Skip to main content

A Direct Proof of Wiener’s Theorem

  • Conference paper
Book cover How the World Computes (CiE 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7318))

Included in the following conference series:

Abstract

In functional analysis it is not uncommon for a proof to proceed by contradiction coupled with an invocation of Zorn’s lemma. Any object produced by such an application of Zorn’s lemma does not in fact exist, and it is likely that the use of Zorn’s lemma is artificial. It has turned out that many proofs of this sort can be simplified, both in form and complexity, with the principle of open induction isolated by Raoult as a substitute for Zorn’s lemma. If moreover the theorem under consideration is sufficiently concrete, then a far weaker instance of induction suffices and, with some massaging, one may obtain a fully constructive proof. In the present note we apply this method to Gelfand’s proof of Wiener’s theorem, producing first a simple direct proof of Wiener’s theorem, and then an even simpler constructive proof. With this example in mind we look toward developing a more generally applicable technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aczel, P., Rathjen, M.: Notes on Constructive Set Theory. Report No. 40, Institut Mittag-Leffler, Royal Swedish Academy of Sciences (2001)

    Google Scholar 

  2. de Bruijn, N.G., van der Meiden, W.: Notes on Gelfand’s theory. Indag. Math. 29, 467–474 (1967)

    Google Scholar 

  3. Bridges, D.S.: Constructive Functional Analysis. Research Notes in Mathematics, vol. 28. Pitman, London (1979)

    Google Scholar 

  4. Bishop, E.A., Bridges, D.S.: Constructive Analysis. Grundlehren der Math. Wiss, vol. 279. Springer, Heidelberg (1985)

    Book  MATH  Google Scholar 

  5. Bridges, D., Richman, F., Schuster, P.: A weak countable choice principle. Proc. Amer. Math. Soc. 128, 2749–2752 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cohen, P.: A note on constructive methods in Banach algebras. Proc. Amer. Math. Soc. 12, 159–163 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  7. Coquand, T., Spitters, B.: Constructive theory of Banach algebras. Journal of Logic and Analysis 2(11), 1–15 (2010)

    MathSciNet  Google Scholar 

  8. Coquand, T., Stolzenberg, G.: The Wiener lemma and certain of its generalizations. Bull. Amer. Math. Soc. (N.S.) 24, 1–9 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gelfand, I.M., Raikov, D.A., Chilov, G.E.: Les anneaux normés commutatifs. Gauthier-Villars, Paris (1964)

    Google Scholar 

  10. Lombardi, H., Quitté, C.: Algèbre commutative. Méthodes constructives. Modules projectifs de type fini, Mathématiques en devenir, vol. 107. Calvage & Mounet, Paris (2012)

    Google Scholar 

  11. Newman, D.: A simple proof of Wiener’s 1/f theorem. Proc. Amer. Math. Soc. 48, 264–265 (1975)

    MathSciNet  MATH  Google Scholar 

  12. Raoult, J.: Proving open properties by induction. Inform. Process. Letters 29, 19–23 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  13. Schuster, P.: Induction in algebra: a first case study. In: Twenty-Seventh Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2012 (2012)

    Google Scholar 

  14. Troelstra, A.S., van Dalen, D.: Constructivism in mathematics: An introduction, Volume II. Studies in Logic and the Foundations of Mathematics, vol. 123. North-Holland (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hendtlass, M., Schuster, P. (2012). A Direct Proof of Wiener’s Theorem. In: Cooper, S.B., Dawar, A., Löwe, B. (eds) How the World Computes. CiE 2012. Lecture Notes in Computer Science, vol 7318. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30870-3_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30870-3_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30869-7

  • Online ISBN: 978-3-642-30870-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics