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Some results on more flexible versions of Graph Motif∗

Romeo Rizzi† Florian Sikora‡

Abstract

The problems studied in this paper originate from Graph Motif, a problem introduced
in 2006 in the context of biological networks. Informally speaking, it consists in deciding if
a multiset of colors occurs in a connected subgraph of a vertex-colored graph. Due to the
high rate of noise in the biological data, more flexible definitions of the problem have been
outlined. We present in this paper two inapproximability results for two different optimization
variants of Graph Motif: one where the size of the solution is maximized, the other when
the number of substitutions of colors to obtain the motif from the solution is minimized. We
also study a decision version of Graph Motif where the connectivity constraint is replaced
by the well known notion of graph modularity. While the problem remains NP-complete, it
allows algorithms in FPT for biologically relevant parameterizations.

1 Introduction

A recent field in bioinformatics focuses in biological networks, which represent interactions between
different elements (e.g. between amino acids, between molecules or between organisms) [1]. Such a
network can be modeled by a vertex-colored graph, where nodes represent elements, edges represent
interactions between them and colors give functional informations on the graph nodes. Using
biological networks allows a better characterization of species, by determining small recurring
subnetworks, often called motifs. Such motifs can correspond to a set of nodes realizing a same
function, which may have been evolutionary preserved [27]. It is thus crucial to determine these
motifs to identify common elements between species and transfer the biological knowledge.

Historically, motifs were defined by a set of nodes labels with the addition of a given topology
(e.g. a path, a tree, a graph). The corresponding algorithmic problem consist to find an occurrence
of the motif in the network which respect both the label set and the given topology. This leads to
problems roughly equivalent to subgraph isomorphism, a computationally difficult problem. How-
ever, in metabolic networks, similar topology can represent very different functions [22]. Moreover,
in protein-protein interactions (PPI) networks, informations about the topology of motifs is often
missing [6]. There is also a high rate of false positive and false negative in such networks [15].
Therefore, in some situations, topology is irrelevant, which leads to search for functional motifs
instead of topological ones. In this setting, we still ask for the conservation of the node labels, but
we replace topology conservation by the weaker requirement that the subnetwork should form a
connected subgraph of the target graph. This approach was proposed by Lacroix et al., defining
Exact Graph Motif [22].

Exact Graph Motif:
• Input: A graph G = (V,E), a set of colors C, a function col : V → C, a multiset M over
C, an integer k.
• Question: Does there exist a subset V ′ ⊆ V such that (i) |V ′| = k, (ii) G[V ′] is connected,
and (iii) col(V ′) = M .
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1 INTRODUCTION 2

In the following, the motif is said colorful if M is a set (it is a multiset otherwise). Note that
this problem also has application in the context of mass spectrometry [5], and may be used in
social or technical networks [3, 28].

Preliminaries A parameterized problem (I, k) is said fixed-parameter tractable (or in the class
FPT) with respect to a parameter k if it can be solved with an exact algorithm with time complexity
f(k) · |I|c, where f is any computable function and c is a constant (one can see [14, 23]). Such
algorithms are useful for NP-hard decision problems, thus f will be exponential (but an important
goal is to determine f as small as possible). Parameterized algorithms do not necessarily exist,
it is possible to prove that a problem do not have a parameterized algorithm via fpt-reductions.
The parameterized complexity hierarchy is composed of the classes FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆
W[P] ⊆ XP. The class XP contains problems solvable in f(k)·|I|g(k), where f and g are unrestricted
functions. We refer to [14] for precises definitions of the W-classes. All inclusions are assumed to
be proper (but only FPT 6= XP is known). Therefore, it is unlikely to find parameterized algorithm
for a problem that is hard in W[1] under fpt-reduction (Clique parameterized by the size of the
solution is one of them for example). A kernel is an equivalent instance of the input obtained in
polynomial time with a size bounded by a function only depending of the parameter k [23].

Given an instance I of an optimization problem, we use opt(I) to denote the optimum value
of I and val(I, S) to denote the value of a feasible solution S of instance I. The performance

ratio of S (or approximation factor) is r(I, S) = max
{

val(I,S)
opt(I) , opt(I)

val(I,S)

}

. The error of S, ε(I, S),

is defined by ε(I, S) = r(I, S) − 1. For a function f , an algorithm is a polynomial-time f(n)-
approximation, if for every instance I of the problem, it returns in polynomial time a solution S
such that r(I, S) ≤ f(|I|).

The notion of an E-reduction (error-preserving reduction) was introduced in [20] by Khanna et
al. A problem Π is called E-reducible to a problem Π′, if there exist polynomial time computable
functions f , g and a constant β such that:

• f maps an instance I of Π to an instance I ′ of Π′ such that opt(I) and opt(I ′) are related
by a polynomial factor, i.e. there exists a polynomial p(n) such that opt(I ′) ≤ p(|I|)opt(I),

• g maps solutions S′ of I ′ to solutions S of I such that ε(I, S) ≤ βε(I ′, S′).

An important property of an E-reduction is that it can be applied uniformly to all levels of
approximability; that is, if Π is E-reducible to Π′ and Π′ belongs to C then Π belongs to C as well,
where C is a class of optimization problems with any kind of approximation guarantee (see also
[20]).

Previous results Not surprisingly, Exact Graph Motif remains NP-complete, even under
strong restrictions (when G is a bipartite graph with maximum degree 4 and M is built over
two colors only [16], or when M is colorful and G is a rooted tree of depth 2 [2] or a tree of
maximum degree 3 [16]). However, for general trees and multiset motifs, the problem can be
solved in O(n2c+2) time, where c is the number of distinct colors in M , while being W[1]-hard for
the parameter c [16]. We also point out that the problem can be solved in polynomial time if the
number of colors in M is bounded and if G is of bounded treewidth [16]. It is also polynomial if
G is a caterpillar [2], or if the motif is colorful and G is a tree where the colors appears at most
twice. This last result is mentioned in [13] and can be retrieved by an easy transformation to a
2-SAT instance (chapter 4 of [28]).

The difficulty of this problem is counterbalanced by its fixed-parameter tractability when the
parameter is k, the size of the solution [22, 16, 3, 6, 18, 21, 4]. The fastest (randomized) param-
eterized algorithm for Exact Graph Motif runs in O∗(2k) time for both colorful and multiset
cases, and uses polynomial space [4] (the O∗ notation suppresses polynomial factors). Moreover,
this last paper proves that a O((2 − ǫ)k)-time algorithm is unlikely [4]. Finally, the problem is
unlikely to admit polynomial kernels, even on restricted classes of trees [2].
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To deal with the high rate of noise in biological data, different variants of Exact Graph

Motif have been introduced. The approach of Dondi et al. requires a solution with a minimum
number of connected components [12], while the one of Betzler et al. asks for a 2-connected
solution [3]. As for traditional bioinformatics problems, some colors can be inserted in a solution,
or conversely, some colors of the motif can be deleted in a solution [6, 12, 18]. Recently, Dondi et
al. introduced a variant when the number of substitutions between colors of the motif and colors
in the solution must be minimum [13].

Our results Following this direction, we consider in Section 2 an approximation issue when
one wants to maximize the size of the solution. In Section 3, we propose an inapproximability
result when one wants to minimize the number of substitutions. Finally, we present in Section 4
a new requirement concerning the connectedness of the solution with one hardness result and two
parameterized algorithms.

2 Maximizing the solution size

To deal with the high rate of noise in the biological data, one approach allows some colors of the
motif to be deleted from the solution, leading to Max Graph Motif, a problem introduced by
Dondi et al. [12].

Max Graph Motif:
• Input: A graph G = (V,E), a set of colors C, a function col : V → C, a multiset M over C.
• Output: A subset V ′ ⊆ V such that (i) G[V ′] is connected, (ii) col(V ′) ⊆ M and such that
|V ′| is maximized.

In a natural decision form, we are also given an integer k in the input and one looks for a
solution of size k (the number of deletions is thus equal to |M | − k). The problem is known to be
in the FPT class for parameter k [12, 6, 18]. Concerning its approximation, Max Graph Motif

is APX-hard, even when G is a tree of maximum degree 3, the motif is colorful and each color
appears at most twice in G (in the same conditions, recall that the Exact Graph Motif is
polynomial [13]). Moreover, there is no constant approximation ratio unless P = NP, even when
G is a tree and M is colorful [12].

In the following, we answer an open question of Dondi et al. [12] concerning the approximation
issue of the problem when G is a tree where each color occurs at most twice. More precisely, we
prove that Max Graph Motif cannot be approximated within |V |

1

3
−ǫ, ∀ǫ > 0, even when G is a

tree where each color appears at most twice and M is colorful. To do so, we use a reduction from
Max Independent Set, a problem stated as follows:

Max Independent Set:
• Input: A graph G = (V,E).
• Output: A subset V ′ ⊆ V where there is no two nodes u, v ∈ V ′ such that {u, v} ∈ E, and
such that |V ′| is maximized.

Our proof proceeds in four steps. We first describe the construction of the instance I ′ =
(G,C, col) for Max Graph Motif from the instance I = (GI = (VI , EI)) of Max Independent

Set (we consider the motif as M = C). We next prove that we can construct in polynomial time
a solution for I ′ from a solution for I and, conversely, that we can construct in polynomial time a
solution for I from a solution for I ′. Finally, we show that if there is an approximation algorithm
with ratio r for Max Graph Motif, then there is an approximation algorithm with ratio r for
Max Independent Set.

Before stating the reduction, consider a total order over the edges of G. We then define a
function adj : VI → 2EI , giving for a node v ∈ VI , the ordered list of edges where v is involved
(thus of size d(v), the degree of v). With this order, consider that adj(v)[i] give the i-th edge
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where v is involved. From the graph GI = (VI , EI), we build the graph G = (V,E) as follows (see
also Figure 1):

– V = {r} ∪ {vei : 1 ≤ i ≤ |VI |, e ∈ adj(vi)} ∪

{vji : 1 ≤ i ≤ |VI |, 1 ≤ j ≤ |VI |2},

– E = {{r, v
adj(vi)[1]
i } : 1 ≤ i ≤ |VI |} ∪

{{v
adj(vi)[j]
i , v

adj(vi)[j+1]
i } : 1 ≤ i ≤ |VI |, 1 ≤ j < d(vi)} ∪

{{v
adj(vi)[d(vi)]
i , v1i } : 1 ≤ i ≤ |VI |} ∪

{{vji , v
j+1
i } : 1 ≤ i ≤ |VI |, 1 ≤ j < |VI |2}.

GI = (VI , EI)

v1 v2

v3

v4 v5
G = (V,E)

cr

c{1,2}

c{1,3}

c{1,4}

c{1,2}

c{2,3}

c{2,5}

c{1,3}

c{2,3}

c{1,4}

c{4,5}

c{2,5}

c{4,5}

c11

c251

c12

c252

c13

c253

c14

c254

c15

c255

52

Figure 1: Construction of G from an instance GI of Max Independent Set. For ease, only the color
of the nodes of G (not the label) are given. From a solution in GI in bold, the solution for Max Graph

Motif is given in bold in G.

Informally speaking, r is the root of G. There are |VI | paths connected to r. Each path
represents a node of GI and is of length d(vi) + |VI |

2. Observe that |V | = 1 + 2|EI | + |VI |.|VI |
2

(there are two nodes involved in each edge, therefore
∑

v∈VI
d(v) = 2|EI |). Let us now describe

the set C of colors and the coloration function col : V → C. The set of colors is C = {cr} ∪ {ce :
e ∈ EI} ∪ {cji : 1 ≤ i ≤ |VI |, 1 ≤ j ≤ |VI |

2}. Considering M = C, the motif is colorful. Coloration
of the nodes of G is done as follows: col(r) = cr, ∀e = {vi, vj} ∈ EI , col(v

e
i ) = col(vej ) = ce,

∀1 ≤ i ≤ |VI |, 1 ≤ j ≤ |VI |2, col(v
j
i ) = cji . In other words, for each edge e = {vi, vj}, a copy of

the node vi and a copy of the node vj have the same color ce, the one of the edge. Moreover, r

and the nodes vji all have different colors. In fact, nodes {vji : 1 ≤ i ≤ |VI |, 1 ≤ j ≤ |VI |2} can be
considered as “black boxes”, which are given for free. We clearly observe that by construction, G
is a tree where each color appears at most twice. Let us show how to build a solution for I ′ from
a solution for I.

Lemma 1. If there is a solution V ′
I ⊆ VI for I, then there is a solution V ′ ⊆ V for I ′ such that

|V ′| ≥ |V ′
I |.|VI |2.

Proof. We build V ′ as follows: V ′ = {r} ∪ {vei , v
j
i : vi ∈ V ′

I , e ∈ adj(vi), 1 ≤ j ≤ |VI |2}. In other
words, we add in V ′ the root r of the tree and all the paths corresponding to the nodes of V ′

I (see
also Figure 1).

Let us prove that V ′ is a solution for I ′ such that |V ′| ≥ |V ′
I |.|VI |2. Since the root is in

the solution, G[V ′] is connected. Moreover, colors of V ′ are all distinct, therefore the solution
is colorful. Indeed, if there are u, v ∈ V ′ such that col(u) = col(v), then {u, v} ∈ E, which is a
contradiction since V ′

I is a solution for Max Independent Set. Finally, we bound the size of V ′

by observing that for each v ∈ V ′
I , we add the set of nodes in the path corresponding to v, which

is of size d(v) + |VI |2 ≥ |VI |2.

Let us now show how to build a solution for I from a solution for I ′.



3 MINIMIZING THE NUMBER OF SUBSTITUTIONS 5

Lemma 2. If there is a solution V ′ ⊆ V for I ′, then there is a solution V ′
I ⊆ VI for I such that

|V ′
I | ≥

⌈

|V ′|−2|EI |−1
|VI |2

⌉

.

Proof. For each 1 ≤ i ≤ |VI |, we add vi in V ′
I iff all the nodes vji , 1 ≤ j ≤ |VI |2 and vei , e ∈ adj(vi)

are in V ′. In other words, we add vi in V ′
I if the whole path corresponding to this node is in V ′.

Let us prove that V ′
I is a solution for I such that |V ′

I | ≥
⌈

|V ′|−2|EI |−1
|VI |2

⌉

. If there are vi, vj ∈ V ′
I

such that {vi, vj} = e ∈ E, then vei and vej are in V ′. It is impossible since col(vei ) = col(vej ) and
since all the colors of V ′ must be distinct to be a solution for Max Graph Motif. Consequently,

V ′
I is an independent set. There are

⌈

|V ′|−2|EI |−1
|VI |2

⌉

whole paths in V ′. Indeed, by removing

2|EG|+1 to the whole number of nodes in the solution, we bound the number of nodes of type vji
(recall that |V | = 1 + 2|EI |+ |VI |.|VI |2).

These two lemmas lead to the main result of this section.

Proposition 1. Unless P = NP, Max Graph Motif cannot be approximated within |V |
1

3
−ǫ in

polynomial time, for any ǫ > 0, even when the motif is colorful and G is a tree where each color
of C appears at most twice.

Proof. Suppose there is such a ratio r for Max Graph Motif. Then, there is an approximate

solution V ′
APX which, compared to the optimal solution V ′

OPT , is of size |V ′
APX | ≥ |V ′

OPT |
r .

With Lemma 1, |V ′
OPT | ≥ |V ′

IOPT
|.|VI |

2.

We supposed |V ′
APX | ≥

|V ′

OPT |
r .

Therefore, |V ′
APX | ≥

|V ′

IOPT
|.|VI |

2

r .

With Lemma 2, |V ′
IAPX

| ≥
⌈

|V ′

APX |−2|EI |−1
|VI |2

⌉

.

Which leads to, |V ′
IAPX

| ≥

⌈

((|V ′

IOPT
|.|VI |

2)/r)−2|EI |−1

|VI |2

⌉

.

Since 2|EI |+1
|VI |2

≤ 1, |V ′
IAPX

| ≥

⌈

(|V ′

IOPT
|.|VI |

2)/r

|VI |2

⌉

− 1.

Finally, |V ′
IAPX

| ≥
|V ′

IOPT
|

r − 1.
Thereby, if there is an approximation algorithm with ratio r for Max Graph Motif, there

is an approximation algorithm with ratio r for Max Independent Set. We conclude the proof
by observing that |V | = O(|VI |3) and that unless P = NP, Max Independent Set cannot be
approximated in polynomial time within |VI |1−ǫ, ∀ǫ > 0 [29].

3 Minimizing the number of substitutions

In this section, we focus on Min Substitute Graph Motif, a problem recently introduced by
Dondi et al. [13]. In this variant, some colors of the motif can be deleted, but the size of the
solution must be equal to |M |. Therefore, the deleted colors must be substituted by the same
number of colors.

Min Substitute Graph Motif:
• Input: A graph G = (V,E), a set of colors C, a function col : V → C, a multiset M over C.
• Output: A subset V ′ ⊆ V such that (i) |V ′| = |M |, (ii) G|V ′] is connected and such that
the number of substitutions to get M from col(V ′) is minimized.

Dondi et al. [13] prove that Min Substitute Graph Motif is NP-hard, even when G is a
tree of maximum degree 4 where each color occurs at most twice and the motif is colorful. On
the positive side, they prove that the decision version of the problem is in the FPT class when the
parameter is the size of the solution. Another algorithm is provided by Koutis in time O∗(5.08k)
and polynomial space [21]. We however remark that we can use the algorithm of [18] for List
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Colored Graph Motif to solve Min Substitute Graph Motif in O∗(4k), by introducing
p new colors, and adding them in the list of colors of each node of the graph. Therefore, we can
still look for a solution of size k, with at most p substitutions.

Let us remark that for instances where the optimum equals 0, then the problem is not ap-
proximable at all. Indeed, any polynomial-time approximation algorithm for Min Substitute

Graph Motif would give a solution in polynomial time to the NP-complete Exact Graph Mo-

tif problem. However, for instances where optimum contains at least one substitution, we prove
that even in restrictive conditions (when G is a rooted tree of depth 2 and the motif is colorful),
there is no polynomial-time approximation algorithm with ratio c log |V |, for a constant c.

To prove such inapproximability result, we propose an E-reduction from Min Set Cover [25],
a problem stated as follows:

Min Set Cover:
• Input: A set X = {x1, x2, . . . , x|X|}, a collection S = {S1, S2, . . . , S|S|} of subsets of X
• Output: A subset T ⊆ S such that every element of X belongs to at least one member of
T , and such that |T | is minimized.

We denote by e(i, j) the index l such that xl correspond to the j-th element of Si. We first
describe the polynomial construction of I ′ = (G,C, col,M), instance of Min Substitute Graph

Motif, from I = (X,S), any instance of Min Set Cover. From an instance I, let build
G = (V,E) as follows (see also Figure 2):

– V = {r} ∪ {vi : 1 ≤ i ≤ |S|} ∪
{vi,j,t : 1 ≤ i ≤ |S|, 1 ≤ j ≤ |Si|, 1 ≤ t ≤ |S|+ 1},

– E = {{r, vi} : 1 ≤ i ≤ |S|} ∪
{{vi, vi,j,t} : 1 ≤ i ≤ |S|, 1 ≤ j ≤ |Si|, 1 ≤ t ≤ |S|+ 1}.

cr

c1

c1,1

c1,2

c1,3

c1,4

c2,1 c2,2

c2,3

c2,4

c2

c2,1

c2,2

c2,3

c2,4

c3,1

c3,2

c3,3

c3,4

c3

c2,1c2,2

c2,3

c2,4

Figure 2: Illustration of the construction of an instance of Min Substitute Graph Motif from an
instance of Min Set Cover such that X = {x1, x2, x3} and S = {{x1, x2}, {x2, x3}, {x2}}. For ease, only
the color of each node of the graph (and not the label) is given. The associated motif is M = {cr}∪{ck,t :
1 ≤ k ≤ 3, 1 ≤ t ≤ 4}. A possible solution (with two substitutions) is given in bold.

Informally speaking, r is the root of a tree with |S| children, corresponding to each subset of S.
Each child vi, 1 ≤ i ≤ |S|, got (|S|+1)|Si| children, corresponding to |S|+1 copies of each element
of Si. The set of colors is C = {cr} ∪ {ci : 1 ≤ i ≤ |S|} ∪ {ck,t : 1 ≤ k ≤ |X |, 1 ≤ t ≤ |S|+1}. The
coloring function is such that the root has a unique color, i.e. col(r) = cr. Each node vi is colored
with the unique color corresponding to the subset of S, col(vi) = ci, ∀1 ≤ i ≤ |S|. Each node vi,j,t
get the color of the copy of the represented element, i.e. col(vi,j,t) = ce(i,j),t. Finally, the motif is
M = {cr} ∪ {ck,t : 1 ≤ k ≤ |X |, 1 ≤ t ≤ |S| + 1}. Observe that the colors {ci : 1 ≤ i ≤ |S|} are
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not in the motif (which is colorful by construction). Let now show how to build a solution for I ′

from a solution for I, and vice-versa.

Lemma 3. If there is a solution T for an instance I of Min Set Cover, there is a solution for
the instance I ′ of Min Substitute Graph Motif with |T | substitutions.

Proof. Let T ⊆ S be a solution for I. Given a total order on the subsets of S, for each 1 ≤ k ≤ |X |,
denote by Sk

min the subset such that (i) Sk
min ∈ T , and (ii) Sk

min is the first subset of T where xk

is. Moreover, for each Si, denote by fi the smallest index j of vi,j,t such that Si = S
e(i,j)
min .

The solution V ′ is built as follows: V ′ = {r} ∪ {vi : Si ∈ T } ∪ {vi,j,t : Si = S
e(i,j)
min , j = fi, 2 ≤

t ≤ |S| + 1} ∪ {vi,j,t : Si = S
e(i,j)
min , j 6= fi, 1 ≤ t ≤ |S| + 1}. Less formally, we put in the solution

the root, the set of nodes representing subsets Si of T , also with the |S| + 1 copies of each node
representing an xk (the one in the subset with minimal index in the solution), except for the
element xk of X with the lower index in Sk

min, where only |S| copies are in the solution.
The graph G[V ′] is connected since the nodes vi,j,t are in the solution if and only if the node

vi is also in the solution. Moreover, a node vi is in the solution if there is a k such that Si = Sk
min.

There is thus an integer fi for which only |S| copies of vi,fi,t are in the solution. Therefore, by
construction, the color ce(i,fi),1, which is in the motif, is substituted in the solution by ci. On the
whole, there are |T | substitutions, since the other colors of the motif are in the solution.

Lemma 4. From a solution for the instance I ′ for Min Substitute Graph Motif with at
most s substitutions, there is a solution for the instance I for Min Set Cover of size at most s.

Proof. Let V ′ ⊆ V be a solution for I ′ such that we can obtain M from col(V ′) with at most s
substitutions. We can suppose that s < |S| + 1, otherwise, T = S is a solution of correct size.
Solution for I is built as follows: T = {Si : vi ∈ V ′}.

If for some 1 ≤ k ≤ |X | there is no color of the set {ck,t : 1 ≤ t ≤ |S| + 1} in the solution,
it means that these |S| + 1 colors have all been substituted, which is a contradiction with the
supposed maximum number of s substitutions. Therefore, for each 1 ≤ k ≤ |X |, there is at least
one color from the set {ck,t : 1 ≤ t ≤ |S| + 1} in the solution. By definition, a solution must be
connected, therefore, all elements of X are covered by T . Finally, the size of T is bounded by s.
Indeed, since their colors are not in the motif, there are at most s nodes vi in V ′.

The above construction and two Lemmas lead to the result concerning the approximation of
Min Substitute Graph Motif.

Proposition 2. Unless P = NP, Min Substitute Graph Motif cannot be approximated in
polynomial time within c log |V |, where c is a constant, even when the motif is colorful and G is a
rooted tree of depth 2.

Proof. The proof comes directly from the Lemmas 3 and 4, and because Min Set Cover cannot
be approximated in polynomial time within c log |X |, unless P = NP [25]. Observe that from any
solution V ′ for I ′, we can construct in polynomial time a solution T for I such that val(I, T ) =
val(I ′, V ′), thus opt(I) ≤ opt(I ′). A consequence of Lemma 3 is that opt(I ′) ≤ opt(I). We then

have opt(I ′) = opt(I) and consequently, ε(I, T ) = val(I,T )
opt(I) −1 ≤ val(I′,V ′)

opt(I′) −1 = ε(I ′, V ′).

4 Using modularity

In this section, we introduce a variant of Exact Graph Motif, where the connectivity constraint
is replaced by modularity. After a quick recall on the modules properties, we justify this new
variant. The problem remains NP-hard, however, the tools offered by the modularity allow efficient
algorithms.
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4.1 Definitions and properties

In an undirected graph G = (V,E), a node x separates two nodes u and v iff {x, u} ∈ E and
{x, v} /∈ E. A module M of a graph G is a set of nodes not separated by any node of V \ M.
In other words, a module M is such that ∀x /∈ M, ∀u, v ∈ M, {x, u} ∈ E ⇔ {x, v} ∈ E [7] (see
also Figure 3). The whole set of nodes V and any singleton set {u}, where u ∈ V , are the trivial
modules.

v1 v2

v3

v4

v5

v6

v7

v8

Figure 3: Example of modules : the whole set of nodes V , the singletons {v}, ∀v ∈ V , the two connected
component {v1, v2, v3, v4, v5, v6}, {v7, v8}, or the sets {v3, v4}, {v5, v6}, {v1, v2, v5, v6}.

