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ABSTRACT

In every negotiation with a deadline, one of the negotiat-
ing parties has to accept an offer to avoid a break off. A
break off is usually an undesirable outcome for both par-
ties, therefore it is important that a negotiator employs a
proficient mechanism to decide under which conditions to
accept. When designing such conditions one is faced with
the acceptance dilemma: accepting the current offer may be
suboptimal, as better offers may still be presented. On the
other hand, accepting too late may prevent an agreement
from being reached, resulting in a break off with no gain for
either party.

Motivated by the challenges of bilateral negotiations be-
tween automated agents and by the results and insights of
the automated negotiating agents competition (ANAC), we
classify and compare state-of-the-art generic acceptance con-
ditions. We focus on decoupled acceptance conditions, i.e.
conditions that do not depend on the bidding strategy that
is used. We performed extensive experiments to compare the
performance of acceptance conditions in combination with a
broad range of bidding strategies and negotiation domains.
Furthermore we propose new acceptance conditions and we
demonstrate that they outperform the other conditions that
we study. In particular, it is shown that they outperform
the standard acceptance condition of comparing the current
offer with the offer the agent is ready to send out. We also
provide insight in to why some conditions work better than
others and investigate correlations between the properties of
the negotiation environment and the efficacy of acceptance
conditions.

Categories and Subject Descriptors

1.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—intelligent agents, multi-agent systems

General Terms

Algorithms, Bargaining, Experimentation, Negotiation

Keywords

Automated bilateral negotiation, acceptance criteria, accep-
tance conditions

1. INTRODUCTION

Negotiation is an important process to reach trade agree-
ments, and to form alliances or resolve conflicts. The field
of negotiation originates from various disciplines including
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artificial intelligence, economics, social science, and game
theory (e.g., [2, 16, 20]). The strategic—negotiation model
has a wide range of applications, such as resource and task
allocation mechanisms, conflict resolution mechanisms, and
decentralized information services [16].

A number of successful negotiation strategies have already
been established both in literature and in implementations
[6, 7, 12, 13, 19]. And more recently, in 2010 seven new
negotiation strategies were created to participate in the first
automated negotiating agents competition (ANAC 2010) [3]
in conjunction with the Ninth International Conference on
Autonomous Agents and Multiagent Systems (AAMAS-10).
During post tournament analysis of the results, it became
apparent that different agent implementations use various
conditions to decide when to accept an offer. In every ne-
gotiation with a deadline, one of the negotiating parties has
to accept an offer to avoid a break off. Therefore, it is im-
portant for every negotiator to employ a mechanism to de-
cide under which conditions to accept. However, designing
a proper acceptance condition is a difficult task: accepting
too late may result in the break off of a negotiation, while
accepting too early may result in suboptimal agreements.

The importance of choosing an appropriate acceptance
condition is confirmed by the results of ANAC 2010 (see Ta-
ble 1). Agents with simple acceptance criteria were ranked
at the bottom, while the more sophisticated time- and utility-
based criteria obtained a higher score. For instance, the low
ranking of Agent Smith was due to a mistake in the imple-
mentation of the acceptance condition [27].

Despite its importance, the theory and practice of accep-
tance conditions has not yet received much attention. The
goal of this paper is to classify current approaches and to
compare acceptance conditions in an experimental setting.
Thus in this paper we will concentrate on the final part of
the negotiation process: the acceptation of an offer. We
focus on decoupled acceptance conditions: i.e., generic ac-
ceptance conditions that can be used in conjunction with an
arbitrary bidding strategy.

Our contribution is fourfold:

1. We give an overview and provide a categorization of
current decoupled acceptance conditions.

2. We introduce a formal negotiation model that supports
the use of arbitrary acceptance conditions.

3. We compare a selection of current generic acceptance
conditions and evaluate them in an experimental set-
ting.



Rank Agent Acceptance condition
1 Agent K Time and utility based
2 Yushu Time and utility based
3 Nozomi Time and utility based
4 IAMhaggler Utility based only

5 FSEGA Utility based only

6 IAMcrazyHaggler Utility based only

7 Agent Smith Time and utility based

Table 1: An overview of the rank and acceptance
conditions of every agent in ANAC 2010.

4. We propose new acceptance conditions and test them
against established acceptance conditions, using vary-
ing types of bidding techniques.

The remainder of this paper is organized as follows. Sec-
tion 2 defines the model of negotiation that we employ and
provides an overview of current acceptance conditions. In
Section 3, we also consider combinations of acceptance con-
ditions. Section 4 discusses our experimental setup and re-
sults, which demonstrate that some combinations outper-
form traditional acceptance conditions. Finally, Section 5
outlines our conclusions and our plans for further research
on acceptance strategies.

2. ACCEPTANCE CONDITIONS IN NEGO-
TIATION

This paper focuses on acceptance conditions (also called
acceptance criteria) that are decoupled: i.e. generic accep-
tance conditions that are not tied to a specific agent im-
plementation and hence can be used in conjunction with
an arbitrary bidding strategy. We first describe a general
negotiation model which fits current decoupled acceptance
conditions. We have surveyed existing negotiation agents to
examine the acceptance criteria that they employ. We then
categorize them according to the input that they use in their
decision making process.

2.1 Negotiation Model

We consider bilateral negotiations, i.e. a negotiation be-
tween two parties or agents A and B. The agents negotiate
over issues that are part of a negotiation domain, and every
issue has an associated range of alternatives or wvalues. A
negotiation outcome consists of a mapping of every issue to
a value, and the set €2 of all possible outcomes is called the
outcome space. The outcome space is common knowledge
to the negotiating parties and stays fixed during a single
negotiation session.

We further assume that both parties have certain pref-
erences prescribed by a preference profile over ). These
preferences can be modeled by means of a utility function
U, which maps a possible outcome w € §2 to a real-valued
number in the range [0, 1]. In contrast to the outcome space,
the preference profile of the agents is private information.

Finally, the interaction between negotiating parties is reg-
ulated by a negotiation protocol that defines the rules of
how and when proposals can be exchanged. We use the
alternating-offers protocol [23] for bilateral negotiation, in
which the negotiating parties exchange offers in turns.

As in [26], we assume a common global time, represented
here by 7 = [0,1]. We supplement the alternating-offers

protocol with a deadline ¢ = 1, at which moment both agent
receive utility 0. This is the same setup as [8], with the ex-
ception that issues are not necessarily real-valued and both
agents have the same deadline equal to t = 1. We represent
by z%_, 5 the negotiation outcome proposed by agent A to
agent B at time t. A negotiation thread (cf. [6, 26]) between
two agents A and B at time t € T is defined as a finite
sequence

t o t1 to t3 tn )
HAHB T (xm —p22Lpa—p3> Lpz—pyr - - ’xpnﬁpn+1 ’

where
1. t, < t; for k <, the offers are ordered over time T,

2. pr = pr+2 € {A, B} for all k, the offers are alternating
between the agents,

3. All ¢; represent instances of time 7T, with ¢, <,

4. xfg’;_,pkH € Q for k € {1,...,n}, the agents exchange
complete offers.

Additionally, the last element of H%, 5 may be equal to
one of the particles { Accept, End}. We will say a negotiation
thread is active if this is not the case.

When agent A receives an offer % _, , from agent B sent
at time ¢, it has to decide at a later time ¢’ > t whether to
accept the offer, or to send a counter-offer CEZHB. Given a
negotiation thread HY,, 5 between agents A and B, we can
formally express the action performed by A with an action
function Xa:

End ift' >1
Accept  if ACA(tl,mi—)Ba Hiop)
otherwise

XA(t/7 x%—)A) =
t/

Ta-B

Note that we extend the setting of [8, 26] by introducing the

acceptance condition AC 4 of an agent A. This model en-

ables us to study arbitrary decoupled acceptance conditions.
AC,4 that takes as input

1= (t/7 IZ—»BH HZHB%

the tuple containing the current time t’, the offer ;vi;%B that
the agent considers as a bid (in line with the bidding strategy
the agent uses), and the ongoing negotiation thread H., 4.

The resulting action given by the function X a(t',z%_, 4)
is used to extend the current negotiation thread between
the two agents. If the agent does not accept the current
offer, and the deadline has not been reached, it will prepare
a counter-offer xfé _,g by using a bidding strategy or tactic
to generate new values for the negotiable issues. Tactics can
take many forms, e.g. time-dependent, resource dependent,
imitative, and so on [26]. In our setup we will consider
the tactics as given and try to optimize the accompanying
acceptance conditions.

2.2 Acceptance Criteria

Let an active negotiation thread

t t t tp— tn
Haivp= (xpiHmv Ty pgs - - - ’xAﬁ»}Bv ‘TB%A) )
be given at time ¢’ > t = t,, so that it is agent A’s turn to
perform an action.
As outlined in our negotiation model, the action function
X4 of an agent A uses an acceptance condition AC4(Z) to



decide whether to accept. In practice, most agents do not
use the full negotiation thread to decide whether it is time
to accept. For instance many agent implementations, such
as [9, 8, 26], use the following implementation of ACA(Z):

ACA(t/a"L‘fA—)BwHi(—}B) — UA(th—nA) > UA(IanB)-

That is, A will accept when the utility U4 for the opponent’s
last offer at time ¢t is greater than the value of the offer agent
A is ready to send out at time t'. The acceptance condition
above depends on the agent’s upcoming offer xfé%B. For
a, B € R this may be generalized as follows:

def ’
AClew(a,f) €5 a-Ua(apoa) + B > Ua(whp).
We can view « as the scale factor by which we multiply the
opponent’s bid, while 8 specifies the minimal ‘utility gap’
[13] that is sufficient to accept.
Analogously, we have acceptance conditions that rely on

e - tp—1 .
the agent’s previous offer x '~ p:

A(]gm,(oz7 B) PN UA(mtBﬁA) +3> UA(xZ:%).

Note that this acceptance condition does not take into ac-
count the time that is left in the negotiation, nor any offers
made previous to time t. Other acceptance conditions may
rely on other measures, such as the remaining negotiation
time or the utility of our previous offer. For example, there
is a very simple acceptance criterion that only compares the
opponent’s offer with a constant a:

ACCIonst(a) <d:ef> UA(QZ%%A) 2 .

Last but not least, instead of considering utility agents may

employ a time-based condition to accept after a certain amount

of time T' € T has passed:

ACL . (T) &5 ¢ > T
We will omit the superscript Z when it is clear from the
context. We will use these general acceptance conditions to
classify existing acceptance mechanisms in the next section.

2.3 Existing Acceptance Conditions

We give a short overview of decoupled acceptance con-
ditions used in literature and current agent implementa-
tions. We are primarily interested in acceptance conditions
that are not specifically designed for a single agent. We do
not claim the list below is complete; however it serves as a
good starting point to categorize current decoupled accep-
tance conditions. We surveyed the entire pool of agents of
ANAC 2010, including Agent K and Nozomi [25], Yushu [1],
IAM(crazy)Haggler [5], FSEGA [24] and Agent Smith [27].
We also examined well-known agents from literature, such
as the Trade-off agent [7], the Bayesian learning agent [11],
ABMP [13], equilibrium strategies of [9], and time depen-
dent negotiation strategies as defined in [22], i.e. the Boul-
ware and Conceder tactics.

Listed in Table 2 is a selection of generic acceptance con-
ditions found.

Some agents also use logical combinations of different ac-
ceptance conditions at the same time. This explains why
some agents are listed multiple times. For example, both
TIAMHaggler and IAMcrazyHaggler [4] accept precisely when

AC. 00t (0.88) V AC 104 (1.02,0) V AC, 1, (1.02,0).

Table 2: A selection of existing decoupled accep-
tance conditions.

AC « 153 Agent

ACpev(a, ) 103 0 FSEGA,

Bayesian Agent

1 0 Agent Smith
1.02 0 IAM(crazy)Haggler
1 0.02 ABMP
ACext (e, 8) 1 0 FSEGA, Boulware,
Conceder, Trade-off,
Equilibrium strategies
1.02 0 TAM(crazy)Haggler
1.03 0 Bayesian Agent
AC nsi (@) 1 - FSEGA
0.9 - Agent Smith
0.88 - IAM(crazy)Haggler
T
ACi.(T) 0.92 - Agent Smith

We will not focus on the many possible combinations of all
acceptance conditions that may thus be obtained; we will
study the basic acceptance conditions in isolation with vary-
ing parameters. However in addition to this we study a small
selection of combinations in Section 3. We leave further com-
binations for future research.

