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Abstract. Given a graph with edge costs, the power of a node is the
maximum cost of an edge incident to it, and the power of a graph is
the sum of the powers of its nodes. Motivated by applications in wire-
less networks, we consider the following fundamental problem in wire-
less network design. Given a graph G = (V,E) with edge costs and
degree bounds {r(v) : v ∈ V }, the Minimum-Power Edge-Multi-Cover

(MPEMC) problem is to find a minimum-power subgraph J of G such
that the degree of every node v in J is at least r(v). We give two ap-
proximation algorithms for MPEMC, with ratios O(log k) and k + 1/2,
where k = maxv∈V r(v) is the maximum degree bound. This improves
the previous ratios O(log n) and k + 1, and implies ratios O(log k) for
the Minimum-Power k-Outconnected Subgraph and O

(

log k log n

n−k

)

for
the Minimum-Power k-Connected Subgraph problems; the latter is the
currently best known ratio for the min-cost version of the problem.

1 Introduction

1.1 Motivation and problems considered

Wireless networks are studied extensively due to their wide applications. The
power consumption of a station determines its transmission range, and thus
also the stations it can send messages to; the power typically increases at least
quadratically in the transmission range. Assigning power levels to the stations
(nodes) determines the resulting communication network. Conversely, given a
communication network, the power required at v only depends on the farthest
node reached directly by v. This is in contrast with wired networks, in which
every pair of stations that communicate directly incurs a cost. An important
network property is fault-tolerance, which is often measured by minimum degree
or node-connectivity of the network. Node-connectivity is much more central here
than edge-connectivity, as it models stations failures. Such power minimization
problems were vastly studied; see for example [1, 2, 5, 8, 9] and the references
therein for a small sample of papers in this area. The first problem we consider
is finding a low power network with specified lower degree bounds. The second
problem is theMin-Power k-Connected Subgraph problem. We give approximation
algorithms for these problems, improving the previously best known ratios.
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Definition 1. Let (V, J) be a graph with edge-costs {c(e) : e ∈ J}. For a node

v ∈ V let δJ(v) denote the set of edges incident to v in J . The power pJ(v) of v
is the maximum cost of an edge in J incident to v, or 0 if v is an isolated node

of J ; i.e., pJ(v) = maxe∈δJ (v) c(e) if δJ(v) 6= ∅, and pJ(v) = 0 otherwise. For

V ′ ⊆ V the power of V ′ w.r.t. J is the sum pJ(V
′) =

∑

v∈V ′ pJ(v) of the powers

of the nodes in V ′.

Unless stated otherwise, all graphs are assumed to be undirected and simple.
Let n = |V |. Given a graph G = (V,E) with edge-costs {c(e) : e ∈ E}, we seek
to find a low power subgraph (V, J) of G that satisfies some prescribed prop-
erty. One of the most fundamental problems in Combinatorial Optimization is
finding a minimum-cost subgraph that obeys specified degree constraints (some-
times called also “matching problems”) c.f. [10]. Another fundamental property
is fault-tolerance (connectivity). In fact, these problems are related, and we use
our algorithm for the former as a tool for approximating the latter.

Definition 2. Given degree bounds r = {r(v) : v ∈ V }, we say that an edge-set

J on V is an r-edge cover if dJ (v) ≥ r(v) for every v ∈ V , where dJ(v) = |δJ(v)|
is the degree of v in the graph (V, J).

Minimum-Power Edge-Multi-Cover (MPEMC):
Instance: A graph G = (V,E) with edge-costs {c(e) : e ∈ E}, degree bounds

r = {r(v) : v ∈ V }.
Objective: Find a minimum power r-edge cover J ⊆ E.

Given an instance of MPEMC, let k = max
v∈V

r(v) denote the maximum re-

quirement.
We now define our connectivity problems. A graph is k-outconnected from

s if it contains k internally-disjoint sv-paths for all v ∈ V \ {s}. A graph is
k-connected if it is k-outconnected from every node, namely, if it contains k
internally-disjoint uv-paths for all u, v ∈ V .

Minimum-Power k-Outonnected Subgraph (MPkOS):
Instance: A graph G = (V,E) with edge-costs {c(e) : e ∈ E}, a root s ∈ V , and

an integer k.
Objective: Find a minimum-power k-outconnected from s spanning subgraph J

of G.

