Skip to main content

Uncovering the Neural Code Using a Rat Model during a Learning Control Task

  • Chapter

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7311))

Abstract

How neuronal firing activities encode meaningful behavior is an ultimate challenge to neuroscientists. To make the problem tractable, we use a rat model to elucidate how an ensemble of single neuron firing events leads to conscious, goal-directed movement and control. This study discusses findings based on single unit, multi-channel simultaneous recordings from rats frontal areas while they learned to perform a decision and control task. To study neural firing activities, first and foremost we needed to identify single unit firing action potentials, or perform spike sorting prior to any analysis on the ensemble of neural activities. After that, we studied cortical neural firing rates to characterize their changes as rats learned a directional paddle control task. Single units from the rat’s frontal areas were inspected for their possible encoding mechanism of directional and sequential movement parameters. Our results entail both high level statistical snapshots of the neural data and more detailed neuronal roles in relation to rat’s learning control behavior.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersen, R., Musallam, S., Pesaran, B.: Selecting the signals for a brain-machine interface. Current Opinion in Neurobiology 14, 720–726 (2004)

    Article  Google Scholar 

  • Bao, P., Zhang, L.: Noise reduction for magnetic resonance images via adaptive multiscale products thresholding. IEEE Transactions on Medical Imaging 22(9), 1089–1099 (2003)

    Article  Google Scholar 

  • Benitez, R., Nenadic, Z.: Robust Unsupervised Detection of Action Potentials With Probabilistic Models. IEEE Transactions on Biomedical Engineering 55(4), 1344–1354 (2008)

    Article  Google Scholar 

  • Ben-Shaul, Y., Drori, R., Asher, I., Stark, E., Nadasdy, Z., Abeles, M.: Neuronal activity in motor cortical areas reflects the sequential context of movement. J. Neurophysiol. 91, 1726–1748 (2004)

    Article  Google Scholar 

  • Carpenter, A., Georgopoulos, A., Pellizzer, G.: Motor cortical encoding of serial order in a context-recall task. Science 283, 1752–1757 (1999)

    Article  Google Scholar 

  • Dedual, N., Ozturk, M., Sanchez, J., Principe, J.: An associative memory readout in ESN for neural action potential detection. In: International Joint Conference on Neural Networks, IJCNN 2007, p. 2295 (2007)

    Google Scholar 

  • Fee, M.S., Mitra, P.P., Kleinfeld, D.: Variability of extracellular spike waveforms of cortical neurons. Journal of Neurophysiology 76(6), 3823–3833 (1996)

    Google Scholar 

  • Hulata, E., Segev, R., Ben-Jacob, E.: A method for spike sorting and detection based on wavelet packets and shannon’s mutual information. Journal of Neuroscience Methods 117(1), 1–12 (2002)

    Article  Google Scholar 

  • Hulata, E., Segev, R., Shapira, Y., Benveniste, M., Ben-Jacob, E.: Detection and sorting of neural spikes using wavelet packets. Phys. Rev. Lett. 85(21), 4637–4640 (2000)

    Article  Google Scholar 

  • Humphrey, D., Schmidt, E.: Extracellular Single-Unit Recording Methods. Neurophysiological Techniques: Applications to Neural Systems 15, 1–64 (1991)

    Article  Google Scholar 

  • Kakei, S., Hoffman, D., Strick, P.: Muscle and movement representations in the primary motor cortex. Science 285, 2136–2139 (1999)

    Article  Google Scholar 

  • Kandel, E., Schwartz, J., Jessell, T.: Principles of Neural Science (2000)

    Google Scholar 

  • Kargo, W., Nitz, D.: Improvements in the Signal-to-Noise Ratio of Motor Cortex Cells Distinguish Early versus Late Phases of Motor Skill Learning. J. Neurosci. 24, 5560–5569 (2004)

    Article  Google Scholar 

  • Kim, K.H., Kim, S.J.: A wavelet-based method for action potential detection from extracellular neural signal recording with low signal-to-noise ratio. IEEE Transactions on Biomedical Engineering 50(8), 999–1011 (2003)

    Article  Google Scholar 

  • Kreiter, A.K., Aertsen, A.M., Gerstein, G.L.: A low-cost single-board solution for real-time, unsupervised waveform classification of multineuron recordings. Journal of Neuroscience Methods 30(1), 59–69 (1989)

    Article  Google Scholar 

  • Li, C., Padoa-Schioppa, C., Bizzi, E.: Neuronal correlates of motor performance and motor learning in the primary motor cortex of monkeys adapting to an external force field. Neuron 30, 593–607 (2001)

    Article  Google Scholar 

  • Lu, X., Ashe, J.: Anticipatory activity in primary motor cortex codes memorized movement sequences. Neuron 45, 967–973 (2005)

    Article  Google Scholar 

  • Mallat, S.: A wavelet tour of signal processing. Academic Press, San Diego (1989)

    MATH  Google Scholar 

  • Matsuzaka, Y., Picard, N., Strick, P.: Skill Representation in the Primary Motor Cortex After Long-Term Practice. J. Neurophysiol. 97, 1819–1832 (2007)

    Article  Google Scholar 

  • Musial, P., Baker, S., Gerstein, G., King, E., Keating, J.: Signal-to-noise ratio improvement in multiple electrode recording. Journal of Neuroscience Methods 115, 29–43 (2002)