As can be seen from Table 2, in our sample the most com-
monly used acceptance condition is AChpext = ACnext(1,0),
which is the familiar condition of accepting when the op-
ponent’s last offer is better than the planned offer of the
agent. The function 8 — ACprev(1,8) can be viewed as
an acceptance condition that accepts when the utility gap
[13] between the parties is smaller than 8. We denote this
condition by AC,,,(5).

3. COMBINED ACCEPTANCE CONDITIONS

We define three acceptance conditions that are designed to
perform well in conjunction with an arbitrary bidding strat-
egy. This will incorporate all ideas behind the traditional
acceptance conditions we have described so far. We will
show in Section 4 that they work better than the majority
of simple generic conditions listed in Table 2.

From a negotiation point of view, it makes sense to al-
ter the behavior of the acceptance condition when time is
running short. Many ANAC agents such as Yushu, Nozomi
and FSEGA [1, 24, 25] split the negotiation into different
intervals of time and apply different sub-strategies to each
interval.

The basic idea behind combined acceptance conditions
AC ompbi is as follows. In case the bidding strategy plans
to propose a deal that is worse than the opponent’s offer,
we have reached a consensus with our opponent and we ac-
cept the offer. But if there still exists a gap between our offer
and time is short, the acceptance condition should wait for
an offer that is not expected to improve in the remaining
time. Thus ACcombi is designed to be a proper extension
of AC,ext, with adaptive behavior based on recent bidding
behavior near the deadline.



To define ACcombi, Suppose an active negotiation thread
t — t1 to tn—1 _tp
Hasp = (IP1—>P27IP2—>P3’ s Tasp xB—>A) )

is given at time t >t=t, > % near the deadline, when
it is agent A’s turn. Note that there is r = 1 — ¢’ time
remaining in the negotiation, which we will call the remain-
ing time window. A good sample of what might be ex-
pected in the remaining time window consists of the bids
that were exchanged during the previous time window W =
[t' —r,t'] C T of the same size.
Let

H}gVaA = {m%ﬁA € Hth—)B ‘ s € W}

denote all bids offered by B to A in time window W. We can
now formulate the average and maximum utility that was
offered during the previous time window in the negotiation
thread H = HY . 4:

MAX" = max Ua(x).
zeH
and

AVGY = Iﬁl\ 3 Ua(e).
e H
We let ACcomni(T, @) accept at time ¢ exactly when the
following holds: AC,ext indicates that we have to accept, or
we have almost reached the deadline (' > T') and the current
offer suffices (i.e. better than «) given the remaining time:

ACcombi (T7 Oé)
def,
<~

AC ext VAC . (T) A (UA (x5, 4) > a).

Note that we have defined ACgombi(T, @) in such a way
that it splits the negotiation time into two phases: [0,7)
and [T, 1], with different behavior in both cases.

We will consider three different combined acceptance con-
ditions:

1. ACcomni(T, MAXW), the current offer is good enough
when it is better than all offers seen in the previous
time window W,

2. ACcomni(T, AVGW), the offer is better than the aver-
age utility of offers during the previous time window
W,

3. ACcomni(T, MAXT), the offer should be better than
any bid seen before.

4. EXPERIMENTS

In order to experimentally test the efficacy of an accep-
tance condition, we considered a negotiation setup with the
following characteristics. We equipped a set of agents (as
defined later) with an acceptance condition, and measured
its result against other agents in the following way. Sup-
pose agent A is equipped with acceptance condition AC 4
and negotiates with agent B. The two parties may reach a
certain outcome w € €2, for which A receives the associated
utility Ua(w). The score for A is averaged over all trials on
various domains (see Section 4.1.2), alternating between the
two preference profiles defined on that domain. E.g., on the
negotiation scenario between England and Zimbabwe, A will
play both as England and as Zimbabwe against all others.

