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Abstract. A UML Protocol State Machine (PSM) is a behavioral dia-
gram for the specification of the external behavior of a class, interface or
component. PSMs have been used in the software development process
for different purposes, such as requirements analysis and testing. How-
ever, like other UML diagrams, they are often difficult to validate and
verify, specially when combined with other artifacts, such as Object Con-
straint Language (OCL) specifications. This drawback can be overcome
by application of an off-the-shelf formal method, namely one support-
ing automatic validation and verification. Among those, we have the
increasingly popular Alloy, based on a simple relational flavor of first-
order logic. This paper presents a model transformation from PSMs,
optionally complemented with OCL specifications, to Alloy. Not only it
enables automatic verification and validation of PSMs, but also a smooth
integration of Alloy in current software development practices.

Keywords: UML, OCL, Protocol State Machines, Alloy.

1 Introduction

UML state machine diagrams can be used to describe the dynamic behavior of a
system or part of it. There are two variants, namely Behavioral State Machines
and Protocol State Machines (PSMs) [16]. While the former is used to express
behavior of various elements (e.g., class instances), the latter is a way to define
the allowed behavior of classifiers; namely, classes, interfaces and components.
Therefore, PSMs enable the specification of a lifecycle for objects or an order
of invocation of its operations and to express usage protocols. PSMs typically
omit implementation details and allow the use of the Object Constraint Language
(OCL) [17] to specify state invariants and transitions’ pre- and post-conditions.
As such, PSMs are well-suited to be integrated in a Model Driven Engineering
(MDE) context, allowing the specification of the allowed behavior of a classifier
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in a highly abstract way. PSMs have been used for the specification of dynamic
views during the analysis phase, and they have been exploited for the generation
of class contracts, test code and test cases [19,18,3,21].

Since UML is the industry de facto language for modeling, there exist myriad
tools supporting it. In particular, UML integration in the Model Driven Archi-
tecture (MDA), the MDE initiative of the OMG, led to an explosion of UML
based MDE tools, such as code generators and reverse engineering frameworks.
Unfortunately, in part due to the fact that UML has only an informally given
semantics, most of these tools do not offer adequate support for Verification and
Validation (V&V).

Formal methods have been successfully applied in the formalization and V&V
of UML state machines [22,23,12,5,21]. However, the consistency between these
and other UML specification artifacts has rarely been addressed. Moreover, most
of these formalizations rely on traditional formal methods, that are avoided by
software developers due to the inherent complexity that makes them hard to
learn and use.

The objective of this paper is precisely to tackle both these issues: we show how
both PSMs and Class Diagrams (CDs) enhanced with OCL can be formalized
in Alloy [10] lightweight formal modeling language; and we present an approach
to develop V&V tasks using Alloy Analyzer. This formalization allows us to
simulate and verify the consistency between UML artifacts and to perform other
V&V activities, such as detect unreachable states or invalid transitions. The
formalization of PSMs is implemented using the model transformation language
ATL [4]. For the formalization of OCL, we use the UML2Alloy tool [2] and the
approach presented in [1] but adapted to support dynamic behavior.

The rest of the paper is structured as follows. Section 2 shows a case study in
order to explain our proposal. Section 3 describes preliminary concepts referred
to PSMs and Alloy. Section 4 presents our approach. Section 5 discusses the
related work. Finally, Section 6 summarizes the contributions and exposes some
ideas for future work.

2 Case Study

Figure 1(a) shows an example of a PSM. It is a simplified model of a student
coursing a career. The PSM describes the intended behavior of the class Student,
specified also in CD enriched with OCL shown in Figure 1(b). Initially, the
student is not enrolled to any course. The enroll operation enrolls the student
in a course, and enables him to attend the course exam, while performing lab

assignments. If he is approved in the exam and completes all mandatory lab
assignments he can pass the course. If he fails the exam, he also fails the
course. At any time, he can quit the course. After failing, quitting, or passing a
course he returns to the Enrolling state where he can enroll in another (or the
same) course.

Note that the transitions labeled with operations enroll, lab, and pass have
attached pre- and post-conditions defined in OCL. These constrain when such
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(a) Protocol State Machine

(b) Class Diagram enriched with OCL

Fig. 1. Coursing case study

operations can be invoked and their effect on the modeled student state (namely,
associations passed, current, exams, and labs). Likewise, the Studying

composite state is characterized by an invariant, forcing the student to be
enrolled in order to attend the exam and the labs. The Student class oper-
ations are further specified in OCL. Due to space limitation we only show
the specification of the operation enroll and the predicate isEnrolled in
figure 1(b). Note that the OCL specification includes frame conditions,
such as Student.allInstances()->forAll(s|s.passed=s.passed@pre), stat-
ing which attributes should remain unchanged when executing an operation. It
is not consensual whether such frame-conditions must be specified, and some au-
thors assume an implicit invariability assumption, stating that what is not men-
tioned in a post-condition should remain unchanged. However, such assumption
may lead to ambiguities in post-condition interpretation [11], and we require
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them to be explicitly specified, however, this step will be automated to release
the user of this, potential, tedious task.

When PSMs are combined with UML static models such as CDs, both anno-
tated with OCL, the V&V task substantially increases in complexity. Namely,
it is no longer trivial to manually check consistency and detect specification
errors, such as unreachable states. For instance, is it possible to ensure that
every student has the opportunity to pass a course, by eventually reaching the
Passed state? And upon reaching such state, are the Student attributes consis-
tent, namely, is the course part of the exams association that stores the exams
successfully completed by the student? We will show how an Alloy formalization
of PSMs, CDs, and OCL, enables automatic verification of properties such as
these using the Alloy Analyzer.

3 Preliminary Concepts

We present preliminary concepts related to PSMs and Alloy. Section 3.1 explains
syntactic and semantics issues of PSMs. Section 3.2 introduces Alloy, and de-
scribes how UML models enriched with OCL can be formalized using an Alloy
idiom tailored for dynamic specification.

3.1 UML Protocol State Machines

The abstract syntax of a PSM is shown in Figure 2. A PSM is modeled using a di-
rected graph where the nodes represent states and the arrows transitions between
states. A transition is an expression of the form [precondition] operation /

[postcondition]. Pre- and post-conditions can be informally defined, however
UML prescribes the use of OCL for their formal specification. State invariants
can be associated to each state. A state invariant should be satisfied whenever
the related state is active. There exist three kind of states: simple, composite or
submachine. The first one is a state without sub-states (neither regions nor sub-
machines), the second one can be composed of two or more orthogonal regions,
and the third one allows the specification of inner state machine (submachines).
For instance, the PSM in Figure 1(a) shows a composite state, Studying, with
two regions which we will name them as R1 and R2. A region may optionally
have a final state and an initial pseudostate. Other examples of pseudostates
are: join, fork, junction and choice.

A transition is enabled when its source state is active, the source state invari-
ant holds and the pre-condition associated to its operation is true. Transitions
are triggered by events which represent invocation of operations. When the same
operation is referred by more than one transition, if it is invoked, different tran-
sitions will be enabled resulting in a conflict. The UML standard [16] prioritizes
firing using the state hierarchy: transitions from deeper sub-states have higher
priority over the ones from including composite states.
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Fig. 2. Metamodel of UML Protocol State Machines

3.2 Alloy

Alloy [10] is a formal modeling language based on a relational flavor of first-order
logic. Alloy is supported by the Alloy Analyzer, a SAT (satisfiability problem)
based tool that enables automatic model V&V. Alloy Analyzer is inspired by
model checkers, but it is implemented as a solver, performing verification within
a bounded scope.

The abstract syntax of Alloy language is described in the metamodel presented
in Figure 3. An Alloy module consists of a module header, a set of imports and
zero or more paragraphs. Themodule header is a name of the module where para-
graphs are defined. The import keyword specifies the inclusion of other modules.
A paragraph can either be a signature declaration, a constraint, an assertion or
a command.

A signature declaration denotes a set of atoms. An atom is a unity with three
basic properties: it is indivisible, immutable and uninterpreted. Signature decla-
rations can introduce fields. A field represents a relation among signatures. Facts,
predicates and functions describe invariants, named constraints, and named ex-
pressions, respectively. The difference between a fact and a predicate is that the
first one always holds while the second one only holds when invoked. Assertions
allow the expression of properties that are expected to hold as consequence of
specified facts. Finally, commands instruct the Alloy Analyzer to perform par-
ticular analysis using two possible instructions: run and check. The first checks
model consistency by requesting a valid instance, and the latter verifies an as-
sertion by searching for a counterexample. Both commands optionally define a
scope, bounding the number of instances allowed for each signature.

Specifying OCL Annotated Class Diagrams in Alloy. Alloy’s logic is
quite generic and does not commit to a particular specification style [10]. There
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Alloy-metapackage Data[   ]

NamedElement

-name : String

intersection
difference

override

product
domain
range

union

join

<<enumeration>>
BinOp

-abs : Boolean
-mult : Mult [0..1]
-constSeq : ConstSeq [1]
-ext : SigId [0..1]

Sig

Header

-moduleId : ModuleId [1]
Import

-path : String
-sig : Sig [0..1]
-moduleId : ModuleId [1]

<<enumeration>>
Quant

some

lone
one

set

no

all

QuDcForm

-quant : Quant [1]
-decls : DeclExpr [1..*]
-forms : Form [1..*]

Paragraph

TypScope

-num : Integer [1]
-scopeable : SigId [1]
-exactly : Boolean

Fact

-factId : RelId [0..1]

ButScope

-num : Integer [0..1]

Expr

Pred

-predId : PredId [1]

<<enumeration>>
Mult

some

lone

one

set

<<enumeration>>
LogOp

andOp

iffiOp
iffOp

orOp

DeclExpr

-expr : Expr [1]
-vIds : VarId [1..*]

<<enumeration>>
CompOp

incl
eq

CpExForm

-lEx : Expr [1]
-rEx : Expr [1]
-op : CompOp [1]

Decl

-relId : RelId [1]

LogForm

-lFm : Form [1]
-rFm : Form [1]
-Op : LogOp [1]

SimpleScope

BinOpExpr

-lEx : Expr [1]
-rEx : Expr [1]
-op : BinOp [1]

FormConstSeq

ModuleId

Scope

SetDecl

Module

FunCall

RelDecl

Assert

PredId
Check

FactId

RelId
Run

VarId

Fun

FunId

SigId

-header1

-imports

0..*

0..1

-params
0..*

0..*

1..*

1..*

0..*

-paragraphs0..*

-decls
0..*

Fig. 3. Metamodel of Alloy

is also no predefined way to model dynamic behavior, since instances can only
be populated with immutable atoms. A standard way to circumvent this is to
introduce a signature denoting the overall state of the system, and model oper-
ations as predicates that specify the relationship between pre- and post-states.
Two variants of this idiom are known respectively as global state and local state.
In the first one, all mutable fields are defined in the global state signature. In
the second one, an extra column at the end of each mutable field is added lo-
cally to represent the state signature (usually denoted Time). The local state is
often simpler than other competing idioms for modeling the dynamics of com-
plex systems [24] and well-suited for modeling state machines [10]. In this idiom,
operations are modeled as predicates that specify the relationship between pre-
and post-states. To be more specific, an operation op is specified using a pred-
icate pred op[...,t,t’:Time] {...} with two special parameters t and t’

denoting, respectively, the pre- and post-state. Predicates of the form pred q

[...,t:Time] {...} are used to specify boolean queries. A formal character-
ization of this idiom can be found in [8], together with a translation to UML
CDs enriched with OCL.

Figure 4 shows how the OCL annotated CD of Figure 1(b) can be specified
in Alloy using the local state idiom. The passed, current, labs and exams as-
sociations are modeled as mutable relations in Student. Cardinality constraints
at association ends yield corresponding multiplicities in field declarations. For
example, the keyword lone in the field current limits the cardinality of the set
Course to zero or one instances, when it is associated to Time. OCL pre- and
post-conditions in operations are modeled by relational expressions evaluated
at state t and t’, respectively. In Alloy everything is a relation. Therefore, the
relational composition operator can be used to various purposes. In particular,
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module student

sig Time {}

sig Student {

passed : Course -> Time, current : Course lone -> Time,

labs : Laboratory -> Time, exams : Course -> Time }

sig Course { labs : some Laboratory }

sig Laboratory {}

fact { labs in Course lone -> Laboratory}

pred enroll [s : Student, c : Course, t,t’ : Time] {

no s.current.t

c not in s.passed.t

current.t’ = current.t + s -> c

passed.t’ = passed.t

labs.t’ = labs.t

exams.t’ = exams.t }

pred isEnrolled [s : Student, t : Time] { some s.current.t }

Fig. 4. Coursing example in Alloy

when t is composed with a mutable field, it denotes its value at the pre-state.
For example, s.current.t denotes the course of a student s prior to method
invocation. In Alloy there is no implicit self object, and an explicit self pa-
rameter must be included in the operation signatures. This explicit parameter
must then be used whenever self is implicitly used. For example, the OCL pre-
condition not passed->includes(c) of method enroll, stating that a student
can enroll only in courses not yet passed, can be specified in Alloy as c not in

s.passed.t. There are many challenging issues to address when implementing
an automatic translation from OCL to Alloy, such as the translation of OCL
pre- and post-conditions. These have been addressed but not implemented in
[1]. We will use the same approach, as in [1], to translate CDs annotated with
OCL to Alloy but considering dynamic issues. In particular, we will generate
a specification conforming the local state idiom; namely, to translate OCL pre-
and post-conditions to predicates and to include an extra column Time at the
end of each mutable field. Following this approach, an Alloy model equivalent
to the one of Figure 4 can be generated from the UML model of Figure 1(b).

4 Specifying Protocol State Machines in Alloy

We present an approach to specify PSMs in Alloy. Firstly, we specify how CD
enriched with OCL (CD+OCL) can be integrated in order to be used by a PSM.
Then, we describe the transformation of a PSM to Alloy and we show how to
perform V&V tasks using the Alloy Analyzer. The proposal is explained using
a case study. Finally, we formalize the transformation by defining the rules in
ATL.
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4.1 Importing UML Class Diagram into Alloy

Two separate Alloy modules will be used: one to specify the CD+OCL, and
another to specify the PSM. The latter imports the former, since the trans-
formation from PSMs to Alloy requires the specification of classes, attributes,
relations and operations, corresponding to the CD+OCL, in the local state id-
iom. This separation of concerns allows us to directly reuse part of the output of
UML2Alloy tool, and, if the user makes changes to the Alloy model, it is possible
to translate it back to a CD+OCL using Alloy2OCL, another tool previously
developed for this particular effect [8].

4.2 PSM’s States and Transitions

PSM simple states can be modelled directly in Alloy using singleton signatures.
On the other hand, composite states and regions can be modeled using abstract
signatures, to be extended by the signatures modeling its sub-states. At the top
of the state hierarchy we will have the signature State containing all states.
The pseudostate Initial is also modeled similarly to simple states. Following
these rules, the states of our running example, in figure 1(b), can be specified as
follows.

abstract sig State {}

abstract sig Studying extends State {}

abstract sig R1 extends Studying {}

abstract sig R2 extends Studying {}

one sig Lab extends R1 {}

one sig NoExam, Exam extends R2 {}

one sig Initial, Enrolling, Passed, Quitted, Failed extends State {}

The PSM itself is modeled using a singleton signature PSM, with a single mutable
relation state, that, for each time instant and instance of the associated class
returns the set of active states.

one sig PSM { state: State some -> Student -> Time }

Similarly to operations, transition between normal states will be modeled by a
predicate that, for each instance of the class associated with the PSM, relates
the pre- and post-state. The metamodel of PSMs (see Figure 2) establishes
that a protocol transition can refer to zero or more operations. To simplify the
presentation, we will limit this set to at most one operation per transition. The
transition predicate invokes the referred operation, whose predicate is defined in
the imported model. If no operation is referred, the transition predicate invokes
a special nop predicate, with frame-conditions that constrain all mutable fields
to remain unchanged. Each transition predicate also includes two constraints to
model the dynamics of the machine: one checks if all the source states are active
in the pre-state for the given instance, and the other changes the relation state,
so that its target states are active in the post-state. For example, transition t3

of figure 1(a) can be modeled as follows.



320 A. Garis et al.

pred t3 [s : Student, t,t’ : Time] {

NoExam in PSM.state.t.s

PSM.state.t’ = PSM.state.t - (NoExam -> s) + (Exam -> s)

approve[s,t,t’] }

The relational expression NoExam -> s denotes the cartesian product of NoExam
and s. Since these are singletons, in this case it denotes just a tuple. As such, the
second constraint ensures that relation state has the same pre- and post-state
for all student instances, except for s, which changes its state from NoExam to
Exam.

Some transitions are not translated as predicates. In particular, this is the
case of incoming transitions of join pseudostates and outgoing transitions of fork
pseudostates. Their source and target states will be handled by the respective
outgoing and incoming transitions. For instance, consider the fork pseudostate
whose incoming transition is t1, with two outgoing transitions leading to the
Studying composite state, respectively to Lab and NoExam. These states will be
activated by the predicate modeling t1, which is defined as follows.

pred t1 [s: Student, t,t’ : Time] {

Enrolling in PSM.state.t.s

PSM.state.t’ = PSM.state.t - (Enrolling -> s) + ((Lab + NoExam) -> s)

some c : Course { (no s.current.t) && enroll[s,c,t,t’] } }

Notice the usage of an existential quantifier, some, to introduce the parameters
of operation enroll, and the inclusion of the Alloy translation of the specified
OCL pre-condition before its invocation.

State invariants are enforced using a fact for each state that declares them.
For composite states, the invariant must hold whenever any of its sub-states is
active. For example, the state invariant of Studying is specified as follows.

fact Studying {

all t:Time, s:Student | some (PSM.state.t.s & Studying)=> isEnrolled[s,t]}

4.3 Finite Execution Traces

To model finite execution traces, a total order will be imposed on the Time

signature using the predefined Alloy library ordering. This library defines useful
relations to manipulate the total order, namely first to denote the first atom,
and next, a binary relation that, given an atom, returns the following atom in
the order.

The next relation must be restricted to relate only Time atoms for which a
transition predicate holds for one of the instances of the class associated with the
PSM. Moreover, at the first time atom all instances must be at the Initial

pseudostate. Both these constraints are defined in the special fact Traces.

fact Traces {

all s : Student | PSM.state.first.s = Initial

all t : Time, t’ : t.next | some s : Student {

t0[s,t,t’] or t1[s,t,t’] or t2[s,t,t’] or t3[s,t,t’] or t4[s,t,t’] or

t5[s,t,t’] or t6[s,t,t’] or t7[s,t,t’] or t8[s,t,t’] or t9[s,t,t’] }}
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Firing Priority. Our running example does not contain conflicting transitions.
If two transitions high and low could potentially be in conflict (that is, the same
operation is invoked in both), and high has higher priority then low, then fact
Traces would invoke them using

high[s,t,t’] or (not high[s,t,t’] and low[s,t,t’]).

4.4 Verification and Validation of UML Diagrams

With both the PSM and the CD+OCL specified in Alloy, we can now check
their consistency by asking for an execution trace. This can be done with the
command run, that instructs the Alloy Analyzer to look for a valid instance of
the model.

For instance, consider the command run {} for 2 but 1 Student, 15 Time.
The keyword for can be used to define a scope bounding the number of atoms
allowed for each signature. The keyword but establishes an exception for the
boundary defined by for. In this case, the number of Student atoms is limited
to 1 and the number of Time atoms is extended to 15.

In this particular example, the run command returns a valid trace and thus
the PSM is consistent with the OCL annotated CD. However, this notion of
consistency is very basic and does not suffice in order to validate the models. A
more reliable notion is to check that every state of the PSM is reachable. For
example, is it possible for a student to pass at least one course? Again, using a
run command, we can ask the analyzer to return a trace where a student reaches
state Passed.

run {some t : Time, s : Student | Passed in PSM.state.t.s

} for 2 but 1 Student, 15 Time

In this case the analyzer cannot find a valid execution trace, meaning that state
Passed is unreachable in 15 steps. Obviously, this means that there is some
problem with one of the models. Looking back at the PSM of Figure 1(a)
we can see that there is a problem with the pre-condition of transition t2,
that requires the (to be completed) lab assignment to already been completed
before. After inserting the missing not, changing that pre-condition to (not

self.labs->includes(l)) and self.current.labs->includes(l) the ana-
lyzer returns a valid execution trace. Figure 5 presents 6 consecutive states of this
trace moving the student from state Enrolling to Passed: the student is first
approved in the exam and then completes the two mandatory lab assignments.
Since reachability is a desirable property, we will define a rule transformation to
generate similar runs for each simple state of the PSM.

There are other examples of V&V tasks that can be performed using the Alloy
Analyzer. For example, we can check that, when a student is in the Passed state,
the exams relation contains the current course, using the following command.

check {all t :Time, s : Student { Passed in PSM.state.t.s =>

s.current.t in s.exams.t } } for 10 but 1 Student, 30 Time
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(a) Time 4 (b) Time 5 (c) Time 6

(d) Time 7 (e) Time 8 (f) Time 9

Fig. 5. Trace leading to a passed course

As previously mentioned, check verifies the assertion by searching for a coun-
terexample. We specify a big scope in order to be confident that the assertion
holds. In particular, we bound the number of atoms allowed for each signature to
10 but 30 for Time. Since no counterexamples are returned with such big scope,
we can be more confident that this assertion holds.

4.5 Implementation

Our proposal was prototyped in a model transformation tool using the MDA
approach: First, both the PSM and Alloy metamodels were specified, and then
we defined a mapping from PSM elements to Alloy elements using the model
transformation language ATL. Some of the ATL rules are presented in Figure 6.

Rule Model2Module maps a UML model of one PSM to an Alloy module,
declaring the respective header and imports. Rule PSM2Sig creates the singleton
signature PSM with the dynamic relation state. Rule CompositeState2Sig cre-
ates an abstract signature extending State for each PSM composite
state. SimpleState2Run generate a run command for each simple state
of the PSM. The ATL transformation is available for download at
http://sourceforge.net/p/psm2alloy.

http://sourceforge.net/p/psm2alloy
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5 Related Work

Likewise other UML diagrams, the semantics of PSMs is quite ambiguous, and
several attempts have been made to formalize it. For example, Bauer et al. [5]
propose a model-theoretic semantics, based on labelled transition systems, for
three different perspectives (namely, implementator’s view, user’s view, and in-
teraction view) of the PSM. Here we will follow the user’s view, that a PSM
specifies the allowed call sequences on the classifiers operations.

The joint V&V of PSMs and other UML diagrams using traditional formal
methods has also been proposed. For example, Lanoix et al. [12] use the B
method to verify the interoperability and refinement of UML components, spec-
ified using CDs, sequence diagrams and PSMs. However, the focus is not on
consistency and class methods are specified directly in B instead of the UML
standard OCL. The consistency of an UML classes and the associated PSM
has previously been addressed by Rash and Wehrheim [20], using a formaliza-
tion to CSP. Again, classes are not specified with OCL, but using Object-Z.
Lightweight formal methods have also been used for similar purposes before. In
particular, Nimiya et al. [15] propose a method for verifying consistency of UML
state machine diagrams and communication diagrams using Alloy, but it does
not consider integration with CDs neither OCL. Ries [21] formalizes a subset of
UML CDs and PSMs in Alloy, as part of a lightweight model-driven test selec-
tion process called SESAME, but it does not consider complex UML elements,
such as composite states or fork and choice pseudostates, neither addresses the
consistency of PSMs with CDs+OCL.

The relationship between CDs+OCL with Alloy has been extensively stud-
ied by Anastaskis et al. [2], resulting in a prototype model transformation tool
named UML2Alloy that formalizes that relationship as a shallow embedding.
Maoz et al [13] proposed a formalization of CDs using a deep embedding to Al-
loy, to support UML features not directly expressible in Alloy, such as multiple
inheritance. However, both these formalizations yield Alloy specifications which
are not well-suited to model dynamic behavior, namely by not making clear the
distinction between pre- and post-states in method specification. Anastasakis [1]
showed how UML2Alloy could be extended to solve that issue, but that extension
was never incorporated into UML2Alloy. These formalizations did not consider
PSMs, and thus left out some OCL features related to state machines, namely
the OCL predefined operation oclIsInState, which evaluates whether an object
is in a specific state.

