). Subsectiorb.1 shows that this is well defined and
a;, ¢; is differentiable in\;, w;. For\; = 1/3,w; = 1/3we haven; = s,¢; = 1 (Q(s) = kv
definings.) We show that the partial derivatives bf¥ (w, \) are0 for w; = \; = 1/3
and the Hessian matrix is negative definite. This implies irerh3.

Fori = 1,2 the first derivatives are, witlt, ¢, denoting the right derivatives af, ¢;
resp. and recalling th&)(z) = “"”q((g)”),q( )=exp(z) —x — 1, R(x1, 1) =
(:vlrzl(l,:vl,mg) m2r12(1,m1,m2)>

r(lLxi,z2) r(l,z1,22)
dInW (o, \ ¢

din (@, \) >:—lnq(a0)+wo ad (4 )+1nw0+1—|—

dwi ( )
+Ing(a;) + w; aid(a )—lnwi—l—

Q(CLZ)

/ /

—kvyho— — k )\ =

9 0 8 a;

=Inwy — ln w; +Inq(a;) —Ing(ag) (usingQ(a;) = kyA;/w;). (25)

¥ (@) _ag(a) | aig'(a)

=W Wi
d\; " q(ao) q(a;)

/
m(-m%—1+m%—%@+

Qg
a’
+InX\+1—Ina; — \;— —

i
/ /
C C
—IIIC,'—)\l—l—)\Q—2 +
C1 (&)

Are, (1, c1,¢9) + yre, (1, ¢4, 2)
7’(1,01,02)
=ky(InX\; —InXg+1nay —Ina; —In¢;) (26)
(using R(ci,ca) = (kA1, kA2), Q(ai) = kyAi/wi))

orA =w = (1/3,1/3) the terms in25) and @6) yield 0.
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The second derivatives (withj € {1,2},i # j) are (observe that some of the subse-
guent terms are equal as the derivative does not depend ondiaeng of the variables)

W (o, ) 1L 1 @ a
amm¥w, A) S W U A 27
d)\i, )\2 <)\z * )\0 * ao Qi cl) ( )
d? ( 1 a, ¢
=k -+ 20 _Z) 28
dAi; A; ! Ao ag G %)
2 T /Wi . !/
Pl _ 11 aglw) ) 29)
dwi, w; Wo Wi q(a;) q(ao)
Ed@A) 1 ay'(a) (30)
dw;, w; wWo q(ao)
C¥(@,N) _ aq'(a)  ayd'(ao) (31)
dwi, )\2 q<az) Q<a0>
d? agq'(ao)
_ 32
dw,-, )\j Q(CLO) ( )
2 O A\ g !
Env@ ) _ o (d_a (33)
d)\i, Wi Qg a;
> In¥(w, \) ag
el Sk R/ SVl 34
d)\i, Wi Qg ( )

In (27) - (34) we need several, andc,. We get these from the defining equatiap&z;)
andR(Cl, CQ).

Derivative ofay. By Q(a;) = kyA;/w; we have

aoq’(ao) _ kAo Qg _ Q(ao)
C_I(ao) Wo kEyXo woq’(ao)
Taking the derivative of both sides wu; yields

ag  apq (ao)woq (ao) — q(ao) (—q'(ao) + woapq” (ao))

kydo wiq'(ag)?
. @6 Q(ao) %QH(GO)Q(GO)
= —+ = / - / 2
Wo wodq (ao) woq (ao)
! !
1
aoq( (a)O) N " (an)g(ao)
a w q"(aop)glao
dido w0<k7§\0 T g a0)? _1)
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The last step is obtained by collecting all terms wighon the left, multiplying with
¢ (ap)/q(ap) and dividing through the term in brackets. We define

) = ( q(z)  ¢"(@)q(x) 1) .

zq'(x)  q'(x)?

UsingQ(a;) = kvy\;/w; the preceding equation becomes

a9,4,9'(a0) a4 (a0) 1 1

qlag)  qlag) wo ( q(ao)) 4 @”(a0)glao) _ 1) - woC(ag)

aoq’(ao q'(ap)?

We use equatio®(a;) = kvy\;/w; again to get

m%wl _ k‘v%” _ 1 _ 1
o o+ TR 1) MO
Derivative ofa;. As for ay, we get
k‘v@ _ 1 _ 1
Mo (e e 1) MC@)
a4 (a1) o 1 1
0 (R o) O

The remaining:;—derivatives can be calculated in a similar way. kpr= \; = % (then
a; = s,¢; = 1) we get

alq'(a;) 3 : 3
! for: =0and —
q(a;) C(s) C(s)

Derivatives ofc; By R(ci, c2) = (kA1, kX\y) we have

/
lw% and fori =1,2. (35)
Q;

clrcl(17cl702) o k)\ — C1 o )\IT(17CI7C2>
- SN T A 1 e S et

T(l,Cl,CQ) k T01(1701702)

Taking the derivative wrt), leads to (omitting the argumein}

1 r(c1, )Ty e (C1, C2)
/ - )\ )\ ? 1,C1 Y —
Cl)\l (k ! * ' Tey (01,02>2
o\ (TCQ(cl,CQ) 7“(01,02)7’01,02(01,02)) N r(c1, c2)
— A\l

re,(C1,¢2) e, (€1, C2)? e, (€1, C2)

(36)
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Also by R(cy, c2) = (kA1, kX)) we have

Care,(C1,C2) ) co  r(cr, )
OrelCL%2) 1y, e _

r(cy, o) ko Te

Taking the derivative wrt\; again leads to

/ ( 1 1+ 7"(01702)7102’02(01702)) _

k—)\Q a TCQ(CI7CQ>2

re,(c1,¢2) (1, C2)Tey e (€1, C2)

i (-
P 1, (e, ) Tep(C1, C2)?

Again we consider the point; = Ay = % thenc; = ¢ = 1 and equations3g) and @7)
yield

(37)

/ / / /

Therefore we havé% =6 andc% = 3. Analogously for the derivatives wrk, we get
“o _ 3and e = .
c1 co
Putting the derivatives together we get froB7X - (34) the following Hessian-Matrix
of In¥(w, \) at the pointy; = \; = 1/3 , abbreviatingD = 3/C(s),

—2(:+D) —(34+ D) 2D D

H- —(+D) —2(1 + D) D 2D
- 2D D —2(8kv+ D) —(3ky+ D)
D 2D —(8ky+ D) —2(3kv+ D)

H is negative definite ifi- H is positive definite.

Lemma 21 (Jacobi) A matrix A = AT = (a;;) € R™" is positive definite iff the deter-
minants of ist: main-sub-matrices; are positive.

aiq ... A1k
ail aio . .
Slzan’ Sy = y e Sk = : : y e S, =A
a21 22
Apy ... gk
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By Lemma21l — H is positive definite, a® > 0 asC(x) > 0 for x > 0, and
1
det S} =2 (g"‘D) >0

1
detS2:3<§+2D+3D2) >0

1 2 2
det S3 = ;kv + gD + %ka +2D% + 16kyD?* > 0

64
det Sy = det(—H) = —k:2 2+ D? + 64k*~+*D? + 16kyD? +
12 1
+—8k2 °D + —6k7D > 0.
3 3
Theorem15 (repeated) LetU = (1/3,1/3). There is are > 0 such that
> sweu N(@, 1)/Ng < C - 3070,

Proof. For \,@ € U anda; given byQ(a;) = \ky/w; andcy = 1 and R(cy,cy) =
(Aik, Xok) we have]M < O(&%)¥(@, A, a,e)"byCorollaryl2. Letz = (1, ..., x4)
andh(z) = n¥(w, )\ a,c)Withw, = x1,wy = 2, A\; = 23, Ay = 74 anda,, ¢; as be-
fore forw, A EQLetl/B = (1/3,1/3,1/3,1/3) thenh(1/3) = In 377, h,.(1/3) =
and—Hesgh)(1/3) , Hess{h) the Hessian matrix of, is positive definite ( proved above,
note Hes§h)(1/3) = H.) We abbreviaté; ; = h.,.,(1/3) and by Taylor's Theorem we
have fory", 22 — 0

W73 +2) = WTB) = 5 30 3 —hogiry + o3 a?)
< h(1/3) - % (Z (hig+0)2 + > > h”xlxy> (38)

i jF

with § arbitrarily small fory", x? small enough. We picksuch that-(Hesgh)(1/3)+41)
is still positive definite.

We consider§8) with x; = wy/n — 1/3, x3 = wy/n —1/3 andxs = [1/(kyn) —

Z U(w,\,a,c)" = Z exp(h(zy, T2, T3, 4)N)

€U @ U

A
< 30-n Zexp[ %(Z (hig+0)z + Y > = h,ﬂ'%) ] (39)

)
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Note thatw; = w;/n, \; = ;/(kyn), w;, ; integer. We distribute the factar into thez;
multiplying eachx; with \/n : x1/n = wi/v/n — /n/3 andxsy/n = 1i/(kyy/n) —
Vn/3. As w;, |; are integers, the sum i89) multiplied with 1/(/n" (kv)?) is a Rieman-
niansum of the integral [ [ [ exp[—(1/2)(—(hii+0)xi + 3, 2. —hijrix;)|dedrydrsday
with bounds—oo, oo for eachz;. Following [22], page 71, the integral evaluates to
(27)?/v/D whereD > 0 is the determinant of—h; ;) + 6. Thus forn large the sum

in (39)is (27)2/vV/D(1 + o(1))v/n' (k7)* = O(n2). The claim follows.

5 Remaining proofs

5.1 Local limit consideration
Lemma 6 (repeated)Let Cn > m > (2 +¢)n, C,e > 0 constants. Then

M(m,n) = 0(1)- ()" - g(a)" with a defined byQ(a) = =

ae

Proof. As Q(z) is increasing the assumptions fer/n imply thata is bounded away from
0 andco. Let X = X (x) be a random variable with Prpk = j] = (27/5!)/q(x), for
j >2,andletXy,..., X, beindependent copies &f. Then

Z(l m | ) = ProdX, +---+ X, = m]~qx) -ml.

1,>2 1, <y ln

We have EX]| = z¢'(z)/q(z) = Q(z). We pickz = a then EX]| = m/n, E[X; +--- +
X,] = m. The bounds om imply thatC' > VAR[X] > ¢ > 0 (constantg, C' not the
same as above.) Therefore the Local Limit Theorem for kattype random variables ,

cf. [4] , Theorem 5. 2, page 112, implies that PtEb+ --- + X,, = m] = 6 <L> :

Vm
Applying Stirling’s formula in the formm! = ©(y/m) (%)m yields the claim.

We come to Lemmad.l. First we show thatR(cy,c2) = (Ri(cq, o), Racr,c2)) =
(kA1, ko) with R;(zy, 25) = zire (LT172) Gefinese, — ci(M\1, A7) and that; is differen-

r(l,xz2,x2)
tiable with respect ta,; for (A, X\s) € U-(1/3,1/3). By the theory of implicit function of
several variables we need to show that the Jacobian Detentnif R(x;, z5) is # 0 for
x1 = xo = 1. The Jacobian Matrix oR(x1, z2) is , omitting the arguments;, recalling

thatr = r(1, zy, x2) is our polynomial,

2
1 (T + T1Tgy 2y )7 — 1Ty, T gy 20T — 1T, Ty
J ==
)
2
LoT gy x0T — T2V Tag (rl’z + 1’27’1,2,952)7“ — ToTy,
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Forx; = z, = 1 we get the following values: = r(1,1,1) = 3" 1, r,, =1, =
k3572 ru oy = Tapas = Tayan = k(k — 1)3873. ¢ From this we get that the determinant of
Jforzy =xy=1Is.... #0.

Lemma 11 (repeated) There is arx > 0 such that for\;, \2) € U-(1/3,1/3)

n Clll Cl22

K() = 0 (1) L0 ) ik R(er ) = (kAy, BAg) definingey. e
Proof. The previous consideration shows tkiat, c,) is close to(1, 1) and well-defined.
Let (X,Y) = (X (21, 22), Y (21, 22)) be the random vector with

(it 1) 712
Proq(X7 Y) - (k17k2)] = k—ki—ka, k1, k2

T(17 X1, x2)

if &, = ky mod 3

and0 otherwise. Thet(X,Y) = (Ry(x1,x2), Ra(z1, z2)). We considern independent
copies(X;, Y;) of (X, Y) with (x1, z2) = (c1, ¢2). ThenE [>_. (X, Y))] = (kAym, kAam) =
(I1,15). Let DCo be the determinant of the covariance matrix &f Y'). We show below
that for(cy, c2) close to(1, 1) we have thaDCo > 0 for constants. The Local Limit The-
orem for lattice random vector3], Theorem 22.1, Corollary 22.2 with= 2 shows that
Prold) ", (X;,Y:) = (kAim, kAom)] = ©(1/m). This implies the claim.

The covariance matrix gfX, Y) is defined as

EX? — (EX)? E[XY]— E[X]E[Y]
Co =
E[XY]— E[X]E]Y] EY? — (EY)?
For(X,Y) = (X(z1,22),Y (21, 22)) We get

21 (X170 20 (1, 21, 22) + 714, (1, 21, 22)

EX? = :
T(l,l’l,l’g))

EY? = T2 (Lol ay,ay (1, 1, T2) + Ty (1, 21, 72)
T(l,l’l,l’g)) ’

$1$2Tx1m2(1, xy, $2)
T(la X1, x2)

E[XY] =

This leads to a matrix similar to the Jacobian Matrix abow:/; = x5, = 1 its determi-
nant is positive.
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5.2 The sharp threshold

To prove the sharp threshold we apply a general theorem4l&t{0, 1}V and leta,, be

the number of elements of with exactlym 1's. We letu,(A) = Z%:o Ay - P (1 —
p)V~™ be the probability of4, notea,, < (Z) If Aisanon-trivial, monotone set we have
thaty,(A) is a strictly increasing, continuous, differentiable ftioo in0 < p < 1. In this
case for0 < 7 < 1 we have thap. is well defined by, (A) = 7. Notlet A = (A,,),>1

and let beA,, be monotone. We say thdthas a coarse threshold iff there exist constants
0 < p <7 < 1suchthatp, —p,)/p, > € for a constant (and infinitely manyn.)

We can assume that = O(p,) otherwise the threshold is clearly coarse. Moreover, we
assume that, o1y = o(1).

Theorem 22 ( Bourgain, fL3], Theorem 2.2 ) There exist functions = 6(C,7) > 0
and K = K(C,7) such that the following holds: Let = A, with A C {0, 1}V be
a monotone set withh < p,(A) < 1 — 7 for constantl/2 > 7 > 0 and assume that

d“fl—;m < C. Then at least one of the following two possibilities holds:

1.
Probjac A; F3be A |b| <K ,bCa] > ¢
2. There exists € {0,1}", b ¢ A, |b| < K such that the conditional probability
Prob,ja € A|b C a] > Prob,[A] + 4.

Corollary 23 A = (A,) has a sharp threshold j#,_,q) = O(p;) for all 7 > 0, and for
eachl/2 > 7 > 0,0 > 0,e > 0,K, p, < p < p1_. and all sufficiently large: the
following two statements hold:

1.

Prob,jac A; d3be A, |b| < K ,bCa] < 0.

2.1fb € {0,1}N, b ¢ A,|b| < K with the conditional probability Proa € A|b C
a] > Prob,[A] + 6 then Prob;[A] > 1 -7

Proof. Assume, thatd has a coarse threshold. Let> o > § > 0 be such thatp, —
pp)/ps > €. We abbreviatey = (p, + pg)/2. By strict monotonicity ofu,(A) we have

pe(A) = v foraa >~ > 5. We have that=" = el p = p* foraps < p* < g

(by the Mean Value Theorem.) We have that- pg)/p* > <’ asp* = O(pg). Therefore

% pt = (WZ—;A)‘p = p*) -p* < C for a constanC'. The preceding theorem applies to

p*. Our assumption implies that the first item of the theorem am¢$old.
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Therefore the second item of the preceding theorem musttioid= p*. We have that

p*+ 22 < p,. Thereforep* (1 + ”;;’2"’> < pa- Moreover®—22 > " asp* = O(pg).
Our second assumption shows that the preceding statememobtchold. Therefore the
second item of the preceding theorem does not hold, toogfdrerA cannot have a coarse

threshold.

Let F'(n, p) be the random formula of equatiops+ - - -+ y, = a mod 3,0 < a <2
overn variables where each equation is picked with probabhility*~* independently.

Lemma 24 Unsatisfiability ofF'(n, p) has a sharp threshold.

Proof. We apply Corollary23. Letp = c¢/n*~!. Observe that"'(n, p) is unsatisfiable
whp. forc > 1 by expectation calculation. Concerning the first item of ¢beollary we
show thatF'(n, p) does not contain a subformula over a bounded number of Vasiahch
that each variable occurs at least twice. The expected nuaflseich subformulas over
1 <1< B, B constant variables is bounded above(By: (c/n*~1)*/* < O(1)-n@/t=1,

As k£ > 3 andl > 1 the geometric series shows that the expectation of the nuofbe
such subformulas witk B variables iso(1). As each unsatisfiable formula contains a
subformula where each variable occurs at least twice we mawmsatisfiable subformula
of bounded size whp. The first item of the corollary holds.

Concerning the second item, IBtbe a fixed satisfiable formula and jet< 1/n*~1.
We assume that PrddNSAT(B U F'(n,p))] > ProdUNSAT(F (n,p))] + 6. UNSAT(F)
is the event that' is unsatisfiable. With high probabilit¥(n, p) contains only equations
with 1 or none variables fronB (asp < 1/n*~! and the number of variables d@f is
constant. )

Consider a fixed satisfiable formulaover the variables not i We pick each equa-
tion with exactly one variable i3 with probabilityp = ¢/n*~! independently. We assume
that the resulting random formula is unsatisfiable with pimlity 6 > 0. We show that
this implies that the random instance obtained fiBiny addingeach equation with prob-
ability e/n*~!, independently; > 0 constant. is unsatisfiable with high probability. This
directly implies that the second item of Coroll&$ holds.

Consider a fixed variable of I. We throw in the equations containingwith £ /n*~1,
We show below that the resulting random formula is unsakikfiaith probabilitys’ > 0,

§' constant. Throwingeach equation with probabilitys /n*~1, the expected number of
variablesz such that the equations containimdead to unsatisfiability of' is §'n. For

x # 2’ the equations withr or 2’ are nearly independent. Tschebycheff’s inequality shows
that we even have a linear number of variablewhose equations yield unsatisfiability
whp.
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We show the statement above concerning the fixed variabléhen throwing in the
equations with one variable iR with p = ¢/n*~! we get with probabilityy a setU such
that F U B U U is unsatisfiable. With probability slightly lower, but $ttonstant> 0 we
can assume thdf is of bounded size. Now consider a satisfying assignmegit3. We
replace the variable fror® in each equation by its value undeand get a set of equations
with k£ — 1 variables each. When we add these equations tbe resulting formula is
unsatisfiable.

Now consider our variable from F' and throw in each equation containimgwith
probabilitys /n*~1. With constant probability> 0 we get the a se’” obtained from a set
U as above by replacing the variable frabnby . With the same probability we géf,
instead ofU’ whereU, is obtained as follows: Lef’ be an equation of/ such that the
variable fromB has the valug in the satisfying assignmentfrom B. The variable from
Bisreplaced withe in £ and we subtract from the right hand side. The resulting formula
is unsatisfiable for all assignments which have 0. U; is defined by adding — j to the
right hand-side. The resulting formula is unsatisfiableafet 1. Us is defined by adding
2 — j and the resulting formula is unsatisfiable for= 2. With constant probability- 0
we get one such sét;.

To get unsatisfiability for alB values ofr we observe that with probability roughly
5% we get three set§, V, W with one variable inB which are disjoint and each of them
causes unsatisfiability. This implies that with constamtbability > 0 we get three sets
Uy, V1, W, of equations withe. The resulting formula is unsatisfiable for any value:of
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Il. Uniquely extendible constraints

1 Outline

A uniquely extendible constrairit on a given domairD is a function fromD* to true,
false with the following restriction: For any argument kgith a gap at an arbitrary posi-
tion, like (d;,...d;—1,—,d;y1, ... ,dx) there is a uniqué € D such that
C(dy,...d,...,d) evaluates to true. Note thét(d,,...,d,...,d;) = true implies that
C(dy,...,d,...,d,) = false ford # d. The random constraint is a uniform random
member from the set of all uniquely extendible constrainsrd. Let I” be the set of
all such constraints. Typical examples of such constrairgdinear equations with vari-
ables, moduldD|. A threshold result analogous to Lemrd can be proved by similar
arguments based on symmetry properties of uniquely extendonstraints.

Given a set of: variables a clause is an orderkeduple of variables equipped with a
uniquely extendible constraint. The number of all formwiédth m clauses iSVI (km, n) -
|I"|™, we denoteN, = M (km,n) (notation cf. ().) A random formula is a uniform ran-
dom element of the set of all formulas. The random variablgives the number of so-
lutions of a formula and ] = (1/d)*~"" m = ~n. This follows from symmetry
considerations. For two assignment$ we study EX, X;| where X, is = 1 iff the for-
mula is true unde. It turns out that X, X,| depends only on the number of variables
which have different values underb. Let DIFF(a, b) = the set of variables with different
values undet andb.

Given ak-tuple a of values fromD and anothek-tuple b differing from a in exactly
1, 0 < 1 <k, slots, we letp; be the probability that the random constraint is true under
b conditional on the event that it is true underThe following very simple generating
polynomial for the(*) - p; is the observation making our proof possible.

Lemma 25 (a) (From [6]) po = 1, pis1 = 75 (1 —pi).
(b)

Letp(z) =

Ul

((1+z)k +(d—1) (1—di1)k> thenp(z) = Z(f)pi-zi
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Proof. (b) We need to show that = 1 <1 + (=1)° (d—il)l_l) . This holds fori = 0,7 =
1. For i > 1 we get by induction:

s =gt ) )
= dil - d<d1_1) —é(—l)"‘1 (ﬁ)i_l = $<1+(—1)" (ﬁ)i_l)

Weleth:m~(k,)-pjfor(]gjgk, K(l): Z Cj1~'~ij.
J

d
ThenN(w,l) = M(l,w)M(km —1,n —w)K(l)

is the number of formulag’ true under two assignmenisb with |DIFF(a, b)| = w and
the variables with different values occupy exadtsjots of F. The factors(’;f) of C; count
how to distribute thé slots. The factotM (I, w)M (km — I,n — w) counts how to place
the variables into these slots. The factB}s p; count the number of constraints such that
the formula becomes true underb. Given an assignment the number of assignment
formula pairs(b, F') with |DIFF(a,b)| = w, F' is true unde, b, and the variables from
DIFF(a, b) occupy exactly slots is

1

n
N(w,l) = - -
(w.1) ( No - ||

w

)(d — 1) N(w,l). AdEX?=d">" N(w,l)-

The next theorem is analogous to Theorgm
Theorem 26 3~ N(w,1)/(No|['|™) < CdU=2" |k >8, m= (1 —7)n.

We let\ = [/km andw = w/n with w, [ always having the meaning above. The proof of
Theorem26 follows the pattern of Theoref. We omit all steps referring to the summa-
tion, they are quite analogous. The details to bound the samdmare however different.
We have

cl

K(l) = Coeff2!, p(z)™] - (%)m < <p(cc)llfl>m Loreso

We definel (w, \, z, y, z) :=

() (i) () (5 )
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We havel (1—-1/d, 1—-1/d, s, s, d—1) = d*=* |, sisgivenbyQ(s) = kv, cf. discus-
sion around Lemma@. As Lemma3 we have the next Lemma; the subsequent Theorem is
as Theoren®.

Lemma 27 N(w,l)/(No||™) < ¥(w, A, a,b,c)-O(n)fora,b,c > 0.
Observe that fo€)(s) = kv > 8 we haves > 7.

Theorem 28 Letd = 4 ands > 7. For any A > 0 there exist, b, c > 0 such that:
Q) ¥ (w, N\ a,b,c) < d=2.
(2) For anye > 0, A note—close tol — 1/d, ¥(w, A, a,b,c) < d'™27 — 4.

Two realsa, b ares—close iff |[a — b| < e. To treat\ close to(d — 1)/d we consider
the functionP(z) = zp'(z)/p(z) (cf. discussion after Corollary0.) We haveP(d — 1) =
k(1—1/d) and the derivativé”’(d — 1) > 0. Thus we can define= c¢(\) for A e —close to
1—-1/dby P(c) = kX. And c¢()) is differentiable. As Lemmal, Corollary12, and Lemma
13 we get the nex8 items. To prove Lemma&1 the Hessian matrix of (w, \, a, b, ¢) is
considered (calculation analogously §.]

Lemma 29 There is are > 0 such that forw, A\ e—close tol — 1/d we haveK (l) =
O(1/y/n) - (p(e)||/d)™ - 1/ with P(c) = k.

Corollary 30 Thereisare > 0suchthatfor, A beinge—close tol—1/d N (w,1)/(No|I'|™) <
O(1/n) - ¥(w, A\, a, b, c) withQ(a) = l/w,Q(b) = (km —1)/(n —w), P(c) = k.

Lemma 31 The function?(w, A, a, b, ¢) with a, b, ¢ given byQ(a) = l/w, Q(b) = (km —
)/(n —w), P(c) = Mk has a local maximum with valué =2 for A\ = w = 1 —1/d. In
this case we have =b = sandc=d — 1.

. oy a(sz) | alsy)
We define OPT(x,y,s) = (d—1) o(s) + (s)

1 Q
OPTy(x,y,z,8) = (y—i—xz) L Y+xz>0

Q
OPTg,(z,s):(1+Z)Q+(d—1)-'1—di1 , Q=0Q(s)

OPT(z,y, z,s) = OPTy(x,y,s) - OPTy(z,y, 2, s) - OPT3(z, s).

As Lemmal6 we have the next Lemma. We prove Theorg&based on this lemma. We
cannot proceed analogously to the proof of Theogdmecause the polynomialz) is not
as symmetric as(xg, z1, x2). The two casesd small (in Sectior) and\ large (in Section
3) are treated separately.
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Lemma 32

A 1
Let a,b,c > 0 be such that1—>\ = %. Then ¥(w, A, as, bs,c) < %OPT(CL, b, c,s).

2 Proof of Theorem28ford =4, s> 7, A<1-—1/d

We restrict attentiontd = 4 fix b = 1 and considet, a with 0 < ¢ < 3and0 < a < 1.
With these values OR®, b, ¢, s) leads to the following notation used in this Section.

1 Q
OPTi(a,s) = 3- 18U 41 OPTa,c.s) < )

q(s) 1+ ac
OPTy(c,s) = (1+¢)9 + 3- (1 - %)Q

OPT(a,c,s) = OPT(a,s) - OPTy(a,c,s) - OPT;(c, s).
The values of OP{lu, ¢, s) at the corners of the rectangle foK ¢ < 3, 0 < a < 1 are:

OPT(0,0,s) = 4 , OPT(0, 3, s) = 49
OPT(1,0,s) = 4* , OPT(1,3,5) = 4 (40)

OPT(a.c.3) OPT(a.c.14)
0¢Cacl. 0¢ecC3 0cCa<l, 0<c<3

M » o

M 32 o

MMM NN WY W W WA

Fig. 2. OPT(a, ¢, s) over the rectanglé < a < 1,0 < ¢ < 3for s = 3 ands = 14.