Minimum-Power k-Connected Subgraph (MPkCS):
Instance: A graph G = (V,E) with edge-costs {c(e) : e ∈ E} and an integer k.
Objective: Find a minimum-power k-connected spanning subgraph J of G.

1.2 Our Results

The previous best approximation ratio for MPEMC was O(log n) [3]. Our main
result improves this ratio to O(log k).

Theorem 1. MPEMC admits an O(log k)-approximation algorithm.



For small values of k, the problem admits also the ratios k+1 for arbitrary k
[2], while for k = 1 the best known ratio is k + 1/2 = 3/2 [4]. Our second result
extends the latter ratio to arbitrary k.

Theorem 2. MPEMC admits a (k + 1/2)-approximation algorithm.

For small values of k, say k ≤ 6, the ratio (k + 1/2) is better than O(log k)
because of the constant hidden in the O(·) term. And overall, our paper gives
the currently best known ratios for all values k ≥ 2.

In [5] it is proved that an α-approximation for MPEMC implies an (α + 4)-
approximation for MPkOS. The previous best ratio for MPkOS was O(log n) +
4 = O(log n) [5] for large values of k = Ω(log n), and k + 1 for small values of k
[9]. From Theorem 1 we obtain the following.

Theorem 3. MPkOS admits an O(log k)-approximation algorithm.

In [2] it is proved that an α-approximation forMPEMC and a β-approximation
for Min-Cost k-Connected Subgraph implies a (α+2β)-approximation forMPkCS.
Thus the previous best ratio for MPkCS was 2β + O(log n) [3], where β is the
best ratio for MCkCS (for small values of k better ratios for MPkCS are given

in [9]). The currently best known value of β is O
(

log k log n
n−k

)

[7], which is

O(log k), unless k = n− o(n). From Theorem 1 we obtain the following.

Theorem 4. MPkCS admits an O(β+log k)-approximation algorithm, where β

is the best ratio for MCkCS. In particular, MPkCS admits an O
(

log k log n
n−k

)

-

approximation algorithm.

1.3 Overview of the techniques

Let the trivial solution for MPEMC be obtained by picking for every node v ∈ V
the cheapest r(v) edges incident to v. It is known and easy to see that this
produces an edge set of power at most (k + 1) · opt, see [2].

Our O(log k)-approximation algorithm uses the following idea. Extending
and generalizing an idea from [3], we show how to find an edge set I ⊆ E of
power O(opt) such that for the residual instance, the trivial solution value is
reduced by a constant fraction. We repeatedly find and add such an edge set
I to the constructed solution, while updating the degree bounds accordingly to
r(v) ← max{r(v) − dI(v), 0}. After O(log k) steps, the trivial solution value is
reduced to opt, and the total power of the edges we picked is O(log k) · opt. At
this point we add to the constructed solution the trivial solution of the residual
problem, which at this point has value opt, obtaining an O(log k)-approximate
solution.

Our (k+1/2)-approximation algorithm uses a two-stage reduction. The first
reduction reduces MPEMC to a constrained version of MPEMC with k = 1,
where we also have lower bounds ℓv on the power of each node v ∈ V ; these
lower bounds are determined by the trivial solution to the problem. We will



show that a ρ-approximation algorithm to this constrained version implies a (k−
1 + ρ)-approximation algorithm for MPEMC. The second reduction reduces the
constrained version to the Minimum-Cost Edge Cover problem with a loss of 3/2
in the approximation ratio. As Minimum-Cost Edge Cover admits a polynomial
time algorithm, we get a ratio ρ = 3/2 for the constrained problem, which in
turn gives the ratio k − 1 + ρ = k + 1/2 for MPEMC.

2 An O(log k)-approximation (proof of Theorem 1)

As in [3], we reduceMPEMC to Bipartite MPEMC, whereG = (V,E) is a bipartite
graph with sides A,B, and r(a) = 0 for every a ∈ A (so, only the nodes in B may
have positive degree bound). This is done by taking two copies A = {av : v ∈ V }
and B = {bv : v ∈ V } of V , for every edge e = uv ∈ E adding the two edges
aubv and avbu of cost c(e) each, and for every v ∈ V setting r(bv) = r(v)
and r(av) = 0. It is proved in [3] that this reduction invokes a factor of 2 in
the approximation ratio, namely, that a ρ-approximation for bipartite MPEMC

implies a 2ρ-approximation for general MPEMC.
Let opt denote the optimal solution value of a problem instance at hand. For

v ∈ V , let wv be the cost of the r(v)-th least cost edge incident to v in E if
r(v) ≥ 1, and wv = 0 otherwise. Given a partial solution J to Bipartite MPEMC

let rJ (v) = max{r(v)− dJ (v), 0} be the residual bound of v w.r.t. J . Let

RJ =
∑

b∈B

wbrJ (b) .

The main step in our algorithm is given in the following lemma, which will
be proved later.

Lemma 1. There exists a polynomial time algorithm that given an edge set

J ⊆ E, an integer τ , and a parameter γ > 1, either correctly establishes that

τ < opt, or returns an edge set I ⊆ E \ J such that pI(V ) ≤ (1 + γ)τ and

RJ∪I ≤ θRJ , where θ = 1−
(

1− 1
γ

)

(

1− 1
e

)

.

Lemma 2. Let J ⊆ E and let F ⊆ E \ J be an edge set obtained by picking

rJ (b) least cost edges in δE\J(b) for every b ∈ B. Then J ∪F is an r-edge-cover
and: pF (B) ≤ opt, pF (A) ≤ RJ ≤ k · opt.

Proof. Since F is an rJ -edge-cover, J ∪ F is an r-edge-cover. By the definition
of F , for any r-edge-cover I, pF (b) ≤ wb ≤ pI(b) for all b ∈ B. In particular, if
I is an optimal r-edge-cover, then

pF (B) ≤
∑

b∈B

wb ≤
∑

b∈B

pI(b) = pI(B) ≤ opt .

Also,

RJ =
∑

b∈B

wbrJ (b) ≤ k ·
∑

b∈B

wb ≤ k · opt .



Finally, pF (A) ≤ RJ since

pF (A) =
∑

a∈A

pF (a) ≤
∑

a∈A

∑

e∈δF (a)

c(e) =
∑

e∈F

c(e) ≤
∑

b∈B

wbrJ (b) = RJ .

This concludes the proof of the lemma. ⊓⊔

Theorem 1 is deduced from Lemmas 1 and 2 as follows. We set γ to be
constant strictly greater than 1, say γ = 2. Then θ = 1− 1

2

(

1− 1
e

)

. Using binary
search, we find the least integer τ such that the following procedure computes
an edge set J satisfying RJ ≤ τ .

Initialization: J ← ∅.
Loop: Repeat ⌈log1/θ k⌉ times:

Apply the algorithm from Lemma 2:
- If it establishes that τ < opt then return “ERROR” and STOP.
- Else do J ← J ∪ I.

After computing J as above, we compute an edge set F ⊆ E \ J as in
Lemma 2. The edge-set J ∪F is a feasible solution, by Lemma 2. We claim that
for any τ ≥ opt the above procedure returns an edge set J satisfying RJ ≤ τ ;
thus binary search indeed applies. To see this, note that R∅ ≤ k · opt and thus

RJ ≤ R∅ · θ
⌈log

1/θ k⌉ ≤ k · opt · 1/k = opt ≤ τ .

Consequently, the least integer τ for which the above procedure does not return
“ERROR” satisfies τ ≤ opt. Thus pJ (V ) ≤ ⌈log1/θ k⌉ · (1+γ) · τ = O(log k) ·opt.
Also, by Lemma 2, pF (V ) ≤ opt+RJ ≤ 2opt. Consequently,

pJ∪F (V ) ≤ pJ(V ) + pF (V ) = O(log k) · opt+ 2opt = O(log k) · opt .

In the rest of this section we prove Lemma 1. It is sufficient to prove the
statement in the lemma for the residual instance ((V,E \ J), rJ ) with edge-
costs restricted to E \ J ; namely, we may assume that J = ∅. Let R = R∅ =
∑

b∈B wbr(b).

Definition 3. An edge e ∈ E incident to a node b ∈ B is τ -cheap if c(e) ≤
τγ
R · wbr(b).

Lemma 3. Let F be an r-edge-cover, let τ ≥ pF (B), and let

I =
⋃

b∈B

{e ∈ δE(b) : c(e) ≤
τγ

R
· wbr(b)}

be the set of τ-cheap edges in E. Then RI∩F ≤ R/γ and pI(B) ≤ γτ .

Proof. Let D = {b ∈ B : δF\I(b) 6= ∅}. Since for every b ∈ D there is an edge
e ∈ F \ I incident to b with c(e) > τγ

R ·wbr(b), we have pF\I(b) ≥
τγ
R ·wbr(b) for

every b ∈ D. Thus

τ ≥ pF (B) ≥ pF\I(B) =
∑

b∈D

pF\I(b) ≥ τ ·
γ

R

∑

b∈D

wbr(b) .



This implies
∑

b∈D wbr(b) ≤ R/γ. Note that for every b ∈ B \D, δF (b) ⊆ δI(b)
and hence rI∩F (b) = rF (b) = 0. Thus we obtain:

RI∩F =
∑

b∈B

wbrI∩F (b) =
∑

b∈D

wbrI∩F (b) ≤
∑

b∈D

wbr(b) ≤ R/γ .

To see that pI(B) ≤ γτ note that

pI(B) =
∑

b∈B

pI(b) ≤
τγ

R

∑

b∈B

wbr(b) =
τγ

R
· R = τγ .

This concludes the proof of the lemma. ⊓⊔

In [3] it is proved that the following problem, which is a particular case of
submodular function minimization subject to matroid and knapsack constraint
(see [6]) admits a

(

1− 1
e

)

-approximation algorithm.

Bipartite Power-Budgeted Maximum Edge-Multi-Coverage (BPBMEM):
Instance: A bipartite graph G = (A ∪B,E) with edge-costs {c(e) : e ∈ E} and

node-weights {wv : v ∈ B}, degree bounds {r(v) : v ∈ B}, and a
budget τ .

Objective: Find I ⊆ E with pI(A) ≤ τ that maxmizes

val(I) =
∑

v∈B

wv ·min{dI(v), r(v)} .

The following algorithm computes an edge set as in Lemma 1.

1. Among the τ -cheap edges, compute a
(

1− 1
e

)

-approximate solution I to
BPBMEM.

2. If RI ≤ θR then return I, where θ = 1−
(

1− 1
γ

)

(

1− 1
e

)

;

Else declare “τ < opt”.

Clearly, pI(A) ≤ τ . By Lemma 3, pI(B) ≤ γτ . Thus pI(V ) ≤ pI(A)+pI(B) ≤
(1 + γ)τ .

Now we show that if τ ≥ opt then RI ≤ θR. Let F be the set of cheap edges in
some optimal solution. Then pF (A) ≤ opt ≤ τ . By Lemma 3 RF ≤ R/γ, namely,

F reduces R by at least R
(

1− 1
γ

)

. Hence our
(

1− 1
e

)

-approximate solution I

to BPBMEM reduces R by at least R
(

1− 1
e

)

(

1− 1
γ

)

. Consequently, we have

RI ≤ R−R
(

1− 1
e

)

(

1− 1
γ

)

= θR, as claimed.

The proof of Theorem 1 is complete.

3 A
(

k + 1

2

)

-approximation (proof of Theorem 2)

We say that an edge set F ⊆ E covers a node set U ⊆ V , or that F is a U -cover,
if δF (v) 6= ∅ for every v ∈ U . Consider the following auxiliary problem:



Restricted Minimum-Power Edge-Cover

Instance: A graph G = (V,E) with edge-costs {c(e) : e ∈ E}, U ⊆ V , and degree
bounds {ℓv : v ∈ U}.

Objective: Find a power assignment {π(v) : v ∈ V } that minimizes
∑

v∈V π(v),
such that π(v) ≥ ℓv for all v ∈ U , and such that the edge set
F = {e = uv ∈ E : π(u), π(v) ≥ c(e)} covers U .

Later, we will prove the following lemma.

Lemma 4. Restricted Minimum-Power Edge-Cover admits a 3/2-approximation

algorithm.

Theorem 2 is deduced from Lemma 4 and the following statement.

Lemma 5. If Restricted Minimum-Power Edge-Cover admits a ρ-approximation

algorithm, then Minimum-Power Edge-Multi-Cover admits a (k−1+ρ)-approxima-

tion algorithm.

Proof. Consider the following algorithm.