For our experimental setup we employed GENIUS (General
Environment for Negotiation with Intelligent multi-purpose
Usage Simulation) [17]. This environment, which is also used
in ANAC, helps to facilitate the design and evaluation of au-
tomated negotiators’ strategies. It can be used to simulate
tournaments between negotiating agents in various negoti-
ation scenarios, such as the setup described in this section.
It supports the alternating offer protocol with a real-time
deadline as outlined in our negotiation model. The default
negotiation time in GENIUS and in the setup of ANAC is 3
minutes per negotiation session; therefore we use the same
value in our experiments.

4.1 Detailed Experimental Setup

4.1.1 Agents

We use the negotiation tactics that were submitted to
The Automated Negotiating Agents Competition (ANAC
2010) [3]. ANAC is a negotiation competition aiming to
facilitate and coordinate the research into proficient negoti-
ation strategies for bilateral multi-issue negotiation, similar
to what the Trading Agent Competition (TAC) has achieved
for the trading agent problem [28].

The seven agents that participated in ANAC 2010 have
been implemented by various international research groups
of negotiation experts. We used these strategies in our ex-
periments as they are representative of the current state-
of-the-art in automated negotiation. Firstly, we removed
the built-in acceptance mechanism from this representative
group of agents; this left us with its pure bidding tactics. As
outlined in our negotiation model, this procedure allowed us
to test arbitrary acceptance conditions in tandem with any
ANAC tactic.

We aimed to tune our acceptance conditions to the top
performing ANAC 2010 agents. Therefore we have selected
the top 3 of ANAC agents that were submitted by differ-
ent research groups, namely Agent K, Yushu and IAMhag-
gler (we omitted Nozomi as the designing group also imple-
mented Agent K, cf. Table 1). For the set of opponents, we
selected all agents from ANAC 2010, for the acceptance con-
ditions should be tested against a wide array of strategies.
The opponents also had their built-in acceptance conditions
removed (and hence were not able to accept), so that dif-
ferences in results would depend entirely on the acceptance
condition under consideration. To test the efficacy of an ac-
ceptance condition, we equipped the top 3 tactics with this
condition and compared the average utility obtained by the
three agents when negotiating against their opponents.

4.1.2 Domains

The specifics of a negotiation domain can be of great in-
fluence on the negotiation outcome [10]. Acceptance condi-
tions have to be assessed on negotiation domains of different
size and complexity. Negotiation results also depend on the
opposition of the parties’ preferences. The notion of weak
and strong opposition can be formally defined [14]. Strong
opposition is typical of competitive domains, when a gain
for one party can be achieved only at a loss for the other
party. Conversely, weak opposition means that both parties
achieve either losses or gains simultaneously.

With this in mind, we aimed for two domains (with two
preference profiles each) with a good spread of negotiation
characteristics. We picked two domains from the three that



Itex—Cyp Zim—Eng
Size 180 576
Opposition Strong Medium

Table 3: The four preference profiles used in exper-
iments.

were used in ANAC 2010 (cf. [3]). Some agents participating
in ANAC 2010 did not scale well and could not deal with a
large bid space. We omitted the Travel domain as the agents
had too many difficulties with it to make it a reliable testing
domain.

Our first scenario is taken from [15], which describes a
buyer—seller business negotiation. It involves representatives
of two companies: Itex Manufacturing, a producer of bicy-
cle components and Cypress Cycles, a builder of bicycles.
There are four issues that both sides have to discuss: the
price of the components, delivery times, payment arrange-
ments and terms for the return of possibly defective parts.
The opposition between the parties is strong in this domain,
as the manufacturer and consumer have naturally opposing
requirements. Altogether, there are 180 potential offers that
contain all combinations of values for the four issues.

The second domain taken from [17, 18] involves a case
where England and Zimbabwe negotiate an agreement on
tobacco control. The leaders of both countries must reach
an agreement on five issues. England and Zimbabwe have
contradictory preferences for the first two issues, but the
other issues have options that are jointly preferred by both
sides. The domain has a total of 576 possible agreements.

To compensate for any utility differences in the preference
profiles, the agents play both sides of every scenario.

