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Abstract. Given a graph with edge costs, the power of a node is the
maximum cost of an edge incident to it, and the power of a graph is
the sum of the powers of its nodes. Motivated by applications in wire-
less networks, we consider the following fundamental problem in wire-
less network design. Given a graph G = (V, E) with edge costs and
degree bounds {r(v) : v € V}, the Minimum-Power Edge-Multi-Cover
(MPEMC) problem is to find a minimum-power subgraph J of G such
that the degree of every node v in J is at least r(v). We give two ap-
proximation algorithms for MPEMC, with ratios O(logk) and k + 1/2,
where k = maxyev r(v) is the maximum degree bound. This improves
the previous ratios O(logn) and k + 1, and implies ratios O(logk) for
the Minimum-Power k-Outconnected Subgraph and O (logklog n—ﬁk) for
the Minimum-Power k-Connected Subgraph problems; the latter is the
currently best known ratio for the min-cost version of the problem.

1 Introduction

1.1 Motivation and problems considered

Wireless networks are studied extensively due to their wide applications. The
power consumption of a station determines its transmission range, and thus
also the stations it can send messages to; the power typically increases at least
quadratically in the transmission range. Assigning power levels to the stations
(nodes) determines the resulting communication network. Conversely, given a
communication network, the power required at v only depends on the farthest
node reached directly by v. This is in contrast with wired networks, in which
every pair of stations that communicate directly incurs a cost. An important
network property is fault-tolerance, which is often measured by minimum degree
or node-connectivity of the network. Node-connectivity is much more central here
than edge-connectivity, as it models stations failures. Such power minimization
problems were vastly studied; see for example [1,2,5,8,9] and the references
therein for a small sample of papers in this area. The first problem we consider
is finding a low power network with specified lower degree bounds. The second
problem is the Min-Power k-Connected Subgraph problem. We give approximation
algorithms for these problems, improving the previously best known ratios.
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Definition 1. Let (V,J) be a graph with edge-costs {c(e) : e € J}. For a node
v eV let §;(v) denote the set of edges incident to v in J. The power py(v) of v
is the mazimum cost of an edge in J incident to v, or 0 if v is an isolated node
of J; i.e., pj(v) = maxes, () cle) if 05(v) # 0, and psj(v) = 0 otherwise. For
V! CV the power of V' w.r.t. J is the sum p; (V') =3\, ps(v) of the powers
of the nodes in V'.

Unless stated otherwise, all graphs are assumed to be undirected and simple.
Let n = |V|. Given a graph G = (V, E) with edge-costs {c(e) : e € E}, we seek
to find a low power subgraph (V,J) of G that satisfies some prescribed prop-
erty. One of the most fundamental problems in Combinatorial Optimization is
finding a minimum-cost subgraph that obeys specified degree constraints (some-
times called also “matching problems”) c.f. [10]. Another fundamental property
is fault-tolerance (connectivity). In fact, these problems are related, and we use
our algorithm for the former as a tool for approximating the latter.

Definition 2. Given degree bounds r = {r(v) : v € V}, we say that an edge-set
J on 'V is an r-edge cover if dj(v) > r(v) for every v € V, where dj(v) = |6;(v)]
is the degree of v in the graph (V,J).

Minimum-Power Edge-Multi-Cover (MPEMC):

Instance: A graph G = (V| E) with edge-costs {c(e) : e € E}, degree bounds
r={r(v):veV}

Objective: Find a minimum power r-edge cover J C F.

Given an instance of MPEMC, let k = max r(v) denote the maximum re-
ve

quirement.

We now define our connectivity problems. A graph is k-outconnected from
s if it contains k internally-disjoint sv-paths for all v € V' \ {s}. A graph is
k-connected if it is k-outconnected from every node, namely, if it contains k
internally-disjoint uv-paths for all u,v € V.

Minimum-Power k-Outonnected Subgraph (MPEOS):
Instance: A graph G = (V, E) with edge-costs {c(e) : e € E}, aroot s € V, and
an integer k.

Objective: Find a minimum-power k-outconnected from s spanning subgraph J
of G.

Minimum-Power k-Connected Subgraph (MPLCS):
Instance: A graph G = (V, E) with edge-costs {c(e) : e € E} and an integer k.
Objective: Find a minimum-power k-connected spanning subgraph J of G.

1.2 Our Results

The previous best approximation ratio for MPEMC was O(log n) [3]. Our main
result improves this ratio to O(log k).

Theorem 1. MPEMC admits an O(log k)-approzimation algorithm.



For small values of k, the problem admits also the ratios k+ 1 for arbitrary k
[2], while for k£ = 1 the best known ratio is k 4+ 1/2 = 3/2 [4]. Our second result
extends the latter ratio to arbitrary k.

Theorem 2. MPEMC admits a (k + 1/2)-approximation algorithm.

For small values of k, say k < 6, the ratio (k 4+ 1/2) is better than O(log k)
because of the constant hidden in the O(-) term. And overall, our paper gives
the currently best known ratios for all values k > 2.

In [5] it is proved that an a-approximation for MPEMC implies an (« + 4)-
approximation for MPEOS. The previous best ratio for MPKOS was O(logn) +
4 = O(logn) [5] for large values of k = 2(logn), and k + 1 for small values of k
[9]. From Theorem 1 we obtain the following.

Theorem 3. MPEOS admits an O(log k)-approzimation algorithm.

In [2] it is proved that an a-approximation for MPEMC and a S-approximation
for Min-Cost k-Connected Subgraph implies a («+20)-approximation for MPkCS.
Thus the previous best ratio for MPEKCS was 28 + O(logn) [3], where S is the
best ratio for MCkCS (for small values of k better ratios for MPECS are given

in [9]). The currently best known value of 3 is O (logklog ﬁ) [7], which is
O(log k), unless k = n — o(n). From Theorem 1 we obtain the following.

Theorem 4. MPECS admits an O(f3 +log k)-approzimation algorithm, where 8
is the best ratio for MCkCS. In particular, MPECS admits an O (1ogklog ﬁ) -

approzimation algorithm.

1.3 Overview of the techniques

Let the trivial solution for MPEMC be obtained by picking for every node v € V'
the cheapest r(v) edges incident to v. It is known and easy to see that this
produces an edge set of power at most (k + 1) - opt, see [2].

Our O(log k)-approximation algorithm uses the following idea. Extending
and generalizing an idea from [3], we show how to find an edge set I C F of
power O(opt) such that for the residual instance, the trivial solution value is
reduced by a constant fraction. We repeatedly find and add such an edge set
I to the constructed solution, while updating the degree bounds accordingly to
r(v) < max{r(v) — d;(v),0}. After O(logk) steps, the trivial solution value is
reduced to opt, and the total power of the edges we picked is O(log k) - opt. At
this point we add to the constructed solution the trivial solution of the residual
problem, which at this point has value opt, obtaining an O(log k)-approximate
solution.

Our (k + 1/2)-approximation algorithm uses a two-stage reduction. The first
reduction reduces MPEMC to a constrained version of MPEMC with & = 1,
where we also have lower bounds ¢, on the power of each node v € V; these
lower bounds are determined by the trivial solution to the problem. We will



show that a p-approximation algorithm to this constrained version implies a (k—
1+ p)-approximation algorithm for MPEMC. The second reduction reduces the
constrained version to the Minimum-Cost Edge Cover problem with a loss of 3/2
in the approximation ratio. As Minimum-Cost Edge Cover admits a polynomial
time algorithm, we get a ratio p = 3/2 for the constrained problem, which in
turn gives the ratio k — 1+ p =k + 1/2 for MPEMC.

2 An O(log k)-approximation (proof of Theorem 1)

As in [3], we reduce MPEMC to Bipartite MPEMC, where G = (V, E) is a bipartite
graph with sides A, B, and r(a) = 0 for every a € A (so, only the nodes in B may
have positive degree bound). This is done by taking two copies A = {a, : v € V'}
and B = {b, : v € V} of V, for every edge ¢ = uv € E adding the two edges
ayb, and a,b, of cost c¢(e) each, and for every v € V setting r(b,) = r(v)
and r(a,) = 0. It is proved in [3] that this reduction invokes a factor of 2 in
the approximation ratio, namely, that a p-approximation for bipartite MPEMC
implies a 2p-approximation for general MPEMC.

Let opt denote the optimal solution value of a problem instance at hand. For
v € V, let w, be the cost of the r(v)-th least cost edge incident to v in E if
r(v) > 1, and w, = 0 otherwise. Given a partial solution J to Bipartite MPEMC
let r(v) = max{r(v) — d;(v),0} be the residual bound of v w.r.t. J. Let

RJ: Zwa‘J(b) .

beB

The main step in our algorithm is given in the following lemma, which will
be proved later.

Lemma 1. There exists a polynomial time algorithm that given an edge set
J C E, an integer T, and a parameter v > 1, either correctly establishes that
T < opt, or returns an edge set I C E\ J such that pr(V) < (1 + )7 and

Ryur <0Ry, where 0 =1 — (1 - %) (1-1).

Lemma 2. Let J C E and let F C E\ J be an edge set obtained by picking
77(b) least cost edges in dp\ ;(b) for every b € B. Then JUF is an r-edge-cover
and: pr(B) < opt, pr(A) < Ry <k - opt.

Proof. Since F' is an rj-edge-cover, J U F' is an r-edge-cover. By the definition
of F, for any r-edge-cover I, pr(b) < wp < py(b) for all b € B. In particular, if
I is an optimal r-edge-cover, then

pr(B) <Y wy <> pr(b) =pr(B) < opt .
beB beB
Also,

Ry = Zwbm(b) gk-Zwb <k-opt.
beB beB



Finally, pr(A) < R since

pr(A)=> prla) <> > cle)=> cle) <> wyry(b) =Ry .

a€A acAecdp(a) ecF beB
This concludes the proof of the lemma. a

Theorem 1 is deduced from Lemmas 1 and 2 as follows. We set v to be

constant strictly greater than 1, say v = 2. Then § = 1— % (1 — é) Using binary
search, we find the least integer 7 such that the following procedure computes

an edge set J satisfying Ry < 7.

Initialization: J < 0.

Loop: Repeat [log, /o k| times:
Apply the algorithm from Lemma 2:
- If it establishes that 7 < opt then return “ERROR” and STOP.
-Elsedo J+ JUI.

After computing J as above, we compute an edge set FF C E \ J as in
Lemma 2. The edge-set J U F' is a feasible solution, by Lemma 2. We claim that
for any 7 > opt the above procedure returns an edge set J satisfying R; < 7;
thus binary search indeed applies. To see this, note that Ry < k - opt and thus

Ry < Ry-0"%10F < k.opt-1/k=opt <.
Consequently, the least integer 7 for which the above procedure does not return

“ERROR? satisfies 7 < opt. Thus p; (V') < [log; /9 k|- (1+7) -7 = O(log k) - opt.
Also, by Lemma 2, pr(V) < opt + Ry < 20pt. Consequently,

piur(V) < ps(V) 4+ pr(V) = O(logk) - opt + 20pt = O(log k) - opt .

In the rest of this section we prove Lemma 1. It is sufficient to prove the
statement in the lemma for the residual instance ((V,E \ J),rs) with edge-
costs restricted to E \ J; namely, we may assume that J = (). Let R = Ry =

ZbeB wyr (b).

Definition 3. An edge e € E incident to a node b € B is T-cheap if c¢(e) <
= - wpr(b).

Lemma 3. Let F be an r-edge-cover, let T > pp(B), and let
I= U {e€dr(b):cle) < . wpr(b) }
R
beB
be the set of T-cheap edges in E. Then Rinp < R/~ and p;(B) < 7.

Proof. Let D = {b € B : dp\;(b) # 0}. Since for every b € D there is an edge
e € F'\ I incident to b with c(e) > & - wpr(b), we have pp\1(b) > F - wyr(b) for
every b € D. Thus

7> pp(B) 2 pr\1(B) = ZPF\I(b) >T- % Z wpr(b) -
beD beD



This implies ), ., wyr(b) < R/7. Note that for every b € B\ D, ér(b) C d7(b)
and hence rinp(b) = rp(b) = 0. Thus we obtain:

Rinr = Z wyrinr(b) = Z wyrinr(b) < Z wyr(b) < R/7v .

beB beD beD

To see that pr(B) < 7 note that

_ ™ _T p_
pr(B) =Y _pi(b) < - > wyr(b) = - R=77.
beB beB

This concludes the proof of the lemma. O

In [3] it is proved that the following problem, which is a particular case of
submodular function minimization subject to matroid and knapsack constraint
(see [6]) admits a (1 — 1)-approximation algorithm.

Bipartite Power-Budgeted Maximum Edge-Multi-Coverage (BPBMEM):

Instance: A bipartite graph G = (AU B, F) with edge-costs {c(e) : e € E} and
node-weights {w, : v € B}, degree bounds {r(v) : v € B}, and a
budget .

Objective: Find I C F with pr(A) < 7 that maxmizes

val(I) = > " w, - min{d;(v), 7(v)} .

vEB

The following algorithm computes an edge set as in Lemma 1.

1. Among the 7-cheap edges, compute a (1 — %)—approximate solution I to
BPBMEM.
2. If R; < OR then return I, where § = 1 — (1 — %) (1 — %),

Else declare “7 < opt”.

Clearly, p;(A) < 7. By Lemma 3, p;(B) < y7. Thus p;(V) < p1(A)+pr(B) <
(1+v)T.

Now we show that if 7 > opt then Ry < 6R. Let F' be the set of cheap edges in
some optimal solution. Then pr(A) < opt < 7. By Lemma 3 Rrp < R/, namely,

F reduces R by at least R (1 - %) Hence our (1 — %)—approximate solution [
to BPBMEM reduces R by at least R (1 - é) (1 — %) Consequently, we have

Ri<R-R(1-1)(1-1) =R, as claimed,
The proof of Theorem 1 is complete.

3 A (k + %)—approximation (proof of Theorem 2)

We say that an edge set F' C E covers a node set U C V', or that F'is a U-cowver,
if 0p(v) # 0 for every v € U. Consider the following auxiliary problem:



Restricted Minimum-Power Edge-Cover

Instance: A graph G = (V, E) with edge-costs {c(e) : e € E}, U C V, and degree
bounds {¢, : v € U}.

Objective: Find a power assignment {7 (v) : v € V} that minimizes ), . 7(v),
such that w(v) > ¢, for all v € U, and such that the edge set
F={e=w € E:w(u),m(v) > c(e)} covers U.

Later, we will prove the following lemma.

Lemma 4. Restricted Minimum-Power Edge-Cover admits a 3/2-approximation
algorithm.

Theorem 2 is deduced from Lemma 4 and the following statement.

Lemma 5. If Restricted Minimum-Power Edge-Cover admits a p-approzimation
algorithm, then Minimum-Power Edge-Multi-Cover admits a (k— 1+ p)-approzima-
tion algorithm.

Proof. Consider the following algorithm.

1. Let m(v) be the power assignment computed by the p-approximation algo-
rithm for Restricted Minimum-Power Edge-Cover with U = {v € V : r(v) > 1}
and bounds £, = w, forallv € U.Let F = {e =uv € E : w(u), 7(v) > c(e)}.

2. For every v € V let I, be the edge-set obtained by picking the least cost
rr(v) edges in dp\ p(v) and let I = Uyey 1,

Clearly, F'UI is a feasible solution to Minimum-Power Edge-Multi-Cover. Let opt
denote the optimal solution value for Minimum-Power Edge-Multi-Cover. In what
follows note that 7(V') < p-opt and that 3 _, w, < opt.

We claim that

pror(V) <7(V)+ (k—1)-opt.
As w(V) < p - opt, this implies pryr(V) < (p+k — 1) - opt.

For v € V let I', be the set of neighbors of v in the graph (V,I,). The
contribution of each edge set I, to the total power is at most pr, (I,) + pr, (v).
Note that 7(v) > pr, (v) and w(v) > pp(v) for every v € V, hence ppyy, (v) <
7(v). This implies

pror(V) < 3 (w(v) 4+ pr, (1) = 7(V) + 3 pr, (1)
veV veV

Now observe that |I,| = |I,| = rp(v) < k —1 and that py, (u) < w, for every
u € I',. Thus
pr,( () <(k—1)-w, YveV.

Finally, using the fact that ) _, w, < opt, we obtain
prur(V) <w(V)+ ZpIU(Fv) <a(V)+(k-1) Z wy < (V)4 (k—1)-opt.
veV veV

This finishes the proof of the lemma. a



In the rest of this section we prove Lemma 4.
We reduce Restricted Minimum-Power Edge-Cover to the following problem
that admits an exact polynomial time algorithm, c.f. [10].

Minimum-Cost Edge-Cover:

Instance: A multi-graph (possibly with loops) G = (U, E) with edge-costs
{c(e) : e € E}.