UML has also been mapped to Alloy for model V&V of particular case-studies.
We present three examples: the first one uses the Alloy Analyzer for formal
security evaluation in a methodology called Aspect-Oriented Risk-Driven De-
velopment [9]; the second one describes a proposal for Alloy specification of
Aspect-UML models, a UML Profile for extending UML with Aspect-oriented
concepts [14]; the third one explains an approach to translate UML models,
specified with OntoUML, for model validation using Alloy [6]. These examples,
likewise [2] and [13], make evident Alloy potential for UML V&V, but they do
not consider UML dynamic diagrams such as PSMs.
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create OUT : MMAlloy from IN : MMUml;

rule Model2Module {

from s : MMUml!Model (

MMUml!ProtocolStateMachine.allInstances()->size() =1 )

to mId : MMAlloy!ModuleId ( name <- s.name ),

hd : MMAlloy!Header ( moduleId <- mId ),

stId : MMAlloy!SigId ( name <- ’State’ ),

st : MMAlloy!Sig ( abs <- true, sigId <- stId ),

m : MMAlloy!Module ( header<- hd,

imports <- MMAlloy!Import.allInstances(),

paragraphs <- MMAlloy!Paragraph.allInstances() )

}

rule PSM2Sig {

from s : MMUml!ProtocolStateMachine

to sig : MMAlloy!SigId ( name <- ’PSM’ ),

var : MMAlloy!VarId ( name <- ’state’ ),

decl : MMAlloy!RelDecl(

varIds <- var, mult <- #some, sigs <- getSigId(’State’)...),

psm : MMAlloy!Sig (

abs <- false, mult <- #one, sigId <- sig, decls <- decl )

}

rule CompositeState2Sig {

from s : MMUml!State ( s.name <> ’’ and s.isComposite() )

to sigId: MMAlloy!SigId( name <- s.name ),

sigEx : MMAlloy!SigId( name <- s.getRegion() ),

sig : MMAlloy!Sig ( abs <- true, sigId <- sigId, exts <- sigEx )

}

rule SimpleState2Run {

from s : MMUml!State ( s.name <> ’’ and s.isSimple() )

to

v1 : MMAlloy!VarId ( name <- ’t’ ),

v2 : MMAlloy!VarId ( name <- ’s’ ),

dEx1: MMAlloy!DeclExpr (vId <- v1, sigId <- getSigId(’Time’)),

dEx2: MMAlloy!DeclExpr (vId <- v2, sigId <- getSigCl() )),

ex : MMAlloy!BinOpExpr(op <- #join, rEx <- ex2,lEx <- getSigId(’PSM’)),

ex2 : MMAlloy!BinOpExpr(op <- #join, rEx <- ex3,lEx <- getRel(’state’)),

ex3 : MMAlloy!BinOpExpr(op <- #join, rEx <- v1 , lEx <- v2 ),

fm : MMAlloy!CpExForm (op <- #incl, lEx <- getSigId(s.name),rEx <- ex),

qF : MMAlloy!QuDcForm ( q <- #some, decls<- Set{dEx1,dEx2},forms<- fm),

tyT : MMAlloy!TypeScope( num <- ’15’,scopeable <- getSigId(’Time’)),

tyC : MMAlloy!TypeScope( num <- ’1’ ,scopeable <- getSigIdClass()),

sc : MMAlloy!ButScope ( num <- ’2’, typeScopes <- Set{tyT,tyC}),

run : MMAlloy!SimpleRun( form<- qF, scope <- sc ) }

Fig. 6. ATL rules to map a PSM to Alloy
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6 Conclusions and Future Work

We have shown how both PSMs and CDs enriched with OCL can be formal-
ized in Alloy, using the local state idiom to handle dynamics. This formalization
enables us to perform automatic V&V of these UML diagrams using the Alloy
Analyzer. In particular, it allows us to check they are consistent with each other,
a fundamental property ignored by current UML tools. The proposed PSM for-
malization was prototyped using ATL. The proposed formalization of CDs+OCL
could be implemented with a new version of UML2Alloy, to be (hopefully) re-
leased soon. The output (in Alloy) of this tool can be changed by the user (e.g.,
to correct ambiguities) and translated back into UML using the (previously de-
veloped) tool OCL2Alloy. This allows a smooth integration of Alloy in software
development practices, namely allowing the use of the many available MDA tools
on models which are verified and validated with Alloy.

The proposal could be scalable to other domains, such as safety-critical sys-
tems. So far, the formalization was only tested with small examples. We intent to
validate it with larger case studies. Other ongoing work includes a (small) exten-
sion to Alloy to allow the specification of more complex behavioral properties in
temporal logic (LTL). This will further simplify the V&V effort required by the
user, by allowing him to reuse well-known temporal specification patterns [7].
In the future we also intend to use this formalization to automatically generate
UML sequence diagrams, to be used in model based testing.
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