4.1.3 Acceptance Conditions

For each acceptance condition we tested all 3x7 = 21 pair-
ings of agents, playing with each of the 4 different preference
profiles. We ran every experiment twice, so that altogether
each acceptance condition was tested 168 times. We selected
the following acceptance conditions for experimental testing.
The different values of parameters will be discussed in the
section below.

e AC,exi(,0) and ACyprev(av,0) for a € {1,1.02},
e AC,,,(a) for a € {0.02,0.05,0.1,0.2},
e AC, st (@) for a € {0.8,0.9},

L4 ACtime(T)7 Accombi(T7 MAXW)a ACCombi(T, AVGW)
and ACcombi (7, MAXT), where W is the previous time
window with respect to the current time ¢’, and T' =
0.99 (this particular value of T is discussed below).

Additionally, we ran the experiments with agents having
their built-in acceptance mechanism in place. That is, we
also tested the original agents’ coupled acceptance mecha-
nism. As we cannot for example, equip Agent K with the
coupled acceptance condition of Yushu, we tested the built-
in mechanism by having each agent employ its own mecha-
nism.

4.2 Hypotheses and Experimental Results

The experiments considered here are designed to discuss
the main properties and drawbacks of the acceptance con-
ditions listed above. We formulate several hypotheses with
respect to the acceptance conditions we have discussed.

Our hypothesis about AC, () is the following:

Hypothesis 1. For « close to one, AC., s () performs
worse than all other conditions.

To evaluate this hypothesis and others below, we have car-
ried out a large number of experiments. The results are
summarized in Table 4. The table shows the average utility
obtained by the agents when equipped with several accep-
tance conditions. The “average utility of agreements” col-
umn represents the average utility obtained by the agent
given the fact that they have reached an agreement. When
they do not reach an agreement (due to the deadline), they
get zero utility. Thus the following holds:

(The acceptance dilemma)

Agreement percentage
X
Average utility of agreements.

Total average utility =

This formula captures the essence of the acceptance dilemma:
accepting bad to mediocre offers yields more agreements of
relatively low utility. While accepting only the best offers
produces less agreements, but of higher utility.

Now consider AC.,,4:(0.9) and AC_.,.:(0.8). When it
reaches an agreement, it receives a very high utility (at least
0.9 or 0.8 respectively), but this happens so infrequently
(resp. 26% and 38% of all negotiations), that it is ranked at
the bottom when we consider total average utility.

We can conclude that our hypothesis is confirmed: in iso-
lation, AC ynst(@) is not very advantageous to use. The
main reason is that the choice of the constant « is highly
domain-dependent. A very cooperative domain may have
multiple win—win outcomes with utilities above a. AC.qpg ()
would then accept an offer which is relatively bad, i.e. it
could have done much better. On the other hand, in highly
competitive domains, it may simply ‘ask for too much’ and
may rarely obtain an agreement. Its value lies mostly in us-
ing it in combination with other acceptance conditions such
as ACpext. It can then benefit the agent by accepting an
unexpectedly good offer or a mistake by the opponent.

As we discussed earlier in Section 2.3, the acceptance con-
ditions ACprev(,0) and ACyext(a,0) are standard in lit-
erature for o € {1,1.02}. Many agents tend to use these
acceptance conditions, as they are well-known and easy to
implement. We have formed the following hypothesis:

Hypothesis 2. AC,ext(a,0) will outperform ACpyev(a, 0)
for a € {1,1.02}. However, both conditions will perform
worse than conditions that take the remaining time into ac-
count.

To test this hypothesis, we consult Table 4 where we have
considered the two values for a. The first observation is that
ACprev(,0) and ACext(a, 0) already perform much better
than AC,,.. The higher value for « yields a better result
and AChext(e,0) does indeed outperform ACprev(c,0). It
makes sense that comparing the opponent’s offer to our up-



Table 4: Utility scores of agents equipped with an acceptance condition

Acceptance Agent K IAMhaggler Yushu Agreement % Average utility Total
Condition of agreements avg

AC ombi( MAXY) 0.691 0.639 0.695 99% 0.679 0.675
ACcombi(AVGY) 0.684 0.634 0.691 99% 0.678 0.670
AC,,,(0.1) 0.636 0.562 0.693 83% 0.761 0.630
Built-in mechanism 0.641 0.547 0.692 32% 0.768 0.627
AC comni (MAXT) 0.691 0.577 0.596 89% 0.696 0.621
ACime(0.99) 0.612 0.580 0.663 99% 0.622 0.618
AC,,,(0.2) 0.626 0.579 0.650 86% 0.721 0.618
AC,,,(0.05) 0.629 0.550 0.672 78% 0.791 0.617
ACext(1.02,0) 0.616 0.517 0.696 7% 0.788 0.610
AC,,,(0.02) 0.618 0.491 0.638 73% 0.802 0.582
AC,ev(1.02,0) 0.618 0.491 0.629 72% 0.805 0.579
AC,ext(1,0) 0.586 0.517 0.597 2% 0.787 0.567
ACprev(1,0) 0.588 0.491 0.589 69% 0.805 0.556
AC, ,(0.8) 0.286 0.374 0.313 38% 0.851 0.324
AC, s (0.9) 0.215 0.272 0.231 26% 0.935 0.239

coming offer is more beneficial than comparing it to our pre-

avoid a break off at all cost.

It is rational to prefer any

vious offer, as AC,ext is always ‘one step ahead’ of ACev.
However, all time-dependent acceptance conditions outper-
form both of them, even for a = 1.02. This also settles the
second part of the hypothesis. The reason for this bad per-
formance is that many bidding strategies focus on the ‘nego-
tiation dance’ [21]. That is, modeling the opponent, trying
to make equal concessions and so on. When a strategy does
not explicitly take time considerations into account when
making an offer, this poses a problem for the two standard
acceptance conditions: they rely completely on the bidding
strategy to concede to the opponent before the deadline oc-
curs. When the agent or the opponent does not concede
enough near the deadline, the standard conditions lead to
poor performance.

Our third hypothesis with respect to the time-dependent
condition is as follows:

Hypothesis 3. AC,;,,.(T) always reaches an agreement,
but of relatively low utility.

To evaluate this hypothesis we needed to provide a concrete
value for the experimental variable T'. We have set T" = 0.99
for every acceptance condition depending on T'. As we have
found during preliminary experiments, this value is suffi-
ciently close to the deadline, while it still allows enough time
to reach a win-win outcome. From observing the acceptance
probability of AC,;,.(0.99) in the experimental results, we
see that in 1 out of 168 negotiations (=~ 1%) this criterion
did not reach an agreement due to agent crashes and pro-
tocol errors, in which case both agents received utility zero.
But except for these particular events, AC,;,,.(7) will al-
ways reach an agreement, therefore we consider this part of
the hypothesis confirmed.

AC;,.(T), with T close to 1 is a sensible criterion to

outcome over a break off of zero utility. However, the re-
sulting deal can be anything. As we can see from the table,
this is the reverse situation of AC,,,: ACy,(T) yields the
lowest agreement score (0.622) of all conditions. This can
be explained by the acceptance dilemma: by accepting any
offer near the deadline, it reaches more agreements but of
relatively low utility. Still the overall score is almost the
same (0.618) and thus reasonable. It is interesting to note
that ACyme(T) outperforms both ACprey and AChext in
average overall score.

This insight led us to believe that more consideration has
to be given to the remaining time when deciding to accept
an offer. The combined acceptance conditions evaluated in
the next chapter expand upon this idea to get better deals
near the deadline.

4.2.1 Evaluating AC omni(T, a)

When evaluating ACcombi (T, ), we expect the following
characteristics. ACgombi(T, @) is an extension of ACpext in
the sense that it will accept under broader circumstances.
It alleviates some of the mentioned drawbacks of ACpext
by also accepting when the utility gap between the parties
is positive. Also note, that in addition to the parameters
that current acceptance conditions use, such as my previous
bid le;}s, my next bid mf;_ﬂg, the remaining time, and the
opponent’s bid z%_, 4, this condition employs the entire bid-
ding history HY ., 5 to compute the acceptability of an offer.
Therefore we expect better results than with ACpext, with
more agreements, and when it agrees, we expect a better
deal than by using AC,;,.(T).

We capture this last statement in our final hypothesis:

Hypothesis 4. The combination ACcomni(T, @) outper-
form other acceptance conditions, such as ACi.(T) and
AC,ext primarily by getting deals of higher utility.