Before stating the definition of specific modules, let say that two modules A and B overlap if
(i) A∩B 6= ∅, (ii) A\B 6= ∅, and (iii) B \A 6= ∅. According to [7], if two modules A and B overlap,
then A ∩ B, A ∪ B and (A ∪ B) \ (A ∩ B) are also modules. This allows the definition of strong
modules. A module is strong if no other module overlaps it, otherwise it is weak. Therefore, two
strong modules are either included into the other, either of empty intersection. A module M ⊂ S
is said maximal for a given set of nodes S (by default the set of nodes V ) if there is no module
M′ s.t. M ⊂ M′ ⊂ S. In other words, the only module which contains the maximal module M
is S.

There are three types of modules : (i) parallel, when the subgraph induced by the nodes of
the module is not connected (it is a parallel composition of its connected components), (ii) series,
when the complement of the subgraph induced by the nodes of the module is not connected (it is
a series composition of the connected components of its complement), or (iii) prime, when both
the subgraph induced by the nodes of the module and its complement are connected.

The inclusion order of the maximal strong modules defines the modular tree decomposition
T (G) of G, which is enough to store the whole set of strong modules. The tree T (G) can be
recursively built by a top-down approach, where the algorithm recurs on the graph induced by
the considered strong module. The root of this tree is the set of all nodes V while the leaves are
the singleton sets {u}, ∀u ∈ V . Each node of T (G) got a label representing the type of the strong
module, parallel, series or prime. Children of an internal node M are the maximal submodules of
M (i.e. they are disjoints). Figure 4 gives an example of the construction of T (G) from a sample
graph G. The modular tree decomposition can be obtained with a linear time algorithm, (e.g. the
one described in [19]). We can now introduce an essential property of T (G):

Theorem 1. ([7]) A module of G is either a node of T (G), either a union of children (of depth
1) of a series or parallel node in T (G).

One can see strong modules as generators of the modules of G: the set of all modules of G can
be obtained from the tree T (G). A crucial point to note is that there is potentially an exponential
number of modules in a graph (e.g., the clique Kn has 2n modules), but the size of T (G) is O(n)
(more precisely, T (G) has less than 2n nodes since there are n leaves and no node with exactly
one child). Therefore, the exponential-sized family of modules of G can be represented by the
linear sized tree T (G).

4.2 When modules join Graph Motif

In the following, we investigate the algorithmic issues of other topology-free definition, when re-
placing the connectedness demand by modularity. Following definition of Exact Graph Motif,
we introduce Module Graph Motif.
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a)

v1

v2

v3

v4

v5

v6

v7

v8
v9

v10

v11
b)

prime
v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11

s
v2, v3, v4

s
v8, v9, v10, v11

p
v2, v3

p
v6, v7

p
v10, v11

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10v11

Figure 4: A sample graph in a) and the corresponding modular tree decomposition in b). Nodes of the
tree are either series (s), parallel (p), prime (prime) or leaves.

Module Graph Motif:
• Input: A graph G = (V,E), a set of colors C, a function col : V → C, a multiset M on C
of size k.
• Question: Does there exist a subset V ′ ⊆ V such that (i) V ′ is a module of G and (ii)
col(V ′) = M .

This definition links the modularity demand with the motif research. The module definition
implies that all the nodes in this module have a uniform relation with the set of all the other nodes
outside of the module. The module nodes are indistinguishable from the outside, they are acting
similarly with the other nodes of the graph.

Authors of [1] define a biological module as a set of elements having a separable function from
the rest of the graph. Similarly, authors of [24] describe a biological module as a set of some
elements with an identifiable task, separable from the functions of the other biological modules.
Moreover, it is shown in [8] that genes with a similar neighborhood have chances to be in a
same biological process. It is thus possible that set of nodes in an algorithmic module of a graph
representing a biological network have a common biological function. Also note that authors
of [26] describe modules in gene regulatory networks as groups of genes which obey to the same
regulations, and consequently, as groups which members cannot be distinguished from the rest of
the network.

Moreover, apart of using modules in a slightly different goal (in order to predict more cleverly
results of PPI), Gagneur et al. [17] note that modules of a graph can join biological modules, and
consider modular decomposition as a general tool for biological network analysis under different
representations (oriented graphs, hyper-graphs...).

However, there is no clear definition of what is (or should be) a biological module in a net-
work [1]. We thus claim that the approach using modular decomposition is complementary to the
previous definitions of biological modules (e.g. connected occurrences or compact occurrences).

4.3 Difficulty of the problem

Unfortunately, Module Graph Motif is NP-hard, even under strong restrictions, i.e. when G
is a collection of paths of size three, and when the motif is colorful. Observe that under the same
conditions, Exact Graph Motif is trivially polynomial-time solvable.