1. Let π(v) be the power assignment computed by the ρ-approximation algo-
rithm for Restricted Minimum-Power Edge-Cover with U = {v ∈ V : r(v) ≥ 1}
and bounds ℓv = wv for all v ∈ U . Let F = {e = uv ∈ E : π(u), π(v) ≥ c(e)}.

2. For every v ∈ V let Iv be the edge-set obtained by picking the least cost
rF (v) edges in δE\F (v) and let I = ∪v∈V Iv.

Clearly, F ∪ I is a feasible solution to Minimum-Power Edge-Multi-Cover. Let opt
denote the optimal solution value for Minimum-Power Edge-Multi-Cover. In what
follows note that π(V ) ≤ ρ · opt and that

∑

v∈V wv ≤ opt.
We claim that

pI∪F (V ) ≤ π(V ) + (k − 1) · opt .

As π(V ) ≤ ρ · opt, this implies pI∪F (V ) ≤ (ρ+ k − 1) · opt.
For v ∈ V let Γv be the set of neighbors of v in the graph (V, Iv). The

contribution of each edge set Iv to the total power is at most pIv (Γv) + pIv (v).
Note that π(v) ≥ pIv(v) and π(v) ≥ pF (v) for every v ∈ V , hence pF∪Iv (v) ≤
π(v). This implies

pF∪I(V ) ≤
∑

v∈V

(π(v) + pIv (Γv)) = π(V ) +
∑

v∈V

pIv (Γv) .

Now observe that |Γv| = |Iv| = rF (v) ≤ k − 1 and that pIv (u) ≤ wv for every
u ∈ Γv. Thus

pIv (Γv) ≤ (k − 1) · wv ∀v ∈ V .

Finally, using the fact that
∑

v∈V wv ≤ opt, we obtain

pF∪I(V ) ≤ π(V ) +
∑

v∈V

pIv (Γv) ≤ π(V ) + (k − 1)
∑

v∈V

wv ≤ π(V ) + (k − 1) · opt .

This finishes the proof of the lemma. ⊓⊔



In the rest of this section we prove Lemma 4.
We reduce Restricted Minimum-Power Edge-Cover to the following problem

that admits an exact polynomial time algorithm, c.f. [10].

Minimum-Cost Edge-Cover:
Instance: A multi-graph (possibly with loops) G = (U,E) with edge-costs

{c(e) : e ∈ E}.
Objective: Find a minimum cost edge-set F ⊆ E that covers U .

Our reduction is not approximation ratio preserving, but incurs a loss of 3/2
in the approximation ratio. That is, given an instance (G, c, U, ℓ) of Restricted
Minimum-Power Edge-Cover, we construct in polynomial time an instance (G′, c′)
of Minimum-Cost Edge-Cover such that:

(i) For any U -cover I ′ in G′ corresponds a feasible solution π to (G, c, U, ℓ) with
π(V ) ≤ c′(I ′).

(ii) opt′ ≤ 3opt/2, where opt is an optimal solution value to Restricted Minimum-

Power Edge-Cover and opt′ is the minimum cost of a U -cover in G′.

Hence if I ′ is an optimal (min-cost) solution to (G′, c′), then π(V ) ≤ c′(I ′) ≤
3opt/2.

Clearly, we may set ℓv = 0 for all v ∈ V \ U . For I ⊆ E let

D(I) =
∑

v∈V

max{pI(v) − ℓv, 0} .

Here is the construction of the instance (G′, c′), where G′ = (U,E′) and E′

consists of the following three types of edges, where for every edge e′ ∈ E′

corresponds a set I(e′) ⊆ E of one edge or of two edges.

1. For every v ∈ U , E′ has a loop-edge e′ = vv with c′(vv) = ℓv + D({vu})
where vu is is an arbitrary chosen minimum cost edge in δE(v).
Here I(e′) = {vu}.

2. For every uv ∈ E such that u, v ∈ U , E′ has an edge e′ = uv with c′(uv) =
ℓu + ℓv +D(({uv}).
Here I(e′) = {uv}.

3. For every pair of edges ux, xv ∈ E such that c(ux) ≥ c(xv), E′ has an edge
e′ = uv with c′(uv) = ℓv + ℓu +D({ux, xv}).
Here I(e′) = {ux, xv}.

Lemma 6. Let I ′ ⊆ E′ be a U -cover in G′, let I = ∪e∈I′I(e), and let π be a

power assignment defined on V by π(v) = max{pI(v), ℓv}. Then π(V ) ≤ c′(I ′),
I is a U -cover in G, and π is a feasible solution to (G, c, U, ℓ).

Proof. We have that I is a U -cover in G, by the definition of I and since I(e′)
covers both endnodes of every e′ ∈ E′. By the definition of π, we have that
I ⊆ {e = uv ∈ E : π(u), π(v) ≥ c(e)}. Hence π is a feasible solution to (G, c, U, ℓ),
as claimed.



We prove that π(V ) ≤ c′(I ′). For e′ = uv ∈ E′ let ℓ(e′) = ℓv if e′ is a
type 1 edge, and ℓ(e′) = ℓu+ ℓv otherwise. Note that π(v) = max{pI(v), ℓ(v)} =
ℓv +max{pI(v) − ℓ(v), 0}, hence

π(V ) =
∑

v∈U

ℓv +
∑

v∈V

max{pI(v)− ℓ(v), 0} =
∑

v∈U

ℓv +D(I) .

By the definition of ℓ(e′) and since I ′ is a U -cover
∑

v∈U ℓv ≤
∑

e′∈I′ ℓ(e′). Also,
D(I) = D (∪e′∈I′I(e′)), by the definition of I. Thus we have

∑

v∈U

ℓv +D(I) ≤
∑

e′∈I′

ℓ(e′) +D (∪e′∈I′I(e′)) .

It is easy to see that

D (∪e′∈I′I(e′)) ≤
∑

e′∈I′

D(I(e′)) .

Finally, note that ℓ(e′)+D(I(e′)) = c′(e′) for every e′ ∈ I ′ (if e′ is a type 1 edge,
this follows from our assumption that ℓv ≥ min{c(e) : e ∈ δE(v)}). Combining
we get

π(V ) =
∑

v∈U

ℓv +D(I) ≤

≤
∑

e′∈I′

ℓ(e′) +D (∪e′∈I′I(e′)) ≤

≤
∑

e′∈I′

ℓ(e′) +
∑

e′∈I′

D(I(e′)) =

=
∑

e′∈I′

(ℓ(e′) +D(I(e′))) =

=
∑

e′∈I′

c′(e′) = c′(I ′) .

⊓⊔

Lemma 7. Let {π(v) : v ∈ V } be a feasible solution to an instance (G, c, U, ℓ)
of Restricted Minimum-Power Edge-Cover. Then there exists a U -cover I ′ in G′

such that c′(I ′) ≤ 3π(V )/2.

Proof. Let I ⊆ {e = uv ∈ E : π(u), π(v) ≥ c(e)} be an inclusion minimal U -
cover. We may assume that π(v) = max{pI(v), ℓv} for every v ∈ V . Since any
inclusion minimal U -cover is a collection of node disjoint stars, it is sufficient to
prove the statement for the case when I is a star. Then I has at most one node
not in U , and if there is such a node, then it is the center of the star, if |I| ≥ 2;
in the case I consists of a single edge e, then we define the center of I to be the
endnode of e in V \ U if such exists, or an arbitrary endnode of e otherwise.



We define a U -cover I ′ in G′, and show that

c′(I ′) ≤
3

2

∑

v∈V

max{pI(v), ℓv} =
3

2
π(V ) . (1)

Let v0 be the center of I and let {vi : 1 ≤ i ≤ d} be the leaves of I ordered by
descending order of costs c(v0vi) ≥ c(v0vi+1). The U -cover I ′ ⊆ E′ is defined as
follows. We cover each pair v2i−1, v2i, i = 1, . . . , ⌊d/2⌋, by a type 3 edge. This
covers all the nodes except v0, and maybe vd if d is odd. We add an additional
edge f of type 1 or 2, if there are nodes in U (v0 and/or vd) that remain uncovered
by the picked type 3 edges. Formally, we have the following 4 cases, see Figure 1.

(d)(c)

(b)(a)

type 1

type 3type 3

type 3 type 3

type 1

type 3
type 3

type 2

type 3
type 3

41 v5v 2v 3v

0v

5v4v1

v0

v

v3

2

v2

v

v1

3

v4

v

0v

4v1v 2v 3v

0v

v

Fig. 1. Illustration to the definition of the U -cover I ′.

1. d is even and v0 /∈ U , see Figure 1(a). Then U is covered by type 3 edges.
2. d is odd, and v0 /∈ U , see Figure 1(b). Then we add a type 1 edge f to cover

vd.
3. d is odd and v0 ∈ U , see Figure 1(c). Then we add a type 2 edge f to cover

v0, vd.
4. d is even and v0 ∈ U , see Figure 1(d). Then we add a type 1 edge f to cover

v0.

Consider a type 3 edge v2i−1v2i ∈ I ′. Let qi = max{c(v2i−1v0)− ℓv0 , 0}. Note
that c′(v2i−1v2i) ≤ π(v2i−1) + π(v2i) + qi. The key point is that

qi ≤
1

2
(π(v2i−3) + π(v2i−2)) i = 2, . . . , ⌊d/2⌋ .



This is since qi ≤ c(v0v2i−1) ≤
1
2 (c(v0v2i−3) + c(v0v2i−2)) while c(v0vj) ≤ π(vj).

Therefore,

d/2
∑

i=1

c′(v2i−1v2i) ≤

d/2
∑

i=1

[π(v2i−1) + π(v2i) + qi] ≤

2⌊d/2⌋
∑

i=1

π(vi) + q1 +
1

2

d−2
∑

i=1

π(vi)

Now, we prove that (1) hold in each one of our four cases.

1. v0 /∈ U and d is even. Note that q1 ≤ c(v0v1) ≤ π(v0). Then:

c′(I ′) =

d/2
∑

i=1

c′(ei) ≤
3

2

d
∑

i=1

π(vi) + q1 ≤
3

2

d
∑

i=1

π(vi) + π(v0) ≤
3

2

d
∑

i=0

π(vi)

2. v0 /∈ U and d is odd. In this case f = vdvd is a loop type 1 edge, so c′(f) ≤
π(vd) + max(c(v0vd)− ℓv0 , 0). This implies

q1 + c′(f) ≤ c(v0v1) + c(v0vd) + π(vd) ≤ π(v0) +
1

2
[π(v0) + π(vd)] + π(vd)

=
3

2
(π(v0) + π(vd)) .

Thus

c′(I ′) =

d/2
∑

i=1

c′(ei) + c′(f) ≤
3

2

d−1
∑

i=1

π(vi) + c′(f) + q1 ≤
3

2

d
∑

i=0

π(vi)

3. v0 ∈ U and d is odd. In this case f = v0vd, so c′(f) ≤ max(ℓv0 , c(v0vd)) +
π(vd). This implies q1+c′(f) ≤ c(v0v1)+c(v0vd)+π(vd) ≤

3
2 (π(v0) + π(vd)).

Thus

c′(I ′) =

d/2
∑

i=1

c′(ei) + c′(f) ≤
3

2

d−1
∑

i=1

π(vi) + c′(f) + q1 ≤
3

2

d
∑

i=0

π(vi) .

4. v0 ∈ U and d is even. In this case f = v0v0 is a loop type 1 edge, so
c′(f) ≤ ℓv0 + c(v0vd) ≤ ℓv0 +

1
2 (π(vd−1) + π(vd)). This implies q1 + c′(f) ≤

c(v0v1) +
1
2 (π(vd−1) + π(vd)). Thus

c′(I ′) =

d/2
∑

i=1

c′(ei) + c′(f) ≤
d

∑

i=1

π(vi) +
1

2

d−2
∑

i=1

π(vi) + q1 + c′(f)

≤
3

2

d
∑

i=1

π(vi) + π(v0) ≤
d

∑

i=0

π(vi) .

This concludes the proof of the lemma. ⊓⊔

As was mentioned, Lemmas 6 and 7 imply Lemma 4. Lemmas 4 and 5 imply
Theorem 2, hence the proof of Theorem 2 is now complete.



4 Conclusions and open problems

The main result of this paper is a new approximation algorithm for MPEMC

with ratio O(log k). This improves the ratio O(log(nk)) = O(log n) of [3]. We
also gave a (k+1/2)-approximation algorithm, which is better than our O(log k)-
approximation algorithm for small values of k (roughly k ≤ 6).

The main open problem is whether the ratio O(log k) shown in this paper is
tight, or the problem admits a constant ratio approximation algorithm.
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