As is evident from the experimental results, ACcombi (MAXW)
and ACcompi (AVGW) dominate the other acceptance condi-
tions. They even perform 7% better than the built-in mech-
anisms of the agent, and 18% better than ACjext. Similar
to ACltime, both conditions still get a deal almost every time,
but with a higher utility. However, the average utility of an
agreement is not the highest: the AC,,, conditions and the
built-in mechanisms get better agreements. But again, we
can observe that their agreement rate is also lower, resulting
in a higher overall score for the combined criteria.

Aiming for the highest utility that has been offered so far
(i.e. Accombi(MAXT)) is a less successful criterion, mostly
due to a big decrease in agreements. The higher utility that
is obtained with this condition does not compensate for the
loss of utility that is caused by a break off.

4.3 Related Work

All existing negotiation agent implementations deal with
the problem of when to accept. In many cases, the agent
accepts a proposal when the value of the offered contract
is higher than the offer it is ready to send out at that mo-
ment in time. Examples include the time dependent ne-
gotiation strategies defined in [22] (e.g. the Boulware and
Conceder tactics). The same principle is used in the equi-
librium strategies of [9] and for the Trade-off agent [7]. In
the setting of [7] however, the deadline can be different for
both agents. In this paper, we consider strategies that do
not always reach an agreement, and hence we have concen-
trated on acceptance conditions that yield better results in
such cases.

Of all ANAC 2010 participants, we shortly discuss Agent
K [25] as it employs the most sophisticated method to decide
when to accept. Its acceptance mechanism is based on the
mean and variance of all received offers. It then tries to de-
termine the best offer it might receive in the future and sets
its proposal target accordingly. In contrast to our approach,
this mechanism is not fully decoupled from the bidding strat-
egy as it directly influences its bid target. Furthermore, it
does not restrict its scope to the remaining or previous time
window. Finally, we note that Agent K performs better in
our experimental setup (cf. Table 4) when equipped with
our combined acceptance conditions than with its built-in
mechanism.

Although we do not focus on negotiation tactics and con-
vergence results, our negotiation model builds upon the model
of [26]. However, in this model, the action function of an
agent only takes into account the offer it is ready to send out
at that moment in time. Moreover, the focus of the paper
is not on comparing acceptance conditions as only one spe-
cific instance is studied. We take a more general approach
in which the agent utilizes a generic acceptance mechanism,
in which the current time and the entire bidding history is
considered.

5. CONCLUSION AND FUTURE WORK

In this paper, we aimed to classify current approaches to
generic acceptance conditions and to compare a selection
of acceptance conditions in an experimental setting. We
presented the challenges and proposed new solutions for ac-
cepting offers in current state-of-the-art automated negoti-
ations. The focus of this paper is on decoupled acceptance
conditions, i.e. general conditions that do not depend on a

particular bidding strategy.

Designing an effective acceptance condition is challenging
because of the acceptance dilemma: better offers may arrive
in the future, but waiting for too long can result in a break
off of the negotiation, which is undesirable for both parties.

We have seen that the standard acceptance criterion ACext
is often used by negotiating agents. From our results, it is
apparent that ACpext does not always yield optimal agree-
ments. We established that it performs worse than more
sophisticated acceptance conditions.

In addition to classifying and comparing existing accep-
tance conditions, we have devised three new acceptance con-
ditions by combining existing ones. This included two accep-
tance conditions that estimate whether a better offer might
occur in the future based on recent bidding behavior. These
conditions obtained the highest utility in our experiments
and hence performed better than the other conditions we
have investigated.

A suggestion for future research would be to explore the
many possible combinations of acceptance conditions that
may be obtained using conjunction and disjunction (and
possibly negation). Some agents already use a logical com-
bination of different acceptance conditions at the same time.
For example, the IAM(crazy)Haggler agents accept when

AC 15:(0.88) V AC 105t (1.02,0) V AC, 0 (1.02,0).

A suitable combination of acceptance conditions could pro-
vide a considerable improvement over current acceptance
conditions.

Secondly, we plan to test acceptance conditions with more
agents and on larger domains, using the resources that will
be available after the upcoming ANAC 2011 event.

Finally, we did not consider negotiation domains with dis-
count factors, which devaluate utility with the passing of
time. Adding discount factors will require new acceptance
conditions that give more consideration to the negotiation

timeline. We plan to examine such extensions in future
work.
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