Objective: Find a minimum cost edge-set F' C E that covers U.

Our reduction is not approximation ratio preserving, but incurs a loss of 3/2
in the approximation ratio. That is, given an instance (G, ¢, U,¢) of Restricted
Minimum-Power Edge-Cover, we construct in polynomial time an instance (G', ¢’)
of Minimum-Cost Edge-Cover such that:

(i) For any U-cover I’ in G’ corresponds a feasible solution 7 to (G, ¢, U, £) with
(V) < d(T').

(ii) opt’ < 3opt/2, where opt is an optimal solution value to Restricted Minimum-
Power Edge-Cover and opt’ is the minimum cost of a U-cover in G'.

Hence if I’ is an optimal (min-cost) solution to (G', '), then n(V) < ¢(I') <
3opt/2.
Clearly, we may set £, =0 for all v € V\ U. For I C F let

D(I) =Y max{ps(v) - £,0} .

veV

Here is the construction of the instance (G',¢’), where G’ = (U,E’) and E’
consists of the following three types of edges, where for every edge ¢/ € E’
corresponds a set I(e’) C E of one edge or of two edges.

1. For every v € U, E' has a loop-edge ¢/ = vv with ¢/(vv) = ¢, + D({vu})
where vu is is an arbitrary chosen minimum cost edge in dg(v).
Here I(e') = {vu}.

2. For every wv € E such that u,v € U, E’ has an edge ¢/ = uv with ¢/(uv) =
ly + Ly + D(({uv}).
Here I(e') = {uv}.

3. For every pair of edges ux, zv € E such that c(uz) > c¢(zv), E’ has an edge
e’ = uv with ¢ (uv) = £, + £y, + D({uz, zv}).
Here I(e') = {ux,xv}.

Lemma 6. Let I' C E’ be a U-cover in G', let I = UeepI(e), and let © be a
power assignment defined on V by w(v) = max{ps(v),l,}. Then =(V) < /(I'),
I is a U-cover in G, and 7 is a feasible solution to (G, ¢, U,¥L).

Proof. We have that I is a U-cover in G, by the definition of I and since I(e’)
covers both endnodes of every ¢/ € E’. By the definition of m, we have that
IC{e=wuve E:n(u),n(v) > c(e)}. Hence 7 is a feasible solution to (G, ¢, U, £),
as claimed.



We prove that 7(V) < ¢/(I'). For ¢/ = uv € E' let {(e/) = 4, if € is a
type 1 edge, and £(e’) = £, + ¢, otherwise. Note that 7(v) = max{p;(v),4(v)} =
£y + max{ps(v) — £(v), 0}, hence

(V) = ng + Z maX{pI(U) —f(v),O} = Z ly +D(I)

velU veV velU

By the definition of £(e’) and since I’ is a U-cover ) i, £y < > . cp £(€'). Also,
D(I) = D (Uerer I(€)), by the definition of I. Thus we have

> ty+ D)< YA€) + D (UeerI(€)) -
velU e'el’
It is easy to see that
D (UeerI(e) < Y D)) .

e'el’

Finally, note that £(e’) + D(I(e’)) = ¢/ (¢') for every ¢’ € I (if €’ is a type 1 edge,
this follows from our assumption that ¢, > min{c(e) : e € dg(v)}). Combining
we get

V)=> t,+D(I) <

Uge + D (UeerI(e)) <
< eiﬁ(eﬂ + Z;D(I () =
= Z; (€(e") +e;(1 () =
= ZE; d(e)=d(I)

O

Lemma 7. Let {n(v) : v € V}} be a feasible solution to an instance (G,c,U,?)
of Restricted Minimum-Power Edge-Cover. Then there exists a U-cover I' in G’
such that ¢(I') < 3n(V)/2.

Proof. Let I C {e = wv € E : w(u),m(v) > c(e)} be an inclusion minimal U-
cover. We may assume that 7(v) = max{pr(v),¢,} for every v € V. Since any
inclusion minimal U-cover is a collection of node disjoint stars, it is sufficient to
prove the statement for the case when I is a star. Then I has at most one node
not in U, and if there is such a node, then it is the center of the star, if || > 2;
in the case I consists of a single edge e, then we define the center of I to be the
endnode of e in V '\ U if such exists, or an arbitrary endnode of e otherwise.



We define a U-cover I’ in G', and show that

(1) < 3 3 max{pr(v). £} = ox(V) 1)

veV

Let vg be the center of I and let {v; : 1 < i < d} be the leaves of I ordered by
descending order of costs c(vgv;) > ¢(voviq1). The U-cover I’ C E’ is defined as
follows. We cover each pair vo;_1,v9;, ¢ = 1,...,[d/2], by a type 3 edge. This
covers all the nodes except vy, and maybe vy if d is odd. We add an additional
edge f of type 1 or 2, if there are nodes in U (vg and/or vg) that remain uncovered
by the picked type 3 edges. Formally, we have the following 4 cases, see Figure 1.

(b)

Fig. 1. Tllustration to the definition of the U-cover I'.

1. d is even and vy ¢ U, see Figure 1(a). Then U is covered by type 3 edges.
2. dis odd, and vy ¢ U, see Figure 1(b). Then we add a type 1 edge f to cover

vq.

3. d is odd and vy € U, see Figure 1(c). Then we add a type 2 edge f to cover
Vo, Ud-

4. d is even and vy € U, see Figure 1(d). Then we add a type 1 edge f to cover
9.

Consider a type 3 edge va;—1v2; € I'. Let ¢; = max{c(va;—1v0) — £y, 0}. Note
that C/(’UQZ',{UQZ') S 7T(’L)2i,1) + W(Ugi) + q;- The key point is that

g < (7‘1’(’021‘_3) + m(vgi—2)) 1=2,..., \_d/2J .

N~



This is since ¢; < ¢(vovai—1) < 3 (c(vov2i—3) + c(vov2i—2)) while c(vov;) < 7(vy).
Therefore,

dj2 dj2 2|d/2] 142
c’vi,vi < m(v2i—1) + m(v2;) + qi| < w(vy) +q1 + = (V5
;(2 12)_;[(2 1) +m(v2;) CI]_; (vi) + @1 2;()

Now, we prove that (1) hold in each one of our four cases.

1. vo ¢ U and d is even. Note that ¢1 < ¢(vov1) < 7(vp). Then:

d/2 d d
c/(]/):; g;wvz +q¢ <= Z m(v;) 4+ m(vg) ggw

2. vy ¢ U and d is odd. In this case f = vquq is a loop type 1 edge, so ¢/(f) <
7m(va) + max(c(vovg) — Ly,,0). This implies

@1 + ¢ (f) < e(vovy) + c(vova) + m(va) < w(vo) + %[W(vo) + m(va)] + 7 (va)

3
= = (n(o0) + 7(va)) -
Thus
d/2 g -1
/ ! !
— — < —
) = o) + 1) < 33 o) + 101 < 53l

3. vp € U and d is odd. In this case f = vovg, so ¢/ (f) < max(£,,,c(vovq)) +
)

7(vg). This implies g1 +¢(f) < c(vov1)+c(vova) +7(va) < 3 (w(vo) + 7(va))-
Thus

/2 d

d
1) =Y e + () < S ww) (D) < 2D (v
1=0

|
—_

i=1 i=1

4. vg € U and d is even. In this case f = wvgvg is a loop type 1 edge, so
¢ (f) < Lo, + c(vova) < Ly + 5 ((va-1) + m(va)). This implies g1 + ¢/ (f) <
c(vovy) + 1 5 (m(vg—1) + m(va)). Thus

d/2 d—2

d _
d(I') = ;Cl(ei) +d(f) < ;W(Ui) + %;W(Ui) +aq +(f)
3 d
< 3 2 m(vi) + w(vg) < ;F(’UZ‘) :
This concludes the proof of the lemma. a

As was mentioned, Lemmas 6 and 7 imply Lemma 4. Lemmas 4 and 5 imply
Theorem 2, hence the proof of Theorem 2 is now complete.



4

Conclusions and open problems

The main result of this paper is a new approximation algorithm for MPEMC
with ratio O(log k). This improves the ratio O(log(nk)) = O(logn) of [3]. We
also gave a (k+1/2)-approximation algorithm, which is better than our O(log k)-
approximation algorithm for small values of k& (roughly & < 6).

The main open problem is whether the ratio O(log k) shown in this paper is

tight, or the problem admits a constant ratio approximation algorithm.
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