Proposition 3. Module Graph Motif is NP-complete even if G is a collection of paths of size
3 and M is colorful.

Proof. Module Graph Motif is in NP since given a set V ′ ⊆ V , one can check in polynomial-
time if V ′ is a module and if the colors of C appears exactly once if V ′. To prove its hardness, we
propose a reduction from Exact Cover by 3-Sets (X3C). This special case of Set Cover is
known to be NP-complete. Recall that X3C is stated as follows:
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X3C:
• Input: A set X = {x1, x2, . . . , x3q} and a collection S = {S1, . . . , S|S|} of 3-elements subsets
of X .
• Question: Does S contains a subcollection T ⊆ S such that each element of X occurs in
exactly one element of T .

Size of X must be a multiple of three since a solution is a set of triplets where each element of X
must appears exactly once.

Let us now describe the construction of an instance I ′ = (G,C, col) of Module Graph Motif

from an arbitrary instance I = (X,S) of X3C (see also Figure 5). The graph G = (V,E) is built
as follows: V = {vji : 1 ≤ i ≤ |S|, xj ∈ Si}, E = {{v1i , v

2
i } ∪ {v2i , v

3
i } : 1 ≤ i ≤ |S|}. Informally

speaking, G is a collection of |S| paths with three nodes (recall that for each 1 ≤ i ≤ |S|, |Si| = 3).

c1

c3

c5

c1

c2

c4

c2

c4

c6

c2

c5

c6

Figure 5: The graph G built from X = {x1, x2, . . . , x6} (thus with q = 2) and S =
{{x1, x3, x5}, {x1, x2, x4}, {x2, x4, x6}, {x2, x5, x6}} (only the colors of the node are written). By con-
struction, the set of colors asked in any solution is C = {c1, c2, . . . , c6}.

The set of colors is C = {ci : 1 ≤ i ≤ |X |}. The coloration of G is such that col(vji ) = cj .
In other words, each node get the color of the represented element of X . We also consider the
colorful motif as M = C. This construction is clearly done in polynomial-time in regards of I.

Let us now prove that if there is a solution for an instance I of X3C, then there is solution
for the instance I ′ of Module Graph Motif. Given a solution T ⊆ S for I, a solution V ′ for
I ′ is built as follows: V ′ = {vji : Si ∈ T , xj ∈ Si}. Informally speaking, the solution contains the
set of paths corresponding to the chosen triplets in the solution for X3C. The set V ′ is a module,
and by definition of a solution for I, each color of {ci : 1 ≤ i ≤ |X |} appears exactly once in V ′.

Conversely, let us now prove that there is a solution for the instance I of X3C if there is a
solution for the instance I ′ of Module Graph Motif. First observe that since q ≥ 1, then
|X | ≥ 3 and therefore C ≥ 3. A module of size greater or equal than three in a collection of paths
of size three must be a union of paths of size three. Indeed, suppose by contradiction that there
is a module M of size greater than three which is not a union of paths of size three. There is
thus a node u ∈ M such that at least one of its neighbor v ∈ N(u) is not in M and v separates
u from another node of M. Therefore, M is not a module. The solution is built as follows:
T = {Si : v

j
i ∈ V ′}. Since the solution V ′ is a union of paths of size three, each triplet Si is either

completely chosen in the solution T , either absent. Moreover, since V ′ is a solution, colors of V ′

appears exactly once. Therefore, each element of X appears exactly once in T .

4.4 Algorithms for the decision problem

Even if the problem is hard under strong restrictions, the modular decomposition tree is a useful
structure to design efficient algorithms. More precisely, we show in the sequel that Module

Graph Motif is in the FPT class when the parameter is the size of the solution. As a corollary,
we show that the problem can be solved in polynomial time if the number of colors is bounded, or
more generally, that Module Graph Motif is in FPT when parameterized by (k, |C|). Moreover,
Module Graph Motif is still in the FPT class if a set of colors is associated to each node of
the graph.

Let us first observe that asking for a strong module instead of any module in the definition of
Module Graph Motif leads to a trivial linear algorithm. Indeed, one can just browse T (G)
and test if the set of colors for each strong module is equal to the motif.
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Let us now show an algorithm with a time complexity of O∗(2k), where k is the size of the
solution, for Module Graph Motif, even if the motif is a multiset.

Proposition 4. There is a parameterized algorithm for Module Graph Motif with a time
complexity of O(2k|V |2) and a space complexity of O(2k|V |), where k is the size of the motif and
of the solution.

Proof. Since |M | = k, observe that there are at most 2k different multisets M ′ such that M ′ ⊆ M .
We first build in polynomial time the modular tree decomposition T (G) from G. We repeat the
following algorithm for each node M of T (G).

We start by testing if the set of the colors of M is exactly equal to the motif M . If it is the
case, the algorithm terminates. Otherwise, if M is a series or parallel node, a module can be a
union of its children. Given an arbitrary order on its t children, denote by Child(M)[i] the i-th
child of M. We then delete all children M′ of M such that col(M′) 6⊂ M , where col(M′) is the
set of colors of the nodes of M′. Indeed, such a child cannot be in a solution considering M . We
note that the set of colors for each child correspond to a multiset M ′ ⊆ M .

Since any union of children of M is a module of G, it is thus a potential solution. We propose
to test by dynamic programming if such union corresponds to a solution for M . We build a table
D(i,M ′), for 0 ≤ i ≤ t and M ′ ⊆ M . Therefore, D has t + 1 lines and 2k columns. We fill this
table as follows:

D(0,M ′) = True if M ′ = {0, . . . , 0}, False otherwise,

D(i,M ′) = D(i− 1,M ′) ∨D(i − 1,M ′ \ col(Child(M)[i])) if i ≤ t,M ′ ⊆ M.

The algorithm returns True iff D(t,M) = True. Informally speaking, the first part of the com-
putation of D(i,M ′) ignores the i-th child of M while the second part add this child into the
potential solution.

The time and space complexities of the dynamic programming are O(2k|V |) since D is of size at
most 2k|V | and the computation time for each element is constant. Therefore, since the dynamic
programming is launched in the worst case on each node of T (G), the whole time complexity is
O(2k|V |2).

It remains to show the correctness of the dynamic programming. Suppose the existence of a
module M′ such that col(M′) = M . Then, either M′ is a strong module represented in a node
of T (G), or it is a union of j modules M′

1,M
′
2, . . . ,M

′
j , children of a module M. Therefore,

M \ {{col(M′
1) ∪ {col(M′

2)} ∪ · · · ∪ {col(M′
j)}}} = {0, 0, . . . , 0}, then D(t,M) = True.

Conversely, if there is a module M such that D(t,M) = True, then there is a union of the
children of M such that the set of colors of these children is equal to M .

Corollary 1. Module Graph Motif is in FPT when parameterized by (k, |C|).

Proof. Note that, by definition of the motif M , for each color c ∈ C, the number of occurrences
of c in M is at most k. Thus, the number of multisets M ′ such that M ′ ⊆ M is less than k|C|.
The time complexity of the algorithm in Proposition 4 is bounded by O(k|C||V |2).

This corollary, implying a polynomial-time algorithm when the number of colors is a constant,
is quite surprising and shows a fundamental difference with Exact Graph Motif. Indeed, recall
that this last is NP-complete, even when the motif is built over two different colors [16].

Let us now show that even when a set of colors is associated to each node of the graph, the
problem is still in the FPT class. It is indeed biologically relevant to consider many functions for
a same reaction in a metabolic network or to consider more than one homology for a protein in
a PPI network [22, 3]. A version of Exact Graph Motif with a set of colors for each graph
node as been defined, and thus, we can introduce the analogous problem List-Colored Module

Graph Motif.
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List-Colored Module Graph Motif:
• Input: A graph G = (V,E), an integer k, a set of colors C, a multiset M over C, a function
col : V → 2C giving a set of colors for each node of V .
• Question: Does there exist a subset V ′ ⊆ V such that (i) |V ′| = k, (ii) V ′ is a module of
G and (iii) there is a bijection f : V ′ → M such that ∀v ∈ V ′, f(v) ∈ col(v).

Proposition 5. List-Colored Module Graph Motif is in the FPT class.

Proof. We first build the modular tree decomposition T (G) from G. We repeat the following
algorithm for each node M of T (G).

If M has less than k nodes, we look for a bijection between the colors of M and M . To do so,
we try all the possible combinations. In the worst case, there are ck such combinations, where c
is the number of different colors in M (thus c ≤ k).

In the following, we thus can consider M with more than k nodes. If it is a prime node, we
can ignore it since this node cannot be a solution for a motif of size k. Otherwise, it is a series or
parallel node, and a union of the children can be a solution. Let us now show that the number of
possible solutions is exponential only with k, and it is thus possible to try all the possibilities.

To do so, we first give a bound to the number of children for M. There are at most k nodes in
each child of M (otherwise, this child cannot be in a solution). In each child of M, there are at
most 2c different sets of colors associated to each node. Since there are at most k nodes in each
child of M, there are at most (2c)k different children of M. A same child of M cannot occurs
more than k times (otherwise, the next occurrences cannot be in a solution for a motif of size k).
Therefore, there are at most k(2c)k children to consider for M.

We bounded the number of children for M. We now choose the potential union of children of
M in the solution – we must choose i among the k(2c)k children, where i goes from 1 to k. This is
bounded by (k(2c)k)k+1. Finally, for each union of chosen children, there are c possible colors for
the nodes (there are at most k of them), which lead to at most ck tests. The overall complexity
of the algorithm is thus exponential only in k.

4.5 Open problems

Around the module properties Del Mondo et al. [11] refine the modular tree decomposition
with the homogeneous decomposition, introducing two new types of nodes for the prime modules.
Can we use this new structure for the Module Graph Motif problem?

A split [9] generalize a module. It is also possible to decompose a graph in its splits in
polynomial time [10]. Can we use splits to generalize the Module Graph Motif problem?

Algorithmic questions It would also be interesting to know if Module Graph Motif is
W[1]-hard if the parameter is the number of colors in the motif as for Exact Graph Motif, or
if using modularity change its complexity class.
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