
How to Attack the NP-complete Dag Realization
Problem in Practice?

Annabell Berger and Matthias Müller-Hannemann

Dept. of Computer Science, Martin-Luther-Universität Halle-Wittenberg
{berger,muellerh}@informatik.uni-halle.de

Abstract. We study the following fundamental realization problem of di-
rected acyclic graphs (dags). Given a sequence S :=

(
a1
b1

)
, . . . ,

(
an
bn

)
with ai, bi ∈

Z+
0 , does there exist a dag (no parallel arcs allowed) with labeled vertex set
V := {v1, . . . , vn} such that for all vi ∈ V indegree and outdegree of vi match
exactly the given numbers ai and bi, respectively? Recently this decision prob-
lem has been shown to be NP-complete by Nichterlein [Nic11]. However, we
can show that several important classes of sequences are efficiently solvable.
In previous work [BM11], we have proved that yes-instances always have a
special kind of topological order which allows us to reduce the number of pos-
sible topological orderings in most cases drastically. This leads to an exact
exponential-time algorithm which significantly improves upon a straightfor-
ward approach. Moreover, a combination of this exponential-time algorithm
with a special strategy gives a linear-time algorithm. Interestingly, in sys-
tematic experiments we observed that we could solve a huge majority of all
instances by the linear-time heuristic. This motivates us to develop charac-
teristics like dag density and “distance to provably easy sequences” which can
give us an indicator how easy or difficult a given sequence can be realized.
Furthermore, we propose a randomized algorithm which exploits our struc-
tural insight on topological sortings and uses a number of reduction rules. We
compare this algorithm with other straightforward randomized algorithms in
extensive experiments. We observe that it clearly outperforms all other vari-
ants and behaves surprisingly well for almost all instances. Another striking
observation is that our simple linear-time algorithm solves a set of real-world
instances from different domains, namely ordered binary decision diagrams
(OBDDs), train and flight schedules, as well as instances derived from food-
web networks without any exception.

1 The Dag Realization Problem

Dag realization problem: Given is a finite sequence S :=
(
a1
b1

)
, . . . ,

(
an
bn

)
with

ai, bi ∈ Z+
0 . Does there exist an acyclic digraph (without parallel arcs) G = (V,A)

with the labeled vertex set V := {v1, . . . , vn} such that we have indegree d−G(vi) = ai
and outdegree d+G(vi) = bi for all vi ∈ V ?

If the answer is “yes”, we call sequence S dag sequence and the acyclic digraph G
(a so-called “dag”) a dag realization. A relaxation of this problem – not demanding
the acyclicity of digraph G – is called digraph realization problem. In this case, we call
? This work was supported by the DFG Focus Program Algorithm Engineering, grant MU
1482/4-2. Extended abstract is to appear in Proceedings of SEA 2012, LNCS, Springer.

ar
X

iv
:1

20
3.

36
36

v1
 [

cs
.D

S]
 1

6
M

ar
 2

01
2

2 A. Berger, M. Müller-Hannemann

G digraph realization and S digraph sequence. The digraph realization problem can
be solved in linear-time using an algorithm by Wang and Kleitman [KW73]. Unless
explicitly stated, we assume that a sequence does not contain any zero tuples

(
0
0

)
.

Moreover, we will tacitly assume that
∑n
i=1 ai =

∑n
i=1 bi, as this is obviously a nec-

essary condition for any realization to exist, since the number of ingoing arcs must
equal the number of outgoing arcs. Furthermore, we denote tuples

(
ai
bi

)
with ai > 0

and bi = 0 as sink tuples, those with ai = 0 and bi > 0 as source tuples, and the
remaining ones with ai > 0 and bi > 0 as stream tuples. We call a sequence only con-
sisting of source and sink tuples, source-sink-sequence. A sequence S =

(
a1
b1

)
, . . . ,

(
an
bn

)

with q source tuples and s sink tuples is denoted as canonically sorted, if and only if
the first q tuples in this labeling are decreasingly sorted source tuples (with respect to
the bi) and the last s tuples are increasingly sorted sink tuples (with respect to the ai).

Hardness and efficiently solvable special cases. Nichterlein very recently showed
that the dag realization problem is NP-complete [Nic11]. On the other hand, there are
several classes of sequences for which the problem is not hard. One of these sequences
are source-sink-sequences, for which one only has to find a digraph realization. The
latter is already a dag realization, since no vertex has incoming as well as outgo-
ing arcs. Furthermore, sparse sequences with

∑n
i=1 ai ≤ n − 1 are polynomial-time

solvable as we will show below. We denote such sequences by forest sequences. The
main difficulty for the dag realization problem is to find out a “topological ordering
of the sequence”. In the case where we have one, our problem is nothing else but a
directed f -factor problem on a complete dag. The labeled vertices of this complete
dag are ordered in the given topological order. This problem can be reduced to a
bipartite undirected f -factor problem which can be solved in polynomial time via a
further famous reduction by Tutte [Tut52] to a bipartite perfect matching problem.
In a previous paper [BM11], we proved that a certain ordering of a special class of
sequences –opposed sequences– always leads to a topological ordering of the tuples
for at least one dag realization of a given dag sequence. On the other hand, it is not
necessary to apply the reduction via Tutte if we possess one possible topological or-
dering of a dag sequence. The solution is much easier. Next, we describe our approach.

Realization with a prescribed topological order. We denote a dag sequence
S :=

(
a1
b1

)
, . . . ,

(
an
bn

)
which possesses a dag realization with a topological numbering

corresponding to the increasing numbering of its tuples by dag sequence for a given
topological order and analogously the digraphG = (V,A) by dag realization for a given
topological order. Without loss of generality, we may assume that the source tuples
come first in the prescribed numbering and are ordered decreasingly with respect
to their bi values. A realization algorithm works as follows. Consider the first tuple(
aq+1

bq+1

)
from the prescribed topological order which is not a source tuple. Then there

must exist aq+1 source tuples with a smaller number in the given dag sequence.
Reduce the aq+1 first (i.e. with largest bi) source tuples by one and set the indegree
of tuple

(
aq+1

bq+1

)
to 0. That means, we reduce sequence S :=

(
a1
b1

)
, . . . ,

(
aq+1

bq+1

)
, . . . ,

(
an
bn

)

to sequence S′ :=
(
a1
b1−1

)
, . . . ,

(aaq+1

baq+1
−1
)
, . . . ,

(
aq
bq

)
,
(

0
bq+1

)
, . . . ,

(
an
bn

)
. If we get zero tuples

in S′, then we delete them and denote the new sequence for simplicity also by S′.
Furthermore, we label this sequence with a new numbering starting from one to its
length and consider this sorting as the given topological ordering for S′. We repeat
this process until we get an empty sequence (corresponding to the realizability of

How to Attack the Dag Realization Problem 3

S) or get stuck (corresponding to the non-realizability of S). The correctness of our
algorithm is proven in Lemma 1.

Lemma 1. S is a dag sequence for a given topological order ⇔ S′ is a dag sequence
for its corresponding topological order.

Discussion of our main theorem and its corresponding algorithm. We do not
know how to determine a feasible topological ordering (i.e., one corresponding to a
realization) for an arbitrary dag sequence. However, we are able to restrict the types
of possible permutations of the tuples. For that, we need the following order relation
≤opp⊂ Z2 × Z2, introduced in [BM11].

Definition 1 (opposed relation). Given are c1 :=
(
a1
b1

)
∈ Z2 and c2 :=

(
a2
b2

)
∈ Z2.

We define: c1 ≤opp c2 ⇔ (a1 ≤ a2 ∧ b1 ≥ b2).

Note, that a pair c1 equals c2 with respect to the opposed relation if and only if
a1 = a2 and b1 = b2. The opposed relation is reflexive, transitive and antisymmetric
and therefore a partial, but not a total order. Our following theorem leads to a recur-
sive algorithm with exponential running time and results in Corollary 1 which proves
the existence of a special type of possible topological sortings provided that sequence
S is a dag sequence.

Theorem 1 (main theorem [BM11]). Let S be a canonically sorted sequence con-
taining k > 0 source tuples. Furthermore, we assume that S is not a source-sink-
sequence. We define the set

Vmin :=

{(
ai
bi

)
|
(
ai
bi

)
is stream tuple, ai ≤ k,
and there is no stream tuple

(
aj
bj

)
<opp

(
ai
bi

)}
.

S is a dag sequence if and only if Vmin 6= ∅ and there exists an element
(
a`
b`

)
∈ Vmin

such that S′ :=
(

0

b1−1

)
, . . . ,

(
0

ba`−1

)
,

(
0

ba`+1

)
, . . . ,

(
0

bk

)
, . . . ,

(
a`−1
b`−1

)
,

(
0

b`

)
,

(
a`+1

b`+1

)
, . . . ,

(
an
bn

)

is a dag sequence.

Sequence S′ may contain zero tuples. If this is the case, we delete them and call
the new sequence for simplicity also S′. Theorem 1 ensures the possibility for reducing
a dag sequence into a source-sink-sequence. The latter can be realized by using the
algorithm for realizing digraph sequences [KW73]. The whole algorithm is summarized
in Algorithm 1, where we consider the maximum subset V ′min of Vmin only containing
pairwise disjoint stream tuples. The bottleneck of this approach is the size of set V ′min.
We give an example for the execution of Algorithm 1 in the Appendix. Our pseudocode
does not specify the order in which we process the elements of V ′min in line 3. Several
strategies are possible which have a significant influence on the overall performance.
The most promising deterministic strategy (as we will learn in the next sections) is to
use the lexicographic order, starting with the lexicographic maximum element within
V ′min. In [BM11] we introduced a special class of dag sequences – opposed sequences
– where we have |V ′min| = 1, if sequence S is not a source-sink-sequence. We call a
sequence S opposed sequence, if it is possible to sort its stream tuples in such a way,

4 A. Berger, M. Müller-Hannemann

Algorithm 1: DagRealization(sequence S)
Input : A canonically sorted sequence S.
Output: A Boolean flag indicating whether S is realizable.

1 if S is not a source-sink-sequence then
2 count the number of sources in S and determine set V ′min;
3 for all

(
aj

bj

)
∈ V ′min do

4 create a working copy S′ of S with tuples
(a′i
b′i

)
=
(
ai
bi

)
;

5 set b′i ← b′i − 1 for a′j largest sources
(
0
b′i

)
;

6 set a′j ← 0;
7 delete

(
0
0

)
-tuples;

8 if DagRealization(S′) then return TRUE;

9 return FALSE;
10 else // Realization of a source-sink-sequence
11 while the set of source tuples in S is not empty do
12 choose a largest source tuple

(
0
bj

)
;

13 if number of sinks in S is smaller than bj then return FALSE;
14 set ai ← ai − 1 for bj largest sinks

(
ai
0

)
;

15 delete
(
0
0

)
-tuples;

16 return TRUE;

that ai ≤ ai+1 and bi ≥ bi+1 is valid for stream tuples with indices i and i+1. In this
case, we have the property

(
ai
bi

)
≤opp

(
ai+1

bi+1

)
for all stream tuples. At the beginning of

the sequence we insert all source tuples such that the bi build a decreasing sequence
and at the end of sequence S we put all sink tuples in increasing ordering with respect
to the corresponding ai. The notion opposed sequence describes a sequence, where it
is possible to compare all stream tuples among each other and to put them in a
“chain”. Indeed, this is not always possible because the opposed order is not a total
order. However, for opposed sequences line (3) to line (9) in Algorithm 1 are executed
at most once in each recursive call, because we have always |V ′min| ≤ 1. Overall,
we obtain a linear-time algorithm for opposed sequences. However, there are many
sequences which are not opposed, but Theorem 1 still yields a polynomial decision
time. Consider for example dag sequence S :=

(
0
3

)
,
(
0
3

)
,
(
2
2

)
,
(
3
3

)
,
(
1
0

)
,
(
2
0

)
,
(
3
0

)
which is

not an opposed sequence, because stream tuples
(
2
2

)
and

(
3
3

)
are not comparable with

respect to the opposed ordering. However, we have |V ′min| = |{
(
2
2

)
}| = 1 and so we

reduce S to S′ =
(
0
2

)
,
(
0
2

)
,
(
0
2

)
,
(
3
3

)
,
(
1
0

)
,
(
2
0

)
,
(
3
0

)
, leading to the realizable source-sink-

sequence
(
0
1

)
,
(
0
1

)
,
(
0
1

)
,
(
0
3

)
,
(
1
0

)
,
(
2
0

)
,
(
3
0

)
. Theorem 1 leads to further interesting insights.

We can prove the existence of special topological sortings.

Corollary 1 ([BM11]). For every dag sequence S, there exists a dag realization
G = (V,A) with a topological ordering vl1 , . . . , vlns

of all ns vertices corresponding to
stream tuples, such that we cannot find

(alj
blj

)
<opp

(ali
bli

)
for li < lj .

We call a topological ordering of a dag sequence obeying the conditions in Corol-
lary 1 an opposed topological sorting. At the beginning of our work (when the com-
plexity of the dag realization problem was still open), we conjectured that the choice

How to Attack the Dag Realization Problem 5

of the lexicographical largest tuple from V ′min in line (3) would solve our problem in
polynomial time. We call this approach lexmax strategy and a dag sequence which
is realizable with this strategy lexmax sequence, otherwise we call it non-lexmax se-
quence. Hence, we conjectured the following.

Conjecture 1 (lexmax conjecture). Each dag sequence is a lexmax sequence.

We soon disproved our own conjecture by a counter-example (Example 1, described
in the following section and in Appendix B). In systematic experiments we found out
that a large fraction of sequences can be solved by this strategy in polynomial time.
We tell this story in the next Section 2. Moreover, we use the structural insights from
our main theorem to develop a randomized algorithm which performs well in practice
(Section 3). Proofs and further supporting material can be found in the Appendix
and in [Ber11].

2 Lessons from Experiments with the Lexmax Strategy

Why we became curious. To see whether our lexmax Conjecture 1 might be true,
we generated a set of dag sequences, called randomly generated sequences in the sequel,
by the following principle: Starting with a complete acyclic digraph, delete k of its
arcs uniformly at random. We take the degree sequence from the resulting graph.
Note that we only sample uniformly with respect to random dags but not uniformly
degree sequences since degree sequences have different numbers of corresponding dag
realizations. In a first experiment we created with the described process one million
dag sequences with 20 tuples each, and m =

∑20
i=1 ai = 114. Likewise, we built up

another million dag sequences with 25 tuples and
∑25
i=1 ai = 180. The fact that the

lexmax strategy realized all these test instances without a single failure was quite
encouraging. The lexmax conjecture 1 seemed to be true, only a correctness proof
was missing. But quite soon, in an attempt to prove the conjecture, we artificially
constructed a first counter-example, a dag sequence which is definitely no lexmax
sequence, as can easily be verified:

Example 1. S :=
(
0
3

)
,
(
0
1

)
,
(
1
2

)
,
(
2
3

)
,
(
4
4

)
,
(
1
1

)
,
(
1
0

)
,
(
2
0

)
,
(
3
0

)
. Details are shown in Appendix B.

The rightmost path in the recursion tree shown in Figure 11 corresponds to the lexmax
strategy, but is unsuccessful.

Even worse: we also found an example (Example 2) showing that no fixed strat-
egy which chooses an element from V ′min in Algorithm 1 and does not consider the
corresponding set of sinks, will fail in general.

Example 2. We consider the two sequences

S1 :=

(
0

5

)
,

(
0

5

)
,

(
0

5

)
,

(
0

2

)
,

(
0

2

)
,

(
5

5

)
,

(
5

5

)
,

(
2

2

)
,

(
2

2

)
,

(
1

0

)
,

(
1

0

)
,

(
2

0

)
,

(
6

0

)
,

(
9

0

)

and

S2 :=

(
0

5

)
,

(
0

5

)
,

(
0

5

)
,

(
0

2

)
,

(
0

2

)
,

(
5

5

)
,

(
5

5

)
,

(
2

2

)
,

(
2

2

)
,

(
6

0

)
,

(
6

0

)
,

(
7

0

)
,

only differing in their sink tuples. Sequence S2 can only be realized by the lexmax
strategy, while several strategies but not the lexmax strategy work for S1. Thus, there
is no strategy which can be applied in both cases.

6 A. Berger, M. Müller-Hannemann

5 10 15 20 25 30 35
95

95.5

96

96.5

97

97.5

98

98.5

99

99.5

100

number m of arcs for a dag realization

p
e

rc
e

n
ta

g
e

 o
f l

e
xm

a
x

se
q

u
e

n
ce

s

Fig. 1. Percentage of (non-trivial) lex-
max sequences for systematically gen-
erated (blue squares) and randomly
generated sequences (red triangles)
with 9 tuples and m ∈ {5, . . . , 35}.

difference d to opposed

density
 m from 9 to 35

fr
a

ct
io

n
 o

f
n

o
n

−
le

x
m

a
x

 s
eq

u
en

ce
s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1514131211109876543210

Fig. 2. Fraction of systematic non-lexmax
sequences with 9 tuples, m ∈ {9, . . . , 35},
and varying difference to opposed d(S).

These observations give rise to several immediate questions: Why did we construct
by our sampling method (for n = 20 and n = 25) only dag sequences which are
lexmax sequences? How many dag sequences are not lexmax sequences? Therefore, we
started with systematic experiments. For small instances with n ∈ {7, 8, 9} tuples we
generated systematically the set of all dag sequences with all possible

∑m
i=1 ai =: m,

see for an example the case n = 9 in Figure 1 and Appendix C. More precisely,
we considered only non-trivial sequences, i.e. we eliminated all source-sink sequences
and all sequences with only one stream tuple. We denote this set by systematically
generated sequences. Note that the number of sequences grows so fast in n that a
systematic construction of all sequences with a larger size is impossible. We observed
the following:

1. The fraction of lexmax sequences among the systematically generated sequences
is quite high. For all m it is above 96.5%, see Figure 1 (blue squares).

2. The fraction of lexmax sequences strongly depends on m. It is largest for sparse
and dense dags.

3. Lexmax sequences are overrepresented among one million randomly generated
sequences (for each m), we observe more than 99% for all densities of dags, see
Figure 1 (red triangles).

This leads to the following questions: Given a sequence for which we seek a dag
realization. How should we proceed in practice? As we have seen, the huge majority
of dag sequences are lexmax sequences. Is it possible to find characteristic properties
for lexmax sequences or non-lexmax sequences, respectively?

Distance to opposed sequences. Let us exploit our characterization that opposed
sequences are efficiently solvable. We propose the distance to opposed d(S) for each
dag sequence S. Consider for that the topological order of a dag realization G given
by Algorithm 1, if in line (3) elements are chosen in decreasing lexicographical order.
This ordering corresponds to exactly one path of the recursion tree. Thus, we obtain

How to Attack the Dag Realization Problem 7

p
er

ce
n

ta
g
e

o
f

sy
st

em
a
ti

ca
ll

y
 g

en
er

a
te

d
 s

eq
u

en
ce

s

42 860 10 12 14 16
0

10

20

30

40

50

60

70

80

90

difference d to opposed
number of arcs m

 from 9 to 35

number m of arcs fr
om 9 to 35

p
er

ce
n

ta
g

e
o

f
ra

n
d

o
m

ly
 g

en
er

a
te

d
 s

eq
u

en
ce

s

2 4 6 8 10 12 140
0

10

100

90

80

70

60

50

40

30

20

difference d to opposed

Fig. 3. Percentage of systematically generated sequences S (left) and randomized
generated sequences (right) with their difference d(S) to opposed for n = 9 tuples
and m ∈ {9, . . . , 35}.

one unique dag realization G for S, if existing. Now, we renumber dag sequence S
such that it follows the topological order induced by the execution by this algorithm,
i.e. by the sequence of choices of elements from V ′min. Then the distance to opposed
is defined as the number of pairwise incomparable stream tuples with respect to this
order, more precisely,

d(S) :=

∣∣∣∣
{((

ai
bi

)
,

(
aj
bj

))
|
(
ai
bi

)
,

(
aj
bj

)
incomparable stream tuples
w.r.t. ≤opp and i < j

}∣∣∣∣ .

Question 1: Do randomly generated sequences possess a preference to a “small” dis-
tance to opposed in comparison with systematically generated sequences? In Figure 3
(left), we show the distribution of systematically generated sequences (in %) with
their distance to opposed, depending on m :=

∑n
i=1 ai. We compare this scenario

with the same setting for randomly generated sequences, shown in Figure 3 (right).
Observations: Systematically generated sequences have a slightly larger range of

the “distance to opposed” than randomly generated sequences. Moreover, when we
generate dag sequences systematically, we obtain a significantly larger fraction of
instances with a larger distance to opposed than for randomly generated sequences,
and this phenomenon can be observed for all m.

Question 2: Do non-lexmax sequences possess a preference for large opposed distances?
Since opposed sequences are easily solvable [BM11], we conjecture that sequences with
a small distance to opposed might be easier solvable by the lexmax strategy than those
with a large distance to opposed. If this conjecture were true, it would give us together
with our findings from Question 1 one possible explanation for the observation that the
randomly generated sequences have a larger fraction of efficiently solvable sequences
by the lexmax strategy.

Observations: A separate analysis of non-lexmax sequences (that is, the subset of
unsolved instances by the lexmax strategy), displayed in Figure 2, gives a clear picture:
yes! For systematically generated sequences with n = 9, we observe in particular for
instances with a middle density that the fraction of non-lexmax sequences becomes
maximal for a relatively large distance to opposed.

8 A. Berger, M. Müller-Hannemann

name and dag norm. dist.
kind of network n m b density ρ to opposed

burgess shale (b) 142 770 101 0.08 0.40
chengjiang shale (b) 85 559 54 0.16 0.50
florida bay dry (b) 128 2137 125 0.26 0.32
cyprus dry (b) 71 640 68 0.26 0.43
maspalomas (b) 24 82 21 0.30 0.30
rhode river (b) 20 53 17 0.28 0.42
train schedule 2011 (c) 19359 77201 18907 0.0004 0.00
flight schedule 2010 (d) 37800 1324556 32905 0.0019 0.00

Table 1. Characteristics of our real-world test instances.

Question 3: Can we solve real-world instances by the lexmax strategy? We consider
real-world instances from different domains.

a): Ordered binary decision diagrams (OBDDs): In such networks the outdegree is
two, that is constant. This immediately implies that the corresponding sequences
are opposed sequences, and hence can provably be solved by the lexmax strategy.

b): Food Webs: Such networks are almost hierarchical and therefore have a strong
tendency to be acyclic (“larger animals eat smaller animals”). In our experiments
we analyzed food webs from the Pajek network library [Bat04].

c): Train timetable network: We use timetable data of German Railways from 2011
and form a time-expanded network. Its vertices correspond to departure and ar-
rival events of trains, a departure vertex is connected by an arc with the arrival
event corresponding to the very next train stop. Moreover, arrival and departure
events at the same station are connected whenever a transfer between trains is
possible or if the two events correspond to the very same train.

d): Flight timetable network: We use the European flight schedule of 2010 and form
a time-expanded network as in c).

The characteristics of our real-world networks b) - d) are summarized in Table 1.
The dag density ρ of a network is defined as ρ = m/

(
n
2

)
. To compare the distance

to opposed for instances of different sizes, we normalize this value by the theoretical
maximum

(
b
2

)
, where b denotes the number of stream tuples, and so obtain a normal-

ized distance to opposed. Without any exception, all real-world instances have been
realized by the lexmax strategy.

Back to theory. Inspired by our observations in the systematic experiments, we
reconsidered forest sequences. We can show that an arbitrary choice of a tuple in
V ′min in line 3 of Algorithm 1 solves the problem for forest sequences.

Theorem 2 (Realization of forest dags). Let S :=
(
a1
b1

)
, . . . ,

(
an
bn

)
with

∑n
i=1 ai ≤

n − 1 be a canonically sorted sequence containing k > 0 source tuples. Furthermore,
we assume that S is not a source-sink-sequence. Consider an arbitrary stream tuple(
ai
bi

)
with ai ≤ k. S is a dag sequence if and only if

S′ :=

(
0

b1 − 1

)
, . . . ,

(
0

bai − 1

)
,

(
0

bai+1

)
, . . . ,

(
0

bk

)
, . . . ,

(
ai−1

bi−1

)
,

(
0

bi

)
,

(
ai+1

bi+1

)
, . . . ,

(
an
bn

)
is a dag sequence.

How to Attack the Dag Realization Problem 9

Note, that sequence S′ may contain zero tuples. In this case, we delete these tuples
and renumber the tuples from this new sequence S′ :=

(a′1
b′1

)
, . . . ,

(a′
n′
b′
n′

)
from 1 to n′.

Clearly, we have
∑n′

i=1 a
′
i ≤ n−ai−1 ≤ n′−1, because we deleted exactly the indegree

of tuple
(
ai
bi

)
in S and it is only possible to delete at most ai new zero tuples in S′.

Hence, Theorem 2 results in a recursive algorithm. At each step, one has to choose an
arbitrary stream tuple

(
ai
bi

)
with indegree of at most k and then to reduce ai largest

sources by one and to set the indegree ai of this tuple to zero. On the other hand, the
set Vmin of Theorem 1 is a subset of the allowed tuple set in Theorem 2. Hence, we
get the following corollary.

Corollary 2 (arbitrary tuple choice in Vmin for forest sequences). Let S :=(
a1
b1

)
, . . . ,

(
an
bn

)
with

∑n
i=1 ai ≤ n − 1 be a canonically sorted sequence containing k >

0 source tuples. Furthermore, let S′ be defined as in Theorem 1 where
(ai`
bi`

)
is an

arbitrary tuple in Vmin.
S is a dag sequence if and only if S′ is a dag sequence.

3 Randomized Algorithms

3.1 Four versions of randomized algorithms

The main idea for developing a randomized algorithm is the following. In each trial
use a randomly chosen topological sorting (a random permutation of the tuples) for
a given sequence and then apply the linear-time realization algorithm as described
in Section 1 and justified by Lemma 1. Clearly, it is not necessary to permute all
tuples in a sequence. Instead we use a canonically sorted sequence and permute only
the stream tuples. We denote this first naive version of a randomized algorithm by
stream tuple permutation algorithm (Rand I). A random permutation of a sequence of
length n can be chosen in O(n) time, see for example [Dur64]. Hence, one trial of the
stream tuple permutation algorithm requires O(m+n) time. This algorithm performs
poorly since there are sequences with only a single realization among (n − 2)! many
permutations of n− 2 stream tuples. On the other hand, it is possible to restrict the
number of possible topological sortings by the following lemma.

Lemma 2 (necessary criterion for the realizability of dag sequences). Let S
be a dag sequence. Denote the number of source tuples in S by q and the number of
sink tuples by s. Then it follows ai ≤ min{n− s, i− 1} and bi ≤ min{n− q, n− i} for
all i ∈ Nn for each labeling of S corresponding to a topological order.

Hence, a stream tuple
(
ai
bi

)
can only be at position j in a topological ordering if

aj ≤ min{n − s, i − 1} and bj ≤ min{n − q, n − i} is fulfilled. We define a bipartite
bounding graph BS = (VS∪WS , ES) for a given canonically sorted sequence as follows.
We define |S| − q − s vertices vi ∈ VS with i ∈ {q + 1, . . . , n − s} where each vertex
vi corresponds to an “upper bound tuple”

(
min{n−s,i−1}
min{n−q,n−i}

)
for a stream tuple in S.

Furthermore, we define |S| − q − s vertices wi with i ∈ {q + 1, . . . , n − s} each
corresponding to a stream tuple

(
ai
bi

)
. The edge set ES is built as follows. Two vertices

vi and wj are adjacent if and only if we find for
(
aj
bj

)
that aj ≤ min{n− s, i− 1} and

bj ≤ min{n− q, n− i}. We show an example of the bounding graph (Figure 4).

10 A. Berger, M. Müller-Hannemann

2

6

5

3

4

4

3

5
1

1

4

4

3

2

2

1

WV
S S

Fig. 4. Bounding graph GS for sequence S :=
(
0
3

)
,
(
0
1

)
,
(
1
2

)
,
(
2
3

)
,
(
4
4

)
,
(
1
1

)
,
(
1
0

)
,
(
2
0

)
,
(
3
0

)
.

One perfect matching (thick red edges) leads to the topological order
(
1
2

)
,
(
2
3

)
,
(
4
4

)
,
(
1
1

)

which is realizable, whereas another perfect matching (thick blue edges) gives the
topological order

(
1
1

)
,
(
1
2

)
,
(
4
4

)
,
(
2
3

)
which is not realizable.

A perfect matching in this bounding graph gives us a possible topological sorting
with respect to Lemma 2. This means, we assign to each stream tuple

(
aj
bj

)
in S the

number i if and only if (vi, wj) is a matching edge in the chosen perfect matching.
Clearly, there does not exist a dag realization of sequence S if BS does not contain a
perfect matching. Unfortunately, the computation of the number of perfect matchings
in a bipartite graph is known to be]P -hard [Val79]. On the other hand, there exists
a polynomial-time algorithm for the problem of uniform sampling a perfect matching
within a bipartite graph by Jerrum, Sinclair and Vigoda [JSV04]. They use a Markov
chain based algorithm. The number of necessary steps in this algorithm is measured
by the so-called mixing time τε, where ε denotes the variation distance to the uniform
distribution. They proved a worst case mixing time of O(n8(n log n + log 1

ε) log
1
ε).

Up to know, we do not know if we really need a uniform distribution, but we do not
want to eliminate certain topological orderings. Our second version of a randomized
algorithm – the bounding permutation algorithm (Rand II) – chooses in each trial a
topological sorting by uniform sampling a perfect matching in BS and then applies the
realization algorithm for a given topological order (Lemma 1). For our experiments
with very small instances, we sampled uniformly by enumerating all permutations of
stream tuples.

Our third randomized algorithm – the opposed permutation algorithm (Rand III)
– exploits the non-trivial result in Corollary 1 about opposed topological sortings. It
uses for one trial, Algorithm 1 with a change in line 3. We replace line 3 by: “Sample
a vj ∈ V ′min uniformly at random.” If possible, we restrict the set of V ′min before
line 3, i.e., we check for the largest vi ∈ V ′min whether the bounds of Lemma 2
are respected for later positions. Let k denote the number of recursive calls up to
the current one. Expressed in terms of the original sequence, we have to choose the
(q+ k)–th tuple in the topological sorting in the current iteration. If bi = n− (q+ k)
for the lexicographical largest tuple

(
ai
bi

)
∈ V ′min, then we set V ′min := {

(
ai
bi

)
}. The

reason is that a larger position is not possible at all for this tuple, because the upper
bound for bi decreases strictly, as shown in Lemma 2. At first glance it is not clear
whether the restriction to a subset of permutations within the randomized algorithm
really increases the chance to draw a realizable topological sorting. This version of

How to Attack the Dag Realization Problem 11

the algorithm only constructs dag realizations which possess an opposed topological
sorting. Hence, we also exclude possible topological sortings which are not opposed
topological sortings. However, empirically this idea pays off.

Our fourth randomized version combines the opposed permutation algorithm with
several reduction rules which exploit the symmetric roles of in- and outdegrees and
degree dominance of tuples. The following reduction rules can be used to simplify a
given sequence. Additional (similar) rules are possible, but we restrict our description
to those rules which have been implemented and used in our experiments.

1. Exploit symmetric roles of in- and outdegrees. If |V ′min| = 1, the reduction step in
Algorithm 1 is safe (for any realizable sequence). Since the problem is symmetric
with respect to in- and outdegrees, we can exchange their roles. This suggests to
check the size of V ′min from “both sides”. If either of these sets has size one, the
corresponding reduction step is safe and should be preferably applied.

2. Degree dominance of some tuple. Suppose that some bi is so large that this number
matches the number of available stream and sink tuples, then vertex vi has to be
connected with all current non-sources. Hence, sequence S can be reduced by
deleting a source tuple

(
0
bi

)
or by updating a stream tuple

(
ai
bi

)
to a new sink

(
ai
0

)
,

respectively, and by subtracting one from all aj > 0 with i 6= j. The symmetric
reduction rule can be stated for a dominating ai-value.

3. Dominating total degree of some stream tuple. Suppose there is a stream tuple
with ai + bi = n − 1. Then we can conclude that this tuple has to be connected
with all other tuples. It is unclear which stream tuples come before and which
after

(
ai
bi

)
in some realization. However, we can be sure that it is connected with

all sources and all sinks (in particular ai ≤ q and bi ≤ s must hold). In order to
ensure that later recursive reduction steps do not introduce parallel arcs, we only
apply a more conservative reduction. Namely, we connect the vertex vi only with
sources and sinks for which ai = 1 or bi = 1, respectively.

We additionally apply these rules whenever applicable and call the randomized
algorithm opposed permutation algorithm with reduction rules (Rand IV).

3.2 Experimental comparison of randomized algorithms

Experiment 1: Which randomized algorithm possesses the best success probability for
one trial? We define the success probability p(m) as the probability that a given
sequence S :=

(
a1
b1

)
, . . . ,

(
an
bn

)
with m :=

∑n
i=1 ai can be realized by a specified ran-

domized algorithm in one single trial. In this experiment we test the four versions
of our randomized algorithms with all non-trivial sequences (as defined in Section 2)
of 9 tuples, see Figure 5. Moreover, we display the fraction of lexmax sequences to
compare the deterministic lexmax strategy with our randomized strategy.

Observations: Randomized version 4 (opposed permutation algorithm with reduction
rules) clearly outperforms all other strategies. We also observe that the success prob-
ability p depends on the density m of the dag realizations. Sparse and dense dags
have the best success probability. The deterministic lexmax strategy has almost the
same success probability as our best randomized version. Of course, we can repeat
a randomized algorithm and thereby boost the success rate which is not possible for
the deterministic variant. Nevertheless the good performance of the simple lexmax

12 A. Berger, M. Müller-Hannemann

5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rand I
Rand II
Rand III
Rand IV
fraction of lexmax
sequences

number of arcs m

s
u

c
c

e
s

s
 p

ro
b

a
b

ili
ty

 p
(m

)

Fig. 5. Success probability p(m) for
all non-trivial sequences with 9 tuples
with four versions of randomized algo-
rithms and the fraction of lexmax se-
quences.

5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0

0.1

0.2

0.3

0.4

0.5

0.6

Rand I
Rand II
Rand III
Rand IV
% non-reducible
non-lexmax
sequences

number of arcs m

s
u

c
c

e
s

s
 p

ro
b

a
b

ili
ty

 p
(m

)
fo

r
o

n
e

 t
ri

a
l

p
e

rc
e

n
ta

g
e

n

o
n

-r
e

d
u

c
a

b
le

n

o
n

-l
e

x
m

a
x

 s
e

q
.

Fig. 6. Success probability p(m)
for all non-reducible non-lexmax se-
quences of 9 tuples with four versions
of randomized algorithms and the per-
centage of non-reducible non-lexmax
sequences in the set of all non-trivial
sequences.

strategy is quite remarkable, it clearly outperforms an arbitrary strategy to choose in
line 3 of Algorithm 1 an element from V ′min (realized in randomized version 3).

Experiment 2: We consider the success probability for all randomized algorithms in the
case of non-lexmax sequences which are not reducible by our reduction rules. Noting
that an impressively large fraction of sequences is efficiently solvable by the deter-
ministic lexmax strategy combined with our reduction rules, we should ask: How
well do our randomized algorithms perform for the remaining difficult cases, that is
for non-reducible non-lexmax sequences? Actually, this is indeed the most interesting
question, because the best approach for realizing a given sequence S would be: first
to test, whether S is a reducible lexmax sequence. Only if this is not the case, one
would take a randomized algorithm. Hence, we now determine the success probability
p(m) for all non-reducible non-lexmax sequences, see Figure 6.

Observations: As in the previous experiment, randomized version 4 has the overall best
success probability p, but in sharp contrast we observe a completely different depen-
dence on m. One possible explanation could be that for high densities our reduction
rules have been applied more often. Note that the overall percentage of non-reducible
non-lexmax sequences in the set of all non-trivial sequences with 9 tuples is so tiny
(see the brown curve in Figure 6) — in particular for low densities — that we can
realize after two or three trials almost all sequences.

4 Conclusion

In this paper we have studied the performance of a simple linear-time heuristic to
solve the NP-complete dag realization problem and several randomized variants. We
give a brief summary of our main observations.

How to Attack the Dag Realization Problem 13

1. Dag sequences S with sparse or dense densities are almost always lexmax se-
quences.

2. Dag sequences with a small distance to opposed d(S) are to a large extent lexmax
sequences.

3. There is a good chance to realize a dag sequence by the lexmax strategy, especially
for acyclic real-world networks.

For a given (real-world) sequence we propose the following recipe: Choose Algo-
rithm 1 with lexmax strategy and apply the reduction rules 1-3. If this run is unsuc-
cessful apply version 4 of our randomized algorithms, i.e. the opposed permutation
algorithm with reduction rules. For most dag sequences in practice this will give us a
pretty fair chance to find a realization. The surprisingly broad success of the lexmax
strategy suggests that there might be further subclasses of instances where it runs
provably correct. In future work we would like to characterize the class of instances
for which the lexmax strategy works provably correct.

References

Bat04. V. Batagelj, Pajek datasets: Food webs,
http://vlado.fmf.uni-lj.si/pub/networks/data/bio/foodweb/foodweb.htm,
2004.

Ber11. A. Berger, Directed degree sequences, PhD thesis, Department of Computer Science,
Martin-Luther-Universität Halle-Wittenberg, urn:nbn:de:gbv:3:4-6768 (2011).

BM11. A. Berger and M. Müller-Hannemann, Dag realisations of directed degree sequences,
FCT 2011, LNCS, vol. 6914, Springer, Heidelberg, 2011, full version available as
Technical Report 2011/5, Martin-Luther-Universität Halle-Wittenberg, Department
of Computer Science, pp. 264–275.

Dur64. Richard Durstenfeld, Algorithm 235: Random permutation, Commun. ACM 7
(1964), 420.

JSV04. M. Jerrum, A. Sinclair, and E. Vigoda, A polynomial-time approximation algorithm
for the permanent of a matrix with nonnegative entries, Journal of the ACM 51
(2004), 671–697.

KW73. D. J. Kleitman and D. L. Wang, Algorithms for constructing graphs and digraphs
with given valences and factors, Discrete Mathematics 6 (1973), no. 1, 79 – 88.

Nic11. A. Nichterlein, Realizing degree sequences for directed acyclic graphs is hard, CoRR
abs/1110.1510v1 (2011).

Tut52. W.T. Tutte, The factors of graphs, Canadian J. of Mathematics 4 (1952), 314–328.
Val79. L. G. Valiant, The complexity of computing the permanent, Theoretical Computer

Science 8 (1979), no. 2, 189 – 201.

http://vlado.fmf.uni-lj.si/pub/networks/data/bio/foodweb/foodweb.htm

14 A. Berger, M. Müller-Hannemann

Appendix
A Proofs

In this section we present the proofs for our theoretical results. For the first lemma,
recall the corresponding setting from Section 1.

Let S :=
(
a1
b1

)
, . . . ,

(
aq+1

bq+1

)
, . . . ,

(
an
bn

)
be an arbitrary sequence with a given topolog-

ical order. Without loss of generality, we may assume that the source tuples come
first in the prescribed numbering and are ordered decreasingly with respect to their bi
values. Let S′ :=

(
a1
b1−1

)
, . . . ,

(aaq+1

baq+1
−1
)
, . . . ,

(
aq
bq

)
,
(

0
bq+1

)
, . . . ,

(
an
bn

)
. If we get zero tuples

in S′, then we delete them and denote the new sequence for simplicity also by S′.
Furthermore, we label this sequence with a new numbering starting from one to its
length and consider this sorting as the given topological ordering of S′.

Lemma 1. S is a dag sequence for a given topological order ⇔ S′ is a dag sequence
for its corresponding topological order.

Proof. ⇐: Trivial.
⇒: We consider a dag realization for the given topological ordering of dag sequence
S. Clearly, we find at least aq+1 sources. This is true, because a first vertex with non-
empty incoming neighborhood set in a topological sorting (a sink or a stream vertex)
of a dag can only possess sources in its incoming neighborhood set. Otherwise, this
numbering is not a topological sorting. Assume, there is no dag realization for the
given topological order, such that the aq+1 largest sources are connected with vertex
vq+1. In this case, we consider a dag realization G to this topological order such
that the maximum possible number of largest sources is connected with vertex vq+1.
Then we have two sources vi and vj with (vi, vq+1) /∈ A, (vj , vq+1 ∈ A), bi > bj
and i, j < q + 1. Since bi > 0 and vq+1 is the first non-source tuple, there is a
non-source vertex vk (k > q + 1) with (vi, vk) ∈ A and (vj , vk) /∈ A. We define a
new digraph G∗ := (G \ {vi, vk} ∪ {vj , vq+1}) ∪ ({vi, vq+1} ∪ {vj , vk}). Obviously, G∗
is a dag realization for the given topological order of sequence S. Contradiction to
the assumption that G is a dag realization with the maximum possible number of
largest sources for vertex vq+1. Hence, there exists a dag realization G to the given
topological order such that vertex vq+1 has in its incoming neighborhood set only
the aq+1 largest sources from the set of all sources vi with i < q + 1. We delete the
incoming neighborhood set of vertex vq+1 and yield a dag realization for sequence S′
for its given topological ordering. �

The existence of a simple solution for forest sequences is not so surprising as there
is a simple approach to construct a dag realization if there is one. First, one can apply
a digraph realization algorithm. When we do not find a digraph realization, there
also cannot be a dag realization. Assume, we have a digraph realization G = (V,A).
If G possesses no directed cycle then it is a dag realization and we are ready. Let
us assume, G has at least one directed cycle. In this case, there exist at least two
weak components (i.e. connected components in the underlying undirected graph),
because the underlying undirected graph is not a forest. Hence, we can choose an
arc (v1, v2) of the directed cycle in the first component and a further arc (v3, v4)

How to Attack the Dag Realization Problem 15

from the second weak component. We construct the new digraph G′ := (V,A′) with
A′ := A\{(v1, v2), (v3, v4)}∪{(v1, v4), (v3, v2)}.We apply a sequence of such steps (at
most n steps) until we get an acyclic dag realization. This is possible because as long
as we can find a directed cycle we also have more than one weak component. (Note,
that the underlying graph is not necessarily a simple graph. It can contain parallel
edges corresponding to directed 2-cycles of the initial dag realization G.) Hence, we
can conclude that each forest sequence which is a digraph sequence is also a dag se-
quence. Clearly, this can be decided in polynomial time.

Note that sequence S′ may contain zero tuples. In this case, we delete these tuples
and renumber the tuples from this new sequence S′ :=

(a′1
b′1

)
, . . . ,

(a′
n′
b′
n′

)
from 1 to n′.

Clearly, we have
∑n′

i=1 a
′
i ≤ n−ai−1 ≤ n′−1, because we deleted exactly the indegree

of tuple
(
ai
bi

)
in S and it is only possible to delete at most ai new zero tuples in S′.

Hence, Theorem 2 results in a recursive algorithm. At each step, one has to choose an
arbitrary stream tuple

(
ai
bi

)
with indegree of at most k and then to reduce ai largest

sources by one and to set the indegree ai of this tuple to zero. On the other hand, the
set Vmin of Theorem 1 is a subset of the allowed tuple set in Theorem 2. Hence, we
get Corollary 2.

Theorem 2 (Realization of forest dags). Let S :=
(
a1
b1

)
, . . . ,

(
an
bn

)
with

∑n
i=1 ai ≤

n − 1 be a canonically sorted sequence containing k > 0 source tuples. Furthermore,
we assume that S is not a source-sink-sequence. Consider an arbitrary stream tuple(
ai
bi

)
with ai ≤ k.

S is a dag sequence if and only if

S′ :=

(
0

b1 − 1

)
, . . . ,

(
0

bai − 1

)
,

(
0

bai+1

)
, . . . ,

(
0

bk

)
, . . . ,

(
ai−1

bi−1

)
,

(
0

bi

)
,

(
ai+1

bi+1

)
, . . . ,

(
an
bn

)

is a dag sequence.

Proof. (of Realization of forest dags) ⇐: Trivial.
⇒: Let S be a dag sequence with k ≥ 1 source tuples. We consider a dag real-
ization G such that we have a minimum number of weak components. Clearly, the
underlying undirected graph is then a forest without undirected cycles. Furthermore,
we consider a dag realization G as described where the incoming neighborhood set
of vertex vi consists of a maximum possible number of sources. Assume, there is a
vertex vi− ∈ N−G (vi) which is not a source. (The notation N−G (v) describes the in-
neighborhood of vertex v in G.) Then we can conclude that there exists a source q
and a vertex vj with (q, vj) ∈ A but (q, vi) /∈ A, because we have d−G(vi) = ai ≤ k by
our assumption. We distinguish between two cases.

case 1: There exists no underlying undirected path between vertices vj and vi.
case 2: There exists exactly one underlying undirected path P between vertices vj
and vi.

Note that there cannot be more than one underlying undirected path, because the
underlying graph of G is by our assumption a forest. Let us start with case 1. There
cannot be an underlying undirected path between vertices q and vi, otherwise we
would find the excluded undirected path between vi and vj , because q is adjacent to vj .

16 A. Berger, M. Müller-Hannemann

We construct the dagG′ = (V,A′) with A′ := A\{(q, vj), (vi− , vi)}∪{(q, vi), (vi− , vj)}.
Consider Figure 7. Digraph G is indeed a dag, because G does not contain an underly-
ing undirected path between vi and q and not between vi− and vj by our assumptions.
Hence, we did not construct an underlying undirected cycle and clearly no directed
cycle.

Fig. 7. Case 1 : no underlying undirected path between q and vi in G.

But then G′ is a dag realization with a minimum number of weak components and
a larger number of sources in the neighborhood set of vi than in dag G. Contradiction!
It remains to consider case 2. Since vertex vi is a stream tuple we define the following
dag G′ = (V,A′) with A′ := A\{(q, vj), (vi− , vi), (vi, vi+)}∪{(q, vi), (vi− , vi+), (vi, vj)}
as can be seen in Figure 8.

Note, that vj and vi− are not necessarily distinct vertices. If this is the case case,
then we replace in A′ vertex vi− by vj . Since we destroyed by our construction all
underlying unique paths in G between vi and q, between vi+ and vi− and between vj
and vi, digraph G′ is indeed acyclic and possesses a minimum number of weak com-
ponents. On the other hand vertex vi is connected with a larger number of sources as
in G. Contradiction!

Hence, we can assume that there exists a dag realization G = (V,A) with a
minimum number of weak components such that the incoming neighborhood set of
vertex vi only contains sources. We consider a dag realization such that vertex vi is
connected with the maximum possible number of largest sources. Assume, there is a
source q′ > q such that (q, vi) ∈ A and (q′, vi) /∈ A. Then there exists a further vertex
vj with (q′, vj) ∈ A. We distinguish again between two cases. If there does not exist
an underlying undirected path P between q and vj or between q′ and vi, we define
the new dag G′ := (V,A′) with A′ := A \ {(q, vi), (q′, vj)} ∪ {(q′, vi), (q, vj)} with a
minimum number of weak components but with one larger source connected with vi
than in G (see Figure 9). Contradiction!

How to Attack the Dag Realization Problem 17

Fig. 8. Case 2 : one unique underlying undirected path P between q and vi.

Fig. 9. A larger source q′ is not connected with vertex vi.

Hence, we next assume that there is one underlying undirected path P = q′, vj′ , . . . , vi
between q′ and vi. (A further path between q and vj cannot exist, because in this case
we would find an underlying cycle.) Note, that it is possible that we find vj′ = vj . In
this case we replace in the following steps vj′ by vj .We define the new dag realization
G′ = (V,A′) with A′ := A\{(q, vi), (q′, vj′)}∪{(q′, vi), (q, vj′)} with a minimum num-
ber of weak components, because we destroyed by our construction the underlying
unique paths from q to vj′ and from q′ to vi. Dag G′ possesses one more of the largest
sources connected to vi than G. Contradiction! As a last case it remains, that there
could exist an underlying undirected path P = q, . . . , vj from q to vj , see Figure 10.

Since q′ is a larger source than q, there exists a further vertex vj′ with (q′, vj′) ∈ A.
Then we construct the dag realization G′ = (V,A′) with A′ := A \ {(q, vi), (q′, vj′)} ∪
{(q′, vi), (q, vj′)}. Indeed, we destroyed in G the unique paths between q and vj′ and
between q′ and vi. Hence, G′ is a dag with a minimum number of weak components
but with one more of the largest sources connected to vi than in G. Contradiction!
So, there exists a dag realization G such that vertex vi has in its incoming neighbor-
hood set only largest sources. We delete the arcs from these sources to vi in G, and
get a dag realization G′ with dag sequence S′. �

18 A. Berger, M. Müller-Hannemann

Fig. 10. A larger source q′ is not connected with vertex vi and there exists an
underlying path P between q to vj .

Lemma 2 (necessary criterion for the realizability of dag sequences). Let
S be a dag sequence. Denote the number of source tuples in S by q and the number
of sink tuples by s. Then it follows ai ≤ min{n− s, i− 1} and bi ≤ min{n− q, n− i}
for all i ∈ Nn for each labeling of S corresponding to a topological order.

Proof. Let S :=
(
a1
b1

)
, . . . ,

(
an
bn

)
be a labeling of S corresponding to a topological sorting

of a dag realization G. Assume, there is a j ∈ Nn with aj > min{n − s, j − 1}.
(Case bj > min{n − q, n − j} can be done analogously.) G is a subdigraph of a
complete dag G∗ with topological sorting v1, . . . , vn. Clearly, we have d−G∗(vj) = j−1.
We distinguish between two cases. If we have min{n − s, j − 1} = n − s, then it
follows aj = d−G(vj) > n − s. Then the incoming neighborhood set N−G (vj) consists
of more than n − s vertices – in contradiction to the fact that N−G (vj) contains at
most n − s vertices. Let us now assume min{n − s, j − 1} = j − 1. Then we get
d−G∗(vj) = j − 1 < aj = d−G(vj) – a contradiction to our assumption that G is a
subdigraph of G∗. �

B Example for Algorithm 1

Example 1. Consider the sequence S =
(
0
3

)
,
(
0
1

)
,
(
1
2

)
,
(
2
3

)
,
(
4
4

)
,
(
1
1

)
,
(
1
0

)
,
(
2
0

)
,
(
3
0

)
. Figure 11

shows the recursion tree of Algorithm 1 for this instance. The symbol × here denotes
tuples of S which have been deleted after being reduced to

(
0
0

)
. The rightmost path

(green) corresponds to the lexmax strategy, not leading to a realization.

How to Attack the Dag Realization Problem 19

S
′
=

(0 2

) ,×
,(1 2

) ,(0 3

) ,(4 4

) ,(1 1

) ,(1 0

) ,(2 0

) ,(3 0

)
S
′
=

(0 2

) ,(0 1

) ,(0 2

) ,(2 3

) ,(4 4

) ,(1 1

) ,(1 0

) ,(2 0

) ,(3 0

)

S
′′
=

(0 2

) ,×
,(0 2

) ,(0 2

) ,(4 4

) ,(1 1

) ,(1 0

) ,(2 0

) ,(3 0

)
S
′′
=

(0 1

) ,(0 1

) ,(0 2

) ,(2 3

) ,(4 4

) ,(0 1

) ,(1 0

) ,(2 0

) ,(3 0

)
S
′′
=

(0 1

) ,(0 1

) ,(0 1

) ,(0 3

) ,(4 4

) ,(1 1

) ,(1 0

) ,(2 0

) ,(3 0

)

S
′′′

=
×
,(0 1

) ,(0 1

) ,(0 3

) ,(4 4

) ,(0 1

) ,(1 0

) ,(2 0

) ,(3 0

)
S
′′′

=
(0 1

) ,(0 1

) ,(0 1

) ,(0 2

) ,(4 4

) ,(0 1

) ,(1 0

) ,(2 0

) ,(3 0

)
S
′′′

=
×
,×

,×
,(0 2

) ,(0 4

) ,(1 1

) ,(1 0

) ,(2 0

) ,(3 0

)
S
′′′

=
(0 1

) ,×
,(0 2

) ,(0 2

) ,(4 4

) ,(0 1

) ,(1 0

) ,(2 0

) ,(3 0

)

S
=

(0 3

) ,(0 1

) ,(1 2

) ,(2 3

) ,(4 4

) ,(1 1

) ,(1 0

) ,(2 0

) ,(3 0

)

(1 2

)
(2 3

)

(1 1

)
(2 3

)
(1 2

)

(2 3

)
(1 1

)
(4 4

)
(1 1

)

(4 4

)
(4 4

)
(1 1

)
(4 4

)

V
′ m
in

=
{(

1 2

) ,(2 3

) }

V
′ m
in

=
{(

1 1

) ,(2 3

) }
V

′ m
in

=
{(

1 2

) }

V
′ m
in

=
{(

2 3

) }
V

′ m
in

=
{(

1 1

) ,(4 4

) }
V

′ m
in

=
{(

1 1

) }

V
′ m
in

=
{(

4 4

) }
V

′ m
in

=
{(

4 4

) }
V

′ m
in

=
{(

1 1

) }
V

′ m
in

=
{(

4 4

) }

no
t

re
al

iz
ab

le
no

t
re

al
iz

ab
le

no
t

re
al

iz
ab

le

re
al

iz
ab

le

S
′′′

′
=

×
,×

,×
,(0 2

) ,(0 4

) ,×
,(1 0

) ,(2 0

) ,(3 0

)
S
′′′

′
=

×
,×

,×
,(0 1

) ,(0 4

) ,(0 1

) ,(1 0

) ,(2 0

) ,(3 0

)
S
′′′

′
=

×
,×

,×
,(0 2

) ,(0 3

) ,(0 1

) ,(1 0

) ,(2 0

) ,(3 0

)
S
′′′

′
=

×
,×

,(0 1

) ,(0 1

) ,(0 4

) ,×
,(1 0

) ,(2 0

) ,(3 0

)

×
,×

,×
,(0 2

) ,×
,(0 1

) ,×
,(1 0

) ,(2 0

)

×
,×

,×
,×

,×
,(0 1

) ,×
,×

,(1 0

)

Fig. 11. Recursion tree for Example 1. The symbol × here denotes tuples of S which
have been deleted after being reduced to

(
0
0

)
. The forth tree level where the original

sequence is reduced to a source-sink sequence is marked with red boxes.

20 A. Berger, M. Müller-Hannemann

C Further Supporting Material

non-trivial # non-lexmax # reduced non-lexmax
n m sequences sequences sequences
9 9 1469 0 0
9 10 4566 0 0
9 11 12284 22 0
9 12 29350 106 1
9 13 63411 418 12
9 14 124958 1255 54
9 15 226343 3148 146
9 16 379089 6759 337
9 17 590302 12916 763
9 18 855830 21825 1492
9 19 1155082 32707 2394
9 20 1451117 43519 3175
9 21 1695124 51757 3673
9 22 1839040 55112 3757
9 23 1846761 52270 3300
9 24 1710913 43800 2475
9 25 1453602 31678 1549
9 26 1124025 19399 754
9 27 783283 9767 286
9 28 485528 3917 89
9 29 262909 1164 14
9 30 121343 235 0
9 31 46183 25 0
9 32 13867 0 0
9 33 3059 0 0
9 34 448 0 0
9 35 36 0 0

Table 2. Systematic experiments with n = 9. For m ∈ {9, . . . , 35}, we show the
number of non-trivial sequences (i.e. sequences which have at least one stream tuple,
column 3), the number of sequences where the pure lexmax strategy fails (column 4),
and finally the number of sequences where the lexmax strategy combined with our
reduction rules fails (column 5).

	How to Attack the NP-complete Dag Realization Problem in Practice
	Annabell Berger and Matthias Müller-Hannemann