    Article  Google Scholar 

  • Naundorf, B., Wolf, F., Volgushev, M.: Unique features of action potential initiation in cortical neurons. Nature 440(7087), 1060–1063 (2006)

    Article  Google Scholar 

  • Nenadic, Z.: Spike detection with the continuous wavelet transform, matlab software. University of California, Irvine, Center for BioMedical Signal Processing and Computation (2005), http://cbmspc.eng.uci.edu

  • Nenadic, Z., Burdick, J.: Spike detection using the continuous wavelet transform. IEEE Transactions on Biomedical Engineering 52(1), 74–87 (2005)

    Article  Google Scholar 

  • Nenadic, Z., Burdick, J.: A control algorithm for autonomous optimization of extracellular recordings. IEEE Transactions on Biomedical Engineering 53(5), 941–955 (2006)

    Article  Google Scholar 

  • Olson, B., Si, J., Hu, J., He, J.: Closed-loop cortical control of direction using support vector machines. IEEE Transactions on Neural Systems and Rehabilitation Engineering 13(1), 72–80 (2005)

    Article  Google Scholar 

  • Oweiss, K., Anderson, D.: A multiresolution generalized maximum likelihood approach for the detection of unknown transient multichannel signals in colored noise with unknown covariance. In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2002, vol. 3, pp. 2993–2996 (2002)

    Google Scholar 

  • Oweiss, K., Anderson, D.: A unified framework for advancing array signal processing technology of multichannel microprobe neural recording devices. In: 2nd Annual International IEEE-EMB Special Topic Conference on Microtechnologies in Medicine and Biology, pp. 245–250 (2002)

    Google Scholar 

  • Paxinos, G., Watson, C.: The Rat Brain in Stereotaxic Coordinates (2007)

    Google Scholar 

  • Quiroga, R.Q., Nadasdy, Z., Ben-Shaul, Y.: Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering. Neural Computation 16(8), 1661–1687 (2004)

    Article  MATH  Google Scholar 

  • Sadler, B.M., Swami, A.: Analysis of multiscale products for step detection and estimation. IEEE Transactions on Information Theory 45(3), 1043–1051 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Santaniello, S., Fiengo, G., Glielmo, L., Catapano, G.: A biophysically inspired microelectrode recording-based model for the subthalamic nucleus activity in parkinson’s disease. Biomedical Signal Processing and Control 3(3), 203–211 (2008)

    Article  Google Scholar 

  • Shima, K., Tanji, J.: Neuronal activity in the supplementary and presupplementary motor areas for temporal organization of multiple movements. J. Neurophysiol. 84, 2148–2160 (2000)

    Google Scholar 

  • Smith, L.: Noisy spike generator, matlab software. University of Stirling, Department of Computing Science and Mathematics (2006), http://www.cs.stir.ac.uk/~lss/noisyspikes/

  • Song, M.J., Wang, H.: A spike sorting framework using nonparametric detection and incremental clustering. Neurocomputing 69(10-12), 1380 (2006)

    Article  Google Scholar 

  • Thakur, P.H., Lu, H., Hsiao, S.S., Johnson, K.O.: Automated optimal detection and classification of neural action potentials in extra-cellular recordings. Journal of Neuroscience Methods 162(1-2), 364–376 (2007)

    Article  Google Scholar 

  • Volgushev, M., Malyshev, A., Balaban, P., Chistiakova, M., Volgushev, S., Wolf, F.: Onset Dynamics of Action Potentials in Rat Neocortical Neurons and Identified Snail Neurons: Quantification of the Difference. PLoS ONE 3(4), e1962 (2008)

    Article  Google Scholar 

  • Wood, F., Black, M., Vargas-Irwin, C., Fellows, M., Donoghue, J.: On the variability of manual spike sorting. IEEE Transactions on Biomedical Engineering 51(6), 912–918 (2004)

    Article  Google Scholar 

  • Wu, G., Hallin, R.G., Ekedahl, R.: Multiple action potential waveforms of single units in man as signs of variability in conductivity of their myelinated fibres. Brain Research 742(1-2), 225–238 (1996)

    Article  Google Scholar 

  • Xu, Y., Weaver, J., Healy, D., Lu, J.: Wavelet transform domain filters: a spatially selective noise filtration technique. IEEE Transactions on Image Processing 3(6), 747–758 (1994)

    Article  Google Scholar 

  • Yang, C., Olson, B., Si, J.: A multiscale correlation of wavelet coefficients approach to spike detection. Neural Computation 23, 215–250 (2011)

    Article  MATH  Google Scholar 

  • Yang, X., Shamma, S.: A totally automated system for the detection and classification of neural spikes. IEEE Transactions on Biomedical Engineering 35(10), 806–816 (1988)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yang, C., Mao, H., Yuan, Y., Cheng, B., Si, J. (2012). Uncovering the Neural Code Using a Rat Model during a Learning Control Task. In: Liu, J., Alippi, C., Bouchon-Meunier, B., Greenwood, G.W., Abbass, H.A. (eds) Advances in Computational Intelligence. WCCI 2012. Lecture Notes in Computer Science, vol 7311. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30687-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30687-7_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30686-0

  • Online ISBN: 978-3-642-30687-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics