
The Inverse Lambda Calculus Algorithm for
Typed First Order Logic Lambda Calculus and
Its Application to Translating English to FOL

Chitta Baral1, Marcos Alvarez Gonzalez1, and Aaron Gottesman1

School of Computing, Informatics, and Decision Systems Engineering
Arizona State University, Tempe, AZ

Abstract. In order to answer questions and solve problems that re-
quire deeper reasoning with respect to a given text, it is necessary to
automatically translate English sentences to formulas in an appropriate
knowledge representation language. This paper focuses on a method to
translate sentences to First-Order Logic (FOL). Our approach is inspired
by Montague’s use of lambda calculus formulas to represent the meanings
of words and phrases. Since our target language is FOL, the meanings
of words and phrases are represented as FOL-lambda formulas. In this
paper we present algorithms that allow one to construct FOL-lambda
formulas in an inverse manner. Given a sentence and its meaning and
knowing the meaning of several words in the sentence our algorithm can
be used to obtain the meaning of the other words in that sentence. In
particular the two algorithms take as input two FOL-lambda formulas G
and H and compute a FOL-lambda formula F such that F with input G,
denoted by F@G, is H; respectively, G@F = H. We then illustrate our
algorithm and present soundness, completeness and complexity results,
and briefly mention the use of our algorithm in a NL Semantics system
that translates sentences from English to formulas in formal languages.

1 Introduction

Our overall goal is to translate English to formal logics and Knowledge Repre-
sentation (KR) languages. In this, our approach is to use λ-calculus formulas [1]
to represent the meaning of words, phrases and sentences as previously done in
[2], [3], [4] and [5]. To construct the meaning of a sentence from the meaning
of its constituent words and phrases we use Combinatory Categorial Grammar
(CCG) [6]. A big challenge in the above approach is to come up with the λ-
calculus formulas that represent the meaning of the words. In some of the above
mentioned works, they were either constructed by the authors or generated by
a hand crafted set of rules. However, such an approach is not scalable. By an-
alyzing how a human would come up with the λ-calculus formulas of words we
noticed that at times a human, given G and H, would try to construct a formula
F such that F@G = H or G@F = H.

We illustrate the basic idea of inverse application of FOL-λ-calculus formulas
and how they can be used in constructing the FOL-λ-calculus expressions of



words through the following example. Here we take an example from the database
querying domain of [7] that is presented in Table 1.

Texas borders a state
NP (S\NP )/NP NP/NP NP
NP (S\NP )/NP NP
NP (S\NP )

S

Texas borders a state
texas λw.λx.(w@λy.borders(y, x)) ??? λx.state(x)
texas λw.λx.(w@λy.borders(y, x)) ???
texas ???

∃x.[state(x) ∧ borders(x, texas)]

Table 1. CCG and λ-calculus derivations for “Texas borders a state.”

In Table 1 it is assumed that one knows the meaning or translation of the
sentence “Texas borders a state” and knows the FOL-λ-calculus formulas for
“Texas”, “borders”, and “state”. But the semantic representation for the word
“a” is not known. The first step to compute this missing semantic representation
is to take the meaning of the sentence “Texas borders a state” and the meaning
of the word “Texas” to compute the semantic representation of “borders a state”.
But to do that one needs to know or a-priori decide whether it is appropriate to
use the meaning of “Texas” as an input to the meaning of “borders a state” or
vice versa. Traditional grammars such as Context Free Grammars do not help
us in this. On the other hand, Combinatory Categorial Grammars (CCGs) [8]
provide us directionality information that can be used in deciding which is the
input and which is the function.

In Table 1 the top part gives a CCG parse of the sentence “Texas borders
a state”. The various symbols correspond to basic categories; “S” represents
a sentence, “NP” represents a noun phrase; and more complex categories are
formed using “\” and “/” slashes which specify directionality. For instance, the
category “S\NP” specifies that when a phrase corresponding to that category
is concatenated on the left with a phrase of category “NP” , then the resulting
phrase is of the category “S”; i.e., a sentence. Intuitively, a non-transitive verb
has a category “S\NP”, meaning that if a noun phrase is added on the left, we
get a sentence. Similarly, the category “NP/NP” means that a phrase of that
category concatenated on the right by a phrase of category “NP” results in a
phrase of the category “NP”.

The phrase “Texas” has a category “NP” and it is being applied from the
right to “borders a state”. Therefore, if we take H as the meaning of the sentence
and G as the meaning of “Texas”, we can see by inspection that an F , the
meaning of “borders a state”, such that F@G = H can be F = λy.∃x.[state(x)∧
borders(x, y)].



Now we can take H as the meaning of “borders a state” and G as the mean-
ing of “borders”, which has category (S\NP )/NP , and we can can find the
meaning of F , for “a state”. Since “a state” has category NP and is applied to
the right of “borders”, we need to find F such that G@F = H which can be
F = λy.∃x.[state(x) ∧ y@x]. Finally, with H being the expression for “a state”
and G being the expression for “state”, with category NP , we can obtain F , a
representation for “a”, with category NP/NP . Therefore, we need F@G = H,
which can be F = λz.λy.∃x.[z@x∧y@x]. This is the typed first-order λ-calculus
representation for the simple word “a”. But how exactly did we compute it?

The main goal of this paper is to address that and present algorithms which
are capable of automatically computing F such that F@G = H or G@F = H. It
is this task we refer to as the Inverse λ-Problem and our algorithms as Inverse
λ-Algorithms. The algorithm that computes F such that F@G = H, we call
InverseL, while the second algorithm which computes F such that G@F = H,
we call InverseR. Although our algorithms are defined in a way that they can
be useful with respect to multiple KR languages, in this paper we focus on
First-Order Logic as the KR language.

To help in showing the correctness and applicability of our InverseL and
InverseR algorithms we need to recap the notion of typed λ first order theories
and the notion of order in such theories, as these notions will be used when we
present the soundness, completeness and complexity results of our Inverse λ-
Algorithms. For example, the completeness result is with respect to typed first
order theories up to the second order. This recapping is done in Section 2.

The rest of this paper is organized as follows. In Section 3 we present the
Inverse λ-Algorithms. In Section 4 we illustrate our algorithms with respect to
several examples. In Section 5 we show a use case example. In section 6 we
present the complexity, soundness and completeness results. In Section 7 we
discuss related work and other approaches in solving the Inverse λ-Problem.
Finally, in Section 8 we conclude and briefly mention the companion learning
based natural language semantics system that uses our algorithms as described
in [9].

Overall, the main contributions of this paper are the development of the
Inverse λ-Algorithms for typed λ first order theories and the presentation of
soundness, completeness and complexity results for these algorithms.

2 Background

Montague, [10], was the first to suggest that natural languages need not be
treated differently from formal languages and they could have formal semantics.
The approach of using λ-calculus to represent the meaning of words and λ-
application as a mechanism to construct the meaning of phrases and sentences
is also considered to originate from Montague. As mentioned before, that is also
our approach.

However, to further ground the notion of “meaning” (or semantics) it is useful
to have a notion of models of λ-calculus expressions. Such notions also allow us to



evaluate our natural language meaning representations. Both untyped and typed
λ-calculus can be characterized using models, but the one that has had the most
impact on natural language semantics is typed λ-calculus, as creating models for
typed λ-calculus theories is somewhat simple. When we refer to model, we are
looking for a semantic tool that can give us two elements: the entities that we
have in our domain, and for every element in our signature, the semantic value
associated with it.

We will use the “Simply Typed Lambda Calculus” of Church (1940), since it
is most commonly used in linguistics. In this theory, there is only one type con-
structor, →, to build function types and each term has a single type associated
with it [11]. The books [12] and [13] are good reference points for typed lambda
calculus.

2.1 Typed First-Order Logic Lambda Calculus

First-Order Logic has been widely studied and used for many years. Since a large
body of research in natural language semantics has focused on translating natural
language to first-order logic we focus our Inverse λ-Algorithms on it, particularly
on Typed First-Order Logic Lambda Calculus. For obtaining formal results, we
need to define the signature of our language, the construction of typed terms and
typed formulas, and the notion of sub-terms of a typed term in the language.

We start by introducing the signature of the Typed First-Order Logic Lambda
Calculus Language (Typed FOL Lambda Calculus). It consists of:

- The lambda operator (also called the lambda-abstractor) λ, the lambda
application @, the parenthesis (, ), [, ].

- For every type a, an infinite set of variables vn,a for each natural number
n and a (possibly empty) set of constants ca.

- The quantifiers ∀ and ∃, the equality symbol =, the connectives ¬, ∨, ∧,
→.

- Predicates symbols and function symbols of any arity n.

Next, we introduce the set of types that are going to be used with Typed FOL
Lambda Calculus, in conjunction with the definition of the semantics of types
assigned to the different expressions of the language. We will follow the principles
presented in [14], where Da represents the set of possible objects (denotations)
that describe the meanings of expressions of type a. Thus, denotations are the
objects of the language that correspond to a given type.

The set of types ∆ is defined recursively as follows:

- e is a type.
- t is a type.
- If a and b are types, then (a→ b) is a type.



Let E be a given domain of entities. Then the semantics of the types are defined
as:

- De = E.
- Dt = {0, 1} the set of truth values.
- Da→b = the set of functions from Da to Db.

These letters are commonly used in the linguistics literature. An expression
of type e denotes individuals that belong to the domain of our model, expressions
of type t denote truth values and they will be assigned to expressions that can
be evaluated to a truth value in our model. Expressions of type (a→ b) denote
functions whose input is in Da and whose output values are in Db. For example,
the type e→ t corresponds to functions from entities to truth values.

We continue with the definitions for FOL typed term and FOL typed λ-
calculus formula. A FOL atomic term is a constant or a variable of any type a.
If t1, ..., tn are FOL atomic terms, and f is a function symbol, f(t1, ..., tn) is also
a FOL atomic term of type e.

Definition 1. The elements of the set ∆α of FOL typed terms of type α are
inductively defined as follows:

1. For each type a, every FOL atomic term of type a belongs to ∆a.
2. If P is a predicate symbol of arity n and t1, ..., tn are FOL atomic terms,

then P (t1, ..., tn) is a FOL typed atomic formula that belongs to ∆t.
3. For any types a and b, if α ∈ ∆a→b and β ∈ ∆a, then α@β ∈ ∆b.
4. For any types a and b, if u is a variable of type a and α ∈ ∆b has free

occurrences of the variable u, then λu.α ∈ ∆a→b and the free occurrences of
u are now bound to the abstractor λu.1

5. If α ∈ ∆t and β ∈ ∆t, then α ∨ β, α ∧ β and α → β ∈ ∆t.
6. If α ∈ ∆t, then ¬ α ∈ ∆t.
7. If α and β ∈ ∆e, then (α = β) ∈ ∆t.
8. For any type a, if α ∈ ∆t, and u is a variable of type a, then ∀uα and ∃uα
∈ ∆t.

A typed FOL λ-calculus formula is a FOL typed term of type a where ev-
ery variable is bound to an abstractor (quantifier variables may not) and every
abstractor binds to a variable. These conditions ensure that first-order formulas
are obtained when the typed FOL λ-calculus formula is in β-normal2 form and
there are no more λ-operators. They also correspond to the definition of closed
and λI terms from classical lambda calculus theory.

Let us show an example. Consider the typed FOL formula λx.person(x),
which has type e → t. In this case, the variable x is a typed variable ranging

1 An occurrence of a variable x in a typed term P is bound iff it is in the scope of an
occurrence of λx in P , otherwise it is free. Occurrence is defined in Definition 2.

2 A typed FOL λ-calculus formula is in β-normal form if no β-redex occurrence is
possible. An example of a β-redex is a typed term of the form (λv.v)@(John).



over the entities of the domain and therefore it has type e. When an individual
from the domain, such as the typed constant of type e, “John”, is applied to the
formula, we obtain a First Order Formula person(John) which is of type t. The
formula is no more than a function from individuals to truth values.

This illustrates the signature for Typed FOL λ-calculus and shows how we
can specify a model with a domain of entities and a function to assign semantics
to elements of the signature. With such a model, we can choose an interpretation
for the formula λx.person(x) where only those entities of the domain that belong
to the set of the predicate person would return the value true as output of the
function. Therefore the interpretation of λx.person(x)@John would be the same
as the one for person(John) in the model. This is assured by the well-typed
application that takes place between the formula e → t and the argument e,
where a well-typed application is one where the type of the argument is the
same as the “input” type of the function receiving it. In general, types are in
charge of regulating which applications are possible and when both argument
and function have the correct types, we have a well-typed expression.

We end this sub-section with three more definitions that will be used by the
Inverse λ-Algorithms.

Definition 2 (Occurrence). The relation P occurs in Q is defined by induction
on Q as follows:

- A FOL typed term P occurs in P.
- If P occurs in M or in N, then P occurs in M@N.
- If P occurs in M, then P occurs in λx.M.
- If P occurs in φ or P occurs in ψ, then P occurs in φ ∨ ψ, φ ∧ ψ, φ→ ψ.
- If P occurs in φ, then P occurs in ¬φ.
- If P occurs in φ, then P occurs in ∀uφ and ∃uφ.
- If P occurs in φ or P occurs in ψ, then P occurs in φ = ψ.
- If P occurs in any typed term ti, then P occurs in f(t1, ..., tn). Where f is

a predicate symbol or a function symbol.

A sub-term of a λ-calculus term F is any term P that occurs in F [13].

Example 1. Consider the typed FOL λ-calculus formula J = λw.λu.(man(John)
∧w@λz.(loves(z, u))). The typed terms loves(z, u),man(John), λz.(loves(z, u)),
and w occur in J , and hence, are some of the sub-terms of J . However, λw is
not a sub-term.

Definition 3 (FOL λ-component). Constants, quantifier variables, connec-
tives ¬, ∧, ∨ and →, quantifiers ∃ and ∀, predicates and function symbols, and
the equality symbol = are denoted as FOL λ-components. The set of FOL λ-
components of a formula J is identified as LC(J).

Basically, all elements of the typed FOL λ-calculus signature except for the
λ-application symbol, λ-abstractor and their corresponding bound variables, are
considered FOL λ-components.

Example 2. Consider the typed FOL λ-calculus formula J = λw.λu.(man(John)
∧ w@λz.(loves(z, u))). LC(J) = {man, John, ∧, loves}.



2.2 Type Order

So far we have introduced typed λ-calculus and the different types that will be
assigned to typed terms. We now define the notion of an order that is associated
with these types and that separates typed λ-calculus formulas to several classes.
We will use the notion of orders to show that the Inverse λ-Algorithm is a
complete algorithm for typed λ-calculus formulas up to order two. We start
with a definition of type order and some intuition behind it:

Definition 4. The order of a type is defined as:

- Base types e and t have order 0.

- For function types, order(a→ b) = max(order(a) + 1, order(b)).

This definition is almost identical to the one introduced in [15], where base
types have order one. We, however, follow the intuition introduced in [2]. Some
examples of typed FOL λ-calculus formulas of different orders are the following:

- Order zero: man(V incent). It has type t.

- Order one: λv.λu.(v → u). It has type e→ (e→ t).

- Order two: λv.λu.(v@Mia∧u@V incent). It has type (e→ t)→ ((e→ t)→
t).

- Order three: λw.(w@(λz.(happy(z)))). It has type ((e→ t)→ t)→ t.

With these simple examples, one can see the intuition behind the order of
typed FOL λ-calculus formulas. Formulas of order zero correspond to expressions
with base types. Formulas of order one correspond to expressions which start
with a series of λ-abstractors followed by a FOL formula with variables bound
to the initial λ-abstractors.

Formulas of order two extend the expressions allowed in order one by includ-
ing applications. Formulas of order zero can be applied to variables inside the
formula. Formulas of order three extend those present in order two by allowing
λ-abstractors inside the expression after the initial λ-abstractors. In this case,
formulas of order one can be applied to variables, this is why now, we can find
λ-abstractors at the beginning and in the middle of the formulas. These claims
can be easily proved by contradiction using the given definitions.