We prove four lemmas. Observe thétc, s) in Lemma33is a flat linear function in

c>0from A(0,5) = 1 — 5 t0 A(3,5) = 1.
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Lemma 33
7

Lets > 7andlet A(c) — A(c,s) — ﬁ.c g

Then OPTA(c), ¢, s) is strictly increasinginl < ¢ < 3.

A(c, s) in the subsequent Lemma is a steep linear function startidg@ s) = 0.

Lemma 34

Lets > 6andletA(c) = A(c,s) = = -c.

2| O

Then OPTA(c), ¢, s) is strictly decreasing fof < ¢ < é

Lemma 35 (a) For each constari < a < 1 OPT(q, ¢, s) as a function inc with 0 < ¢ <
3 has a unique local minimum.

(b) For each constant < ¢ < 3 OPT(q, ¢, s) as a function inb with0 < ¢ < 1 has a
unique local minimum.

Lemma 36 Lets > 6 then OPTa, ¢, s) < 4 —dfor (a, ¢) =

/11 12N (22N (23N (T 3\ (1T |
-(3) 02) G2)(e) (-5aq) (-5a)

Proof of Theoren28 for A < 1 — 1/d. (cf. proof of Theoren® after Lemma20.) We
haver <1—-1/d < A\/(1 — ) < d — 1. Using Lemma32 we need to show that for
eachP < d — 1 we have a decompositioR = ac such that OPTa, ¢, s) < 4 of 4 — .
Lemma33treatsl — 7/(15Q)) < P < d — 1. Lemma36 together with Lemma&b5 treat
1—-7/(15Q) > P > 1/(2Q). Finally Lemma34 treats1/(2Q)) > P > 0. Observe that
OPT(0,0, s) = 4 and we need to look into the proof of LemrBato get the—é required
for small P. O

2.1 Proof of Lemma33

Lemma33 (repeated)

Lets > 7andlet A(c) = A(c,s) = ﬁ-c +1 —ﬁ.

Then OPTA(c), ¢, s) is strictly increasinginl < ¢ < 3.
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Proof.

Some notation: PPLUSB, ) = (1 + )" + 3 (1 - %)y r <3

Yy TN\Y
PMINUS(z,y) = (1 + z)¥ — (1— 5) L <3 (41)

PMINUS(c, Q — 1)
PPLUS3c, Q)

d
- InPPLUS3¢,Q) = Q-
C

d 7 d
A= Ale), A = 2 4= - OPT(4 -
(©), A T wenoPTAes)
3SR - sA L AetA PMINUS(c,Q—l) ey
~ OPTy(A,s) 1+ Ac PPLUS3c, Q) N
BUREL A A4 Ac PMINUS(c, Q —
exp(s)— + A'c (C,Q ]_)
- —< 0 42
" TOPT,(As) _ 1+4c | PPLUS3Q) (42)

s(exp(s) —1)
)

exp(s) —s—1

Forc = 3 the derivative is= 0, A(3,s) =1 (OPT(1,3,s) =4.)

(Division with Q =

We split the right-hand-side ofi) into two additive terms. Inequalitied ) and @4)
imply that the% OPT(A, ¢, s) > 0. Forc = 3 both left-hand-sides are 0.

3exp(As)—1) A ,
ot 7 _Ae (43)
OPT, (A4, s) 14 Ac
A PMINUS(c, Q — 1)

14 Ac PPLUS3C. Q) " (44)

Proof of @3) for0 < c < 3 ands > 7.

exp(sA) — 1 I .- exp(sA) —sA —1
exp(s)—1" 7 exp(s) —s—1
We need to shov ;KA Ac 3K ¢

L+l T1+Ac = 3L+1 1+ Ac
< 3 (K + KAc— Lc) > ¢ (Forc = 3 both sides are= 3.) (45)

K =

By (7) we haveL. < K and @5) is implied by
3K (1+Ac—c¢) > ¢ (Forc = 3 both sides are= 3.) (46)
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K > 0is increasing and convex,+ Ac — cis > 0, and increasing for > 3/2, and
convex. Therefore the left-hand-side 4] is convex forc > 3/2. Therefore, for: > 3/2,
it follows from

d d
(%31( (14 Ac— c)) - < <d—cc> - =1 47)

d 3exp(sA)-s- —307Q
—3K (14 Ac— = (14 Ac —
d03 (14 Ac—¢) oxp(s) 1 (14 Ac—c) +
3(exp(sA) — 1) 7 7 7
: 1- 1),
ap(s) -1 \300°7300°T T 100

d
Therefored—CBK (14 Ac—0)—y =

Texp(s)(exp(s) —s—1) 21(exp(s) —s—1)
10(exp(s) — 1)2 10s(exp(s) — 1)

(48)

Fors = 7 we get that48) is < 0.995. Moreover it is decreasing in (proof omitted) and
(47) holds for alls > 7 andc > 3/2. Forc < 3/2 we argue as in the proof of Lemma
20(a) cf. the argument following2Q).

Proof of @4) for1 <c¢ < 3 ands > 5.

PMINUS(c, Q@ — 1)
+Ac ~ T PPLUSZC, Q)
<= A - PPLUS3c, Q) < (1+ Ac)PMINUS(c,Q — 1)
<= A-(PPLUS3c,Q) — c-PMINUS(c,Q — 1)) = A-PPLUS3c,Q — 1)
< PMINUS(c,Q — 1)
PMINUS(c,@ — 1)  (1+¢)97 ' —(1—£)@
PPLUS3c,Q —1)  (14¢)9 1 +3(1—£)e-!
(For ¢ = 3 both sides of49) are = 1.)