3 The Inverse λ-Algorithms

We start this section by presenting a lemma and some properties that are im-
portant for the Inverse λ-Algorithms and that are helpful to understand its
completeness. After this introduction, the Inverse λ-operators of the Algorithm
will be defined along with the explanation of its different parts. We start by
presenting a lemma based on Lemma 1B1.1 from [13].



Lemma 1. Given typed FOL λ-calculus formulas H, G and F , if G@F β-
reduces3 to H, then LC(G@F) = LC(H).

Proof. Our definition of typed FOL λ-calculus formulas implies that all variables
that appear in a formula are bound (except quantifier variables). Therefore, when
one formula is applied to another and β-contractions are performed, none of the
λ-components of those formulas will be modified by the application due to the
definition of application in λ-calculus. In case of clashes with quantifier variables,
α-conversion4 would be used as usual. ut

With this lemma, it can be shown that given typed FOL λ-calculus formulas
H, G and F such that H = G@F or H = F@G, any FOL λ-component of H
must be contained in either F or G (since we obtain H from these two formulas),
and it can not be the case that a FOL λ-component in F or G will not appear
in H (since there would be no proper second formula in the application that
gives us H). This characteristic of the structure of the application is an essential
part of the Inverse λ-Algorithms and the way in which it constructs the missing
formula out of the other two. Also, by the way we defined typed FOL λ-calculus
formulas, we eliminated the case where we set F to be λv.H which does not
provide any semantic meaning to the expression that F represents but would
be a valid classic λ-calculus formula for the application. Our aim is to keep the
semantic information between F and G, which combined, give the semantics of
H. By assuring that the information in G will lead us to obtain the semantics
of H, we are providing F with a semantic representation that contains the value
we are looking for.

3.1 The Inverse λ-Operators

This sub-section presents the formal definition of the two components of the In-
verse λ-Algorithms, InverseL and InverseR. First, some definitions and expla-
nations necessary to help understand the terminology used in defining InverseL
and InverseR will be introduced. The objective of InverseL and InverseR, is
that given typed λ-calculus formulas H and G, the formula F is computed such
that F@G = H and G@F = H. The different symbols used in the algorithm
and their meanings are defined as follows:

- Let G, H and J represent typed λ-calculus formulas, J1,J2,...,Jn represent
typed terms; and v, w and v1,...,vn represent variables. Typed terms that are
sub-terms of a typed term J i are denoted as J ik.

If the formulas being processed within the algorithm do not satisfy any of
the conditions, then the algorithm returns null.

3 A typed term P β-reduces to Q if one can obtain Q after a finite sequence of β-
contractions from P allowing for substitution of bound variables. The typed term
(λv.v)@John β-reduces to John. We refer the reader to [12, 13] for additional lambda
calculus definitions.

4 α-conversion allows one to change the bound variables of a λ-expression if doing so
does not affect the meaning of the expression. For example λx.x α-converts to λy.y.



Definition 5 (operator :). Consider two lists (of same length) of typed λ-
calculus formulas A1, ..., An and B1, .., Bn, and a typed FOL λ-calculus formula
H. The result of the operation H(A1, ..., An : B1, .., Bn) is defined as:

1. find the first occurrence of formulas A1, ..., An in H.

2. replace each Ai by the corresponding Bi.

3. find the next occurrence of formulas A1, ..., An in H and go to 2. Otherwise,
stop.

Next, we present the definition of the two inverse operators:

Definition 6 (InverseL(H,G)). Given G and H:

1. G is λv.v

– F = λv.(v@H)

2. G is a sub-term of H

– F = λv.H(G : v)

3. G is not λv.v, (J1(J1
1 , ..., J

1
m), J2(J2

1 , ..., J
2
m), ... , Jn(Jn1 , ..., J

n
m)) are sub-

terms of H, and ∀J i ∈ H, G is λv1, ..., vs.J
i(J i1, ..., J

i
m : vk1 , ..., vkm)5 with

1 ≤ s ≤ m and ∀p , 1 ≤ kp ≤ s.
– F = λw.H(J1, ..., Jn : (w@J1

k1
, ...,@J1

km
), ..., (w@Jnk1 , ...,@J

n
km

)) where
each Jkp maps to a different vkp in G.

4. H is λv1, ..., vi.J and f(σi+1, ..., σs) is a sub-term of J , G is λw.J(f(σi+1, ..., σs) :
w@σk1@...@σks) with ∀p, i+ 1 ≤ kp ≤ s.

– F = λwλv1, ..., vi.(w@λvi+1, ..., vs.(f(σi+1, ..., σs : vk1 , ..., vks)))

Definition 7 (InverseR(H,G)). Given G and H:

1. G is λv.v@J

– F = InverseL(H,J)

2. J is a sub-term of H and G is λv.H(J : v)

– F = J

3. G is not λv.v@J , (J1(J1
1 , ..., J

1
m), J2(J2

1 , ..., J
2
m), ... , Jn(Jn1 , ..., J

n
m)) are sub-

terms of H such that for all i, J i(J i1, . . . , J
i
m) = J1(J1

1 , . . . , J
1
m : J i1, . . . , J

i
m)

and G is λw.H(J1(J1
1 , ..., J

1
m), ..., Jn(Jn1 , ..., J

n
m) : (w@J1

k1
, ...,@J1

km
),

..., (w@Jnk1 , ...,@J
n
km

)) for some permutation {k1, . . . , km} of {1, . . . ,m}.
– F = λvk1 , ..., vkm .J

1(J1
1 , ..., J

1
m : v1, ..., vm).

4. If H is λv1,..., vi.J and J1(J1
i+1,..., J

1
s ) is a sub-term of J ,

G is λw.λv1,..., vi.(w@λvi+1,..., vs.(J
1(J1

i+1,..., J
1
s : vk1 ,..., vks))) with ∀p,

i+ 1 ≤ kp ≤ s.

– F = λw.J(J1(J1
i+1,..., J

1
s ) : w@J1

k1
@...@J1

ks
)

5 When the formula G is being generated, the indexes of the abstractors λv1, ..., vs
must be assigned to bind the variables from vk1 , ..., vkm in such a way that G is a
valid formula.



4 Examples

In this section we illustrate with examples each of the different conditions of the
two algorithms. In each example λ-calculus formulas G and H are given and we
want to find F using the given case of the Inverse λ-Algorithms. This section
shows how the algorithms apply pattern matching to calculate F in the various
cases. A use case example follows in the next section.

InverseL - Case 1:
H = woman(Mia) and G = λx.x. Then,
F = λx.(x@H), and in this case F = λx.(x@woman(Mia)).
To demonstrate correctness we now apply G to F to get H:
F @ G = λx.(x@woman(Mia)) @ λx.x

= (λx.x@woman(Mia)) = woman(Mia) = H.

InverseL - Case 2:
H = λu.(man(V incent) ∧ u→ man(V incent)) and G = man(V incent).
G is a sub-term of H. Therefore,
F = λv.H(G : v), which in this case yields F = λv.H(man(V incent) : v).
We substitute every appearance of G in H by the variable “v” obtaining
F = λv. λu.(v ∧ u→ v).

InverseL - Case 3:
H = λu.(woman(Mia) ∧ happy(Mia) ∧man(V incent) ∧ happy(V incent)
∧ loves(Mia, u)), and G = λv.λw.(v ∧ happy(w))
G is not λv.v. That satisfies the first condition.
To match the formula of G, the following are assigned the subterms of H:
J1 = woman(Mia) ∧ happy(Mia)
J1
1 = woman(Mia) and J1

2 = Mia (from happy(Mia)).
J2 = man(V incent) ∧ happy(V incent)
J2
1 = man(V incent) and J2

2 = V incent (from happy(V incent)).
That satisfies second condition.
The third condition is satisfied since ∀J i ∈ H, G = λv1.λv2.J

i(J i1, J
i
2 : v1, v2).

For example, for J1:
G = λv1.λv2.J

1(woman(Mia),Mia : v1, v2) = λv.λw.(v ∧ happy(w)).
Thus, F = λx.H((J1 : x@J1

1@J1
2 ), (J2 : x@J2

1@J2
2 )), which yields

F = λx.H((J1 : x@woman(Mia)@Mia), (J2 : x@man(V incent)@V incent)),
F = λx.λu.(x@woman(Mia)@Mia∧x@man(V incent)@V incent∧loves(Mia, u)).

InverseL - Case 4:
H = λu.(happy(Mia)→ lovesBefore(Mia, V incent, u))
G = λv.(happy(Mia)→ v@V incent@Mia).
H = λv1.J with J = happy(Mia)→ lovesBefore(Mia, V incent, v1) and
f(σ2, ..., σs) = lovesBefore(Mia, V incent, u) where
σ2 = Mia and σ3 = V incent, chosen to match the variable v in G.

Therefore, G can be seen to be λv.J(f(σ1+1, σ3) : v@σk1+1@σk3).



Thus, G = λv.J(f(σ2, σ3) : v@σ3@σ2), which in this case yields
G = λv.J(f(Mia, V incent) : v@V incent@Mia).
Thus, both conditions are satisfied. So, F can be calculated as follows:
F = λwλv1(w@λv1+1, ..., v3.(f(σ1+1, ..., σ3 : vk1+1 , ..., vk3))),
F = λwλv1(w@λv2, v3.(f(σ2, σ3 : vk2 , vk3))),
F = λwλv1(w@λv2, v3.(f(σ2, σ3 : v3, v2))),
F = λw.λv1.(w@λv2, λv3.lovesBefore(v3, v2, v1)).

InverseR - Case 3:
H = loves(Mia, V incent) ∧ loves(Mia,Robert)
G = λv.(v@Mia@V incent ∧ v@Mia@Robert)
G is not λv.v@J , since J = Mia@V incent∧v@Mia@Robert cannot be a formula
by the definition. That satisfies the first condition.
From H, and chosen to match the input to the variable v of G, one has the
following formulas that are sub-terms:

J1 = loves(Mia, V incent)
J1
1 = Mia, J1

2 = V incent

J2 = loves(Mia,Robert)
J2
1 = Mia, J2

2 = Robert

Therefore, G can be seen to be of the form:

G = λx.H((J1(J1
1 , J

1
2 ) : x@J1

k1
@J1

k2
), (J2(J2

1 , J
2
2 ) : x@J2

k1
@J2

k2
),

G = λx.H((J1(J1
1 , J

1
2 ) : x@J1

1@J1
2 ), (J2(J2

1 , J
2
2 ) : x@J2

1@J2
2 ),

G = λx.H((loves(Mia, V incent) : x@Mia@V incent), (loves(Mia,Robert) :
x@Mia@Robert)). Thus, the second condition of case 3 is satisfied.

Therefore, one can now calculate F :

F = λv1, v2.J
1(J1

1 , J
1
2 : v1, v2) and so F = λv1.λv2.loves(v1, v2)

5 Use Case Example

In this section, we revisit our earlier example and give another example to show
how we can use the Inverse λ-Algorithms to obtain semantic representations for
words when we have a sentence with its logical representation in typed first-order
logic λ-calculus, the syntactic categories from CCG parsing and some semantic
information. We again use an example from the database querying domain of
[7].

Let us start with the sentences: “Texas borders a state.”, and “What state
borders Texas?”. We will consider that our initial lexicon includes the semantics
for simple nouns and verbs. If we obtain the output of a simplified CCG parsing
with two categories “S” and “NP”, and we add the semantics from our lexicon,
we obtain what is presented in Table 2.

One can see in Table 2 that we are missing the semantic representation for the
words “a” and “What”. These two words are not part of our initial lexicon but
using the Inverse λ-Algorithms we will be able to compute their corresponding
typed first-order λ-calculus representation. Let us start with the first sentence.



Texas borders a state What state borders Texas
NP (S\NP )/NP NP/NP NP S/(S\NP )/NP NP (S\NP )/NP NP
NP (S\NP )/NP NP S/(S\NP )/NP NP S\NP
NP (S\NP ) S/(S\NP ) S\NP

S S

Texas borders a state
texas λw.λx.(w@λy.borders(y, x)) ??? λx.state(x)
texas λw.λx.(w@λy.borders(y, x)) ???
texas ???

∃x.[state(x) ∧ borders(x, texas)]
What state borders Texas
??? λx.state(x) λy.λx.borders(x, y) texas
??? λx.state(x) λx.borders(x, texas)
??? λx.borders(x, texas)

λx.state(x) ∧ borders(x, texas)

Table 2. CCG and λ-calculus derivations for “Texas borders a state.”,“What state
borders Texas?”

We can take the meaning of the sentence and the meaning of “Texas” to calculate
the representation of “borders a state”.

We can see in the CCG tree that “borders a state” has category (S\NP ) and
therefore the λ-calculus expression will receive the word “Texas” from the left.
Following this, if we take H as the meaning of the sentence and G as the meaning
of “Texas”, we can use InverseL(H,G) to obtain the expression for “borders a
state”. In this case, option one of the algorithm is satisfied with texas as formula
J and F = λy.∃x.[state(x) ∧ borders(x, y)].

Now we have the expression for “borders a state” and “borders”, we can
calculate the expression of “a state” calling InverseR(H,G) with H being the
meaning for “borders a state” and G being “borders”. Option four of the al-
gorithm is satisfied and we obtain F as λy.∃x.[state(x) ∧ y@x]. Finally, we call
InverseL(H,G) with H being the expression for “a state” and G being “state”
to obtain the desired representation for “a”. In this case, option two of the al-
gorithm is satisfied and F = λz.λy.∃x.[z@x∧ y@x]. This is the typed first-order
λ-calculus representation for the simple word “a”.

The process to obtain the word “What” from the second sentence follows
the same idea as shown above. First we call InverseL(H,G) with H being the
meaning of the sentence and G being “borders Texas” to obtain the meaning of
“What state”. Option two of the algorithm is satisfied and F = λy.λx.(state(x)∧
y@x). Next, we call InverseL(H,G) again with “What state” and “state” to
obtain the desired meaning of “What”. Option two of the algorithm is satisfied
and F = λz.λy.λx.(z@x ∧ y@x).

Using the Inverse λ-Algorithms we have easily added to our lexicon the λ-
calculus representation for the words “a” and “What”.



6 Theorems

Theorem 1 (Soundness). Given two typed FOL λ-calculus formulas H and
G in β-normal form, if InverseL(H,G) returns a non-null value F , then H =
F @ G.

Theorem 2 (Soundness). Given two typed FOL λ-calculus formulas H and
G in β-normal form, if InverseR(H,G) returns a non-null value F , then H =
G @ F .

Theorem 3 (Completeness). For any two typed FOL λ-calculus formulas H
and G in β-normal form, where H is of order two or less, and G is of order one
or less, if there exists a set of typed FOL λ-calculus formulas ΘF of order two or
less in β-normal form, such that ∀Fi ∈ ΘF , H = Fi@G, then InverseL(H,G)
will give us an F where F ∈ ΘF .

Theorem 4 (Completeness). For any two typed FOL λ-calculus formulas H
and G of order two or less in β-normal form, if there exists a set of typed FOL
λ-calculus formulas ΘF of order one or less in β-normal form, such that ∀Fi ∈
ΘF , H = G@Fi, then InverseR(H,G) will give us an F , where F ∈ ΘF .

Theorem 5 (InverseL complexity). The InverseL Algorithm runs in expo-
nential time in the number of variables in G and polynomial time in the size of
the formulas H and G.

Theorem 6 (InverseR complexity). The InverseR Algorithm runs in expo-
nential time in the number of variables in G and polynomial time in the size of
the formulas H and G.

Due to space constraints, we will only comment on how the complexity,
soundness and completeness proofs are structured. InverseL has worst-case com-
plexity in case 3. For every subterm of H it is necessary to check if a partial
permutation of its subterms can be used to generate G. If G has k variables,
then the number of permutations that needs to be checked is in worst case
n!

(n−k)! where n is the length of H. When k is small, as it is in most of the

applications we have tested (see Section 8 below), the number of permutations
becomes approximately O(nk).

The complexity of InverseR is the same as InverseL since InverseL is called
as a subroutine in case 1. All other cases of InverseR run in polynomial time.
Note that case 3 of InverseR has polynomial complexity since the formulas given
as input to the applications in G can be used to find the subterms of H that
can generate them. Therefore, we do not have to search all permutation of the
subterms as in InverseL.

The soundness proof shows how in each of the four cases of InverseL, the
typed FOL λ-calculus formula H is obtained by applying F to G. The applica-
tion F@G is computed using the expressions from the algorithm for F and G,
generating the expression for H given in the algorithm. The same reasoning is
followed for InverseR.



The completeness proof is divided to six cases, which correspond to the six
possible valid combinations of orders that H, F and G may have, such that the
order of the terms will be less than 2. These are shown in Table 3. For each case,
it is proven by contradiction that InverseL and InverseR return a formula F
if one such F exists. It is done by assuming that they return a null value and
reaching a contradiction at the end of the proof. In the process, each of the four
conditions of the algorithms are analyzed, where it is shown that at least one of
the conditions of the algorithm has been satisfied for each of the six cases.

H F G FOL type examples for formula F

0 1 0 e → t
1 1 0 e → (e→ t)
2 2 0 e → ((e→ t) → t)
0 2 1 (e→ t) → t
1 2 1 (e→ t) → (e→ t)
2 2 1 (e→ t) → ((e→ t) → t)

Table 3. Possible order combinations for F, G and H formulas, with H = F@G.

7 Related Work

The problems solved by the Inverse λ-Algorithms are similar to two problems
referred to in the literature as “higher-order matching” and “Interpolation prob-
lem”. This problem consists of determining if a λ-calculus term, in the simply
typed λ-calculus, is an instance of another. It can also be understood as solving
the equation M = N where M and N are simply typed λ-terms and N is a
closed6 term. More intuitively, the problem is to find a substitution σ assigning
terms of consistent types to the free variables of M such that σ(M) admits N
as its normal form. A proof that third-order matching is decidable is presented
in [16]. In literature about higher-order matching, the order of atomic types is
generally 1. This slightly differs from the definition presented in this work. Thus,
third order in [16] has to be understood as second order in this research.

The higher-order matching and interpolation problems are defined with re-
spect to an extension of λ-calculus denoted as βη-calculus7, while the Inverse
λ-Algorithms follow the theory of β-calculus, since it is the theory most com-
monly used in linguistics. Another important difference is that in the case of
InverseL and InverseR, terms G,F and H are typed λ-calculus formulas that,
by definition, have been set as closed and λI terms, and are also considered
in β-normal form. The higher-order matching and interpolation problems do

6 A λ-expression is closed if no free variables occur in it
7 βη-calculus allows for η-conversions as well as β-reductions. An η-conversion converts

between λx.f@x and f whenever x does not appear as a free variable in f .



not enforce these restrictions in the terms involved. However, in essence, both
approaches deal with the same problem. Thus, we argue that InverseR and
InverseL can be considered special cases of the matching and interpolation
problems , respectively (when we restrict the problem to β-calculus and only try
to substitute for one variable in M).

However, the Inverse λ-Algorithms provide an important contribution. As
it is stated in [15], the higher-order matching problem, in the general case, is
undecidable when using β-calculus, as shown in [17]. InverseR is an algorithm for
computing a subset of the third order matching problem under β-calculus. Also,
the higher-order matching algorithm proposed in [16], where a set of solutions
to a third order matching problem are enumerated, will not terminate if the
problem admits no such set. In the case of InverseR, the algorithm will simply
return a null value and terminate.

Another related work, [18, 19], discusses two algorithms that solve the prob-
lem of learning word-to-meaning mappings extended to the field of typed λ-
calculus. In [19], the algorithm introduced considers β-calculus and closed λI
terms. This definition is very closely related to the InverseR definition. However,
the author refers to the problem that the algorithm presents with incompatibil-
ity between meaning of words already known and meaning of words obtained
by the algorithm. Our approach does not present such problem. Another key
difference refers to the assumptions made before executing the algorithm. In
[18, 19], there is a first phase where the learner, in some way, obtains the set
of constants that form each word. In the case of the Inverse λ-Algorithms, the
unknown representation of words in a sentence is obtained using the meaning of
the sentence and the meaning of known words. There is no previous information
needed about the unknown meaning.

The comparison with the works [15, 16, 18] is leading us to research the pos-
sible benefits of defining the Inverse λ-Algorithms in terms of βη-calculus, in
order to use useful related results. This step will be approached in future work.

A more general notion of higher-order matching is the notion of “higher-order
unification”. The difficulty of higher-order unification is studied in [20, 21]. In
[22] a restricted version of higher-order unification is defined and used. They
describe an algorithm which given h, finds pairs of logical expressions (f, g) such
that either f(g) = h or λx.f(g(x)) = h. Note that in our Inverse λ-Algorithms
the input consists of two expressions and the output is a single expression.

8 Implementation Success and Evaluation

The usefulness of the two Inverse λ-Algorithms is validated in the natural lan-
guage learning system [9], which learns the semantic representations of words
from sentences. The algorithms were implemented by those authors as part of
that system. The results obtained by the system in [9] are quite promising.
A summary is presented in Table 4. The system outperforms earlier systems
with respect to the F-measure for the two standard corpora GEOQUERY and
CLANG.



GEOQUERY Precision Recall F-measure

Inverse+ 93.41 89.04 91.17

Inverse 91.12 85.78 88.37

CLANG Precision Recall F-measure

Inverse+i 87.67 79.08 83.15

Inverse+ 85.74 76.63 80.92
Table 4. Performance results for GEOQUERY and CLANG.

In the table, Inverse and Inverse+ are two different versions of the system.
As explained in [9], Inverse uses the two Inverse λ-Algorithms, InverseL and
InverseR and a process called generalization, which generalizes the meaning of
unknown words from known words based on the syntactic information received
from the CCG parser. Inverse+ adds trivial inverse results for some words and
“on demand” generalization. Inverse+i considers the semantic representations
“definec” and “definer” of the training data as the same element, with respect
to the CLANG corpus.

The evaluation of the data was performed using 10 fold cross validation
and the C&C parser from [6]. An equal number of train and test sentences
were arbitrarily selected from the GEOQUERY and CLANG corpora. For more
details about this system and its results, we refer the reader to [9].

9 Conclusion

In this work, we have presented two Inverse λ-Algorithms and have shown their
application to typed first-order logic λ-calculus. With this algorithm we are
able to automatically obtain semantic representations of unknown words using
the information already available from known sentences and words. These two
algorithms not only work for first-order logic, but with minor changes work
for a group of other Knowledge Representation languages such as Answer Set
Programming, and Linear Temporal Logic and Dynamic Logic; but formal results
with respect to those languages need to be proven. For the algorithms we have
developed a completeness proof up to second order expressions. Blackburn and
Bos in [2] mention that natural language semantics rarely requires types above
order three. Completeness results for third order expressions is the next step to
extend this work and is part of our immediate future plans.

Acknowledgement

We thank Vladimir Lifschitz, Yuliya Lierler and Johan Bos for introducing us to
the use of λ-calculus in characterizing natural language. We thank Juraj Dzifcak
for implementing the inverse λ-Algorithms, building the system mentioned in
Section 8 and doing the evaluations mentioned in that section. We acknowledge
support by NSF (grant number 0950440), IARPA and ONR-MURI for this work.

References

1. Gamut, L.: Logic, Language, and Meaning. The University of Chicago Press (1991)



2. Blackburn, P., Bos, J.: Representation and Inference for Natural Language: A First
Course in Computational Semantics. Center for the Study of Language (2005)

3. Zettlemoyer, L.S., Collins, M.: Online learning of relaxed ccg grammars for parsing
to logical form. In: Proceedings of the 2007 Joint Conference on Empirical Methods
in Natural Language Processing and Computational Natural Language Learning.
(2007) 678–687

4. Baral, C., Dzifcak, J., Son, T.C.: Using answer set programming and lambda cal-
culus to characterize natural language sentences with normatives and exceptions.
In: AAAI’08: Proceedings of the 23rd national conference on Artificial intelligence.
(2008) 818–823

5. Dzifcak, J., Scheutz, M., Baral, C., Schermerhorn, P.: What to do and how to do it:
translating natural language directives into temporal and dynamic logic represen-
tation for goal management and action execution. In: Robotics and Automation,
2009. ICRA ’09. (2009) 4163 –4168

6. Clark, S., Curran, J.R.: Wide-coverage efficient statistical parsing with ccg and
log-linear models. Computational Linguistics 33 (2007)

7. Zettlemoyer, L.S., Collins, M.: Learning to map sentences to logical form: Struc-
tured classification with probabilistic categorial grammars. In: 21th Annual Con-
ference on Uncertainty in Artificial Intelligence. (2005) 658–666

8. Steedman, M.: The syntactic process. MIT Press (2000)
9. Baral, C., Dzifcak, J., Gonzalez, M.A., Zhou, J.: Using inverse lambda and gen-

eralization to translate english to formal languages. In: Proceedings of the 9th
International Conference on Computational Semantics (ICWS 2011), to appear.
(2011)

10. Montague, R.: Formal Philosophy. Selected Papers of Richard Montague. New
Haven: Yale University Press (1974)

11. Barendregt, H.: Lambda Calculi with Types, Handbook of Logic in Computer
Science. Volume II. Oxford University Press (1992)

12. Hindley, J.: Introduction to Combinators and Lambda-Calculus. Cambridge Uni-
versity press (1986)

13. Hindley, J.: Basic Simple Type Theory. Cambridge University press (1997)
14. Barbara H. Partee, A.T.M., Wall, R.E.: Mathematical Methods in Linguistics.

Kluwer Academic Publishers (1990)
15. Stirling, C.: Decidability of higher-order matching. To appear Logical Methods in

Computer Science 5(3) (2009)
16. Dowek, G.: Third order matching is decidable. Annals of Pure and Applied Logic

69(2-3) (1994) 135–155
17. Loader, R.: Higher-order beta-matching is undecidable. Logic Journal of IGPL

11(1) (2003) 51–68
18. Kanazawa, M.: Learning word-to-meaning mappings in logical semantics. In:

Proceedings of the Thirteenth Amsterdam Colloquium. (2001) 126–131
19. Kanazawa, M.: Computing word meanings by interpolation. In: Proceedings of

the Fourteenth Amsterdam Colloquium. (2003) 157–162
20. Huet, G.: The undecidability of unication in third order logic. Information and

Control 22(3) (1973) 257–267
21. Huet, G.: A unication algorithm for typed calculus. Theoretical Computer Science

1 (1975) 27–57
22. Kwiatkowski, T., Zettlemoyer, L., Goldwater, S., Steedman, M.: Inducing prob-

abilistic ccg grammars from logical form with higher-order unification. In: Pro-
ceedings of the Conference on Empirical Methods in Natural Language Processing
(EMNLP). (2010)