We need to sh 1

— A< (49)

Forc = 1 inequality (49) becomes

R e ) MR L A
N _ Q-1 — ~ Q-1
15Q 2043 (3) 15 (3)
1\ ¢! 7
As 4 3 < 50 for Q@ > 5, (49) holdsforc =1ands > 5 asQ@ > s.
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To show that49) holds for all3 > ¢ > 1 we show that the right-hand-side is concave
forc > 1.

d PMINUS(c,Q —1)
Numerator ofd PPLUSAcC. Q— N
(Q—l)-((1+C)Q_2+%(1—§>Q_2> ((1+c)Q1+3 1—— )

@ (e = (-5)")- (w0 - (-5

- (Q—l)-(1+C)Q_2-<1—§)Q_2- ((%H) (1+¢) + (1—5)-(“3))
—(Q-1)-(140)° (1—§)Q i (%+3+2> (50)

We have that1 + ¢) - (1 — %) is decreasing for > 1, and PPLUSS:, @ — 1) is increasing
Therefore the right-hand-side o) is concave.
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2.2 Proof of Lemma34

Lemma34 (repeated)

Lets > 6andletA(c) = Alc,s) =

| O

- C.
Then OPTA(c), ¢, s) is strictly decreasing fob < ¢ < %

Proof. Analogously to 43) and @4) this follows from 61) and 62.) (Notation cf. (41.)

exp(As)—1)

3 /
with A = A(c), A' = Q/2 —=2-L_y Ac

__ae 51
OPTy (A4, s) 1+ Ac <0 (1)

A PMINUS(c, Q — 1)
- . 2
T 4c = ppLUS3cg) (52)

Proof of 61) for s > 5.55 and0 < ¢ < 1/Q
exp(sA) —1 I exp(sA) — sA —1

K = =
exp(s) — 1~ exp(s) —s—1
KA Alc 3K c
W d to show
CNeeClOSNONTI T “ 114 ©  3L+1 " 17 Ac
< 3 (K + KAc — Le¢) < cFore = 0 both sides are= 0. (53)

As AK < L by (7) we get that $3) is implied by3 - K < ¢. Forc = 0 both sides of
3 - K < care0. The left-hand-side is convex. It is sufficient to shéw K < c. for
¢ = 1/@Q. Plugging in the definition of /@) for candA(1/Q,s) = 1/2into K we need
to show
3exp(s/2) —1 exp(s)—s—1
<
exp(s) — 1 s(exp(s) — 1)

<= 3sexp(s/2) < exp(s) —1
For s > 6 the preceding inequality holds by simple consideration.

Proof of 62) for s > 2 andc < 1/ Analogously to the proof of49) we need to show

o Q PMINUS(C,Q — 1) B (1 + C)Q_l o (1 . Q)Q—l
A= 56 = PPLUS:{C,Q — ]_) B (1 + C)Q—l + 3(1 _3§)Q—1 (54)

Forc = 0 both sides of the preceding inequality ate0

45



We show, thatd’ > the derivative wrtc of the right-hand-side o54). Using 60) we need
to show

g.(<1+c>cz-1+3<l_s)@—l)2 > Q-1+ (1-9)7 18

3 3 3
Q- o-
Nme@-a+cﬂ*%(1—§> 1-}—E(Q—&)-(Hc)c?—?-(1--%) 2ﬁ§

3
asﬂ+@-@—§>2ﬁmogc§UQ<z

Enlarging the right-hand-side it is sufficient to show

3 <<1 ro2 43 (1- g)Q_l)z > (1499 (1- g)Q_l 32,
c\ @1

1—e\Q1\? 1—¢\9!
«—3(1+3 > 32. 3
1+c¢ 1+ec

Settingz = < 1+§) it is easy to see that the preceding inequality holds:fer 0, and
therefore clearly for < 1/Q < 3.

wlo

2.3 Proof of Lemma36 and Lemma35

Lemma35 follows by elementary consideration, see the analogouatsiin in the proof
of Lemmal8(a) and Lemmad.9 (a).

Lemma36 (repeated)Lets > 6 then OPTa, ¢, s) < 4 —¢for (a, c) =

/11 1 2 2 2 23\ (,_ 7 3 LT
(o) Ga) (Ga)Ga)(-maa) ()

Proof. The claim fora = 1, ¢ = é is included in Lemm&4.
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FIRSUM(a, ¢, s) = (1+ ¢)°0PTy(a,c,s) = [——° ’
a, C, - 214, G, - 1—|—CLC

c

Q 1—-2\“
SECSUMa, ¢, s) = 3 <1 — g) OPTy(a,c,s) = 3( 3) then

1+ac
OPT(a,c,s) = OPT(a,s) - [FIRSUM(a, ¢, s) + SECSUMa,c, s)].

14+ \?
Y _ Q _
Forz,y > 0 we have FIRSUM z, =,s | = | —— =
Q l+z-5

Q
L(1—x) 1 —
Q y(1—z)
14+ = - < 2 )<L 1—
( * 1+x%> —eXp<1+x%>—eXp(y( ©)
We have that OPla, s)is decreasing i for constant < 1.

2
, C = —.

Q@
We have by §5) FIRSUM(a, ¢, s) < exp(1)

SECSUMGa, ¢, s) is decreasing in > 0.

(As can be shown by elementary means.)
OPTi(a, s) (SECSUMa,c, s) + exp(1l)) < 3.913 fors =5
and decreasing inwith (56)

Let ¢ =

N —

2 2
Let a = 3 c = @
We have FIRSUMa, ¢, s) < exp(2/3)

SECSUMa, ¢, s) is decreasing ir > 0.
OPTi(a, s) (SECSUMa, ¢, s) + exp(2/3)) < 3.962 for s = 4
and decreasing inwith (56)

2 3
Let a = 3 €= 0 We have FIRSUMa, ¢, s) < exp(1)

SECSUMa, ¢, s) is decreasing ig > 2.
OPT,(a, s) (SECSUMa,c, s) + exp(1)) < 3.985 for s =6
and decreasing inwith (56)
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Leta =1—7/(15Q), ¢ = 3/Q.

OPT(a, s) is increasing irs to 3 exp(—7/15) + 1.

FIRSUM (a, ¢, s), SECSUMa, ¢, s)are both decreasing in

(3exp(—7/15) + 1) (SECSUMa, ¢, s) + FIRSUM(a, ¢, s)) < 3.9fors =4

Thecaser =1 — & andc = 1 isincluded in Lemma&3.

3 Proof of Theorem28ford =4, A >1—1/d,s > 5.

We fix a = 1. Observe thaf3(1/c) in the subsequent lemma goes frarto 1 — 1/(20Q)
forc¢ > 3.

Lemma 37 Let B(z) = B(z,s) = 1+ 3/(2Q)x —1/(2Q). Then OPTL, B(1/¢), ¢, s)
is strictly decreasing i > 3.

Proof of Theoren28for A > 1 — 1/d. We have\/(1 — \) > d — 1. ForeachP > d — 1

we havec such thatP = m. As OPT(1, 1, 3, s) = 4 the Theorem follows. O

Proof of Lemma37. We rewrite OPT1, B(1/c), c, s) first. We multiply OPT, with ¢ and
OPT; with 1/c% and get (using > 3 to get rid of the absolute value) OPIT B(1/c, s), ¢, s) =

(5 B0 (@ +1>Q ((1 +1)Q+3 (- 1>Q> |

We substitute: for 1/c in the preceding equation. The claim follows from

(++157) (s 1)Q (“* b (g )Q>

increases i) < ¢ < 1/3. (57)
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We use the following notation in the sequel:

q(s)
1 Q
OPTs(c,s) = (¢ + 1) + 3 (§ - c) , C
OPT(b,c,s) = OPTy(b,s)OPTy(b, ¢, s)OPT3(c, s
Forb=1,c= % we haveOPT(b, ¢, s) = 4. We abbreviate

B q(sb) B 1 @
OPTy(b,s) =3+ , OPTy(b,c,s) = (bc—i—l) :
<

1
3
).

1 Y 1
PM(x,y):(x+1)y—3(§—x) ,xgg
1 Y 1
PP(:c,y)=<x+1>y+3<§—x) <y
! a 3 /
B = B(c,s), B:&B:@7 q(z) = exp(z) — 1

q(z) = exp(x) —z — 1, %hl(OPT(B,C, s) >=<0

Sl Be+ B PM(c,Q - 1)
= — @ +Q >0
34 42 1+ Be PR, Q)
XioN _ Bc+B  PM(¢,Q-1)

—— 0(Divisi .
3+% T Be + PR Q) >=< 0.(Division by @Q.) (58)

Forc = 3 we haveOPT(B,1/3, s) = 4, and the derivative i8. We split 68) into two
additive terms. The following two inequalities directly piy (57.)

B'q'(sB
5/((5) : B'c

— >
B 1+ B
3+ 4 + bce

PM(c,Q—1) B
PR, Q) 1+ Be

0 (59)

>0 (60)

Proof of 69) for s > 2. Let K = q;ﬁfg) andL = q;?f)’). By (7) we havel < K, and as
B’ > 0itis sufficient to show
K c
>
3+ K 1+ Bce

< K(1+ Be—c¢) > 3c.
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OPT(b.c.3) OPT(b.c.14)
©<h <L, 0<cK1/3 0<h <1 0<c< 13

" e ——

0.8 |

3.9
3.8

3.7
0.6 R
3.6
3.5
0.4
3.4

0.2 3.3

3.2

3.1

Fig. 3.OPT(b, c, s) over the rectanglé < b < 1,0 < ¢ < 1/3for s = 3 ands = 14.

Forc = % both sides of the preceding inequality atel. It is easy to observe that
K(1+ Be—c)isconvexincforc > 1/(3-2). (Cf. proof of Lemma20) and3c is a linear
function. If atc = 1 the derivative o8¢ is greater than the derivate &f(1 + Bc — ¢) the
second intersection of both sides (if any) lies at some poiznt% and the claim holds for
1/(3-2 < ¢ < 3. Fore < 1/(3-2) we argue as in the proofs of the Lemmas mentioned
above. Therefore it is sufficient to show thatat %

0 0
%K(l + Bc—c¢) < %30.
We have
- B'sexp(sB)
~ exp(s)—1°
and atc =1/3
K'(l4+ Bc—c¢)+ K (B'c+B—-1)<3
=1 =1 =1/2Q
3(exp(s) —s—1)exp(s) exp(s)—s—1
1
2(exp(s) — 1)2 2s(exp(s — 1) <3 (61)
We omit the proof that inequalitys@) holds fors > 2.
Proof of 60) for s > 5. As in (49) inequality ©0) is equivalent to
PM(c, @ — 1)
B<pReo-1 (62)
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The left hand side is a linear function in ¢ and the right hadd a strictly increasing,
concave function im. Forc = % both sides of§2) are1. So we must show tha6é®@) holds
for ¢ = 0. Settingc = 0 leads to

IR L 16 M et 2 i
20 T 14+3(H) 1+ ()Y

)°

For@ = 5 we get% < ﬁ We omit the argument that the last inequality holds for all

@ > 5 and therefore a§ > s forall s > 